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Abstract—Quadratically constrained quadratic programming
(QCQP) with double-sided constraints has plenty of applications
in signal processing as have been addressed in recent years.
QCQP problems are hard to solve, in general, and they are typ-
ically approached by solving a semidefinite programming (SDP)
relaxation followed by a postprocessing procedure. Existing post-
processing schemes include Gaussian randomization to generate
an approximate solution, rank reduction procedure (the so-called
purification), and some specific rank-one matrix decomposition
techniques to yield a globally optimal solution. In this paper, we
propose several randomized postprocessing methods to output
not an approximate solution but a globally optimal solution for
some solvable instances of the double-sided QCQP (i.e., instances
with a small number of constraints). We illustrate their applica-
bility in robust receive beamforming, radar optimal code design,
and broadcast beamforming for multiuser communications. As
a byproduct, we derive an alternative (shorter) proof for the
Sturm-Zhang rank-one matrix decomposition theorem.

Index Terms—Robust receive beamforming, optimal radar
waveform, multicast downlink beamforming, homogeneous
quadratically constrained quadratic program (QCQP), semidefi-
nite programming (SDP) relaxation.

I. INTRODUCTION

T HE problem formulation and effective solution of a
quadratically constrained quadratic program (QCQP) has

recently obtained ubiquitous applicability in signal processing
for wireless communications, radar, microphone array speech
processing, etc. An equivalent matrix form of a QCQP is
a rank-one constrained semidefinite programming (SDP). It
is known that SDP is a major class of convex optimization
problems and can be solved polynomially via an interior-point
method (e.g., see [1], [2]). However, SDPs with rank-one
constraints (i.e., QCQP problems) are, in general, NP-hard (see
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[3]–[6] and references therein), but they can still be approxi-
mated by solving the SDP relaxation plus a postprocessing for
finding a rank-one solution in a randomized or deterministic
manner (e.g., see the comprehensive surveys [7], [8] and the
book chapter [9] from a perspective of signal processing).
Interestingly, when the number of constraints in a nonconvex
QCQP is not too large, the QCQP can be solved in polynomial
time (e.g., see [7], [9]–[20]), namely, its SDP relaxation is tight,
and thus such class of QCQPs are convex in a hidden way.
Herein, we further focus on the class of solvable1 QCQPs

and some interesting applications in signal processing, both
of which are equally important. A modern approach to solve
a QCQP includes a postprocessing scheme to polynomially
construct optimal or suboptimal solutions of the rank-one
SDP problem, following the resolution of the SDP relaxation
problem (which outputs a general-rank solution). For a solv-
able QCQP, there are several postprocessing methods in the
literature to retrieve a rank-one optimal solution from the SDP
relaxation. Among them, a classical one is the rank-reduc-
tion procedure (also termed “purification”) for generating a
lower-rank solution from a high-rank candidate (see [11], [3],
[9], [18]), while another (more direct) approach to extract a
rank-one solution is due to the specific rank-one decomposition
theorems (see [13], [15], [17]). For a QCQP with two inhomo-
geneous constraints, a rank-one solution procedure consisting
of solving the quadratic feasibility problems was proposed in
[14], [21]. More generally, for a separable QCQP with struc-
tured constraints, an indirect rank-one solution approach via
the dual solution was derived in [22], [23], [19].
In this paper, we consider a randomized postprocessing pro-

cedure to construct a rank-one solution of the SDP relaxation
problem, emphasizing the application to interesting problems
arising in signal processing. The proposed randomized algo-
rithms are very different from the existing ones (i.e., the rank-one
decomposition technique, the rank-one reduction procedure):
These existing ones are deterministic as opposed to our prob-
abilistic approach. The proposed methods, which deliver the
exact optimal solution, are not to be confused with the existing
randomized methods to obtain suboptimal solutions. Some
applications of such class of QCQPs include the design of robust
receive beamforming, multiuser transmit beamforming (both
unicast and multicast), and relay network beamforming [8] (see

1By “solvable” we mean that the minimization (maximization) problem is
feasible, bounded below (above) and the optimal valued is attained ([2], page
13).
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references therein), robust adaptive radar detection [24], design
of optimum coded waveform for radar [25], the Capon beam-
forming problem for microphone array [26], and some other
design problems from signal processing and communications
listed in [9]. Additionally, as a byproduct of the main result
(i.e., the randomized algorithms for solving QCQP optimally),
we provide an alternative proof for the Sturm-Zhang rank-one
decomposition theorem [13] using a probabilistic method.
The remainder of this paper is organized as follows. Section II

is devoted to listing three concrete motivating applications in
signal processing. In Section III, we develop the randomized
algorithms for a global solution of a class of QCQPs and, in
Section IV, we demonstrate how to apply the proposed algo-
rithms to solve the optimization problems in the mentioned ap-
plications. In Section V, we provide an alternative proof of the
Sturm-Zhang rank-one decomposition theorem in [13]. Numer-
ical examples are presented in Section VI. Finally, conclusions
are drawn in Section VII.
Notation: We adopt the notation of using boldface for vec-

tors (lower case), and matrices (upper case). The transpose
operator and the conjugate transpose operator are denoted by
the symbols and respectively. The notation
stands for the trace of the square matrix argument; and de-
note respectively the identity matrix and the matrix (or the row
vector or the column vector) with zero entries (their size is de-
termined from the context). The letter represents the imag-
inary unit (i.e., ), while the letter often serves as
index in this paper. For any complex number , we use
and to denote respectively the real and the imaginary parts
of and represent the modulus and the argument of
, and ( or ) stands for the (component-wise) conju-
gate of ( or ). We employ standing for the inner
product between Hermitian or symmetric matrices
and . The Euclidean norm (the Frobenius norm) of the vector
(the matrix ) is denoted by . The symbol

represents the Hadamard element-wise product. The curled in-
equality symbol (and its strict form ) is used to denote gen-
eralized inequality: means that is an Hermitian
positive semidefinite matrix ( for positive definiteness).
The space of Hermitian matrices (the space of real-
valued symmetric matrices) is denoted by ,
and the set of all positive semidefinite matrices in
by . represents the statistical expectation. The
notations and stand for the range space
and the null space, respectively. denotes
theminimal (maximal) eigenvalue. Finally, represents the
optimal value of problem . stands for the square root
matrix if .

II. MOTIVATION AND PROBLEM FORMULATIONS

In this section, we introduce the considered generic formula-
tion of QCQP, and list several applications arising from different
subjects in signal processing.
Consider the following class of QCQP:

(1)

where the variable could be either real-valued or complex-
valued (i.e., could be or ), , are Her-
mitian (symmetric if ) matrices, are real num-
bers, and (the subscripts and denote
the lower and upper bounds, respectively). Herein, we consider
QCQP with number of double-sided constraints not greater than
three, i.e., , and will show that it is solvable by pre-
senting randomized (polynomial) algorithms for globally op-
timal solutions.
Note that the form of constraint

is general in the sense that it includes the following types of
constraints: (1) no constraint (taking both and to be
“unrestricted”, i.e., the constraint vanishes, and become
meaningless); (2) one-sided inequality constraint
(taking to be “ ” and to be “unrestricted”); (3) equality
constraint (taking both and to be “ ” and

); and (4) double-sided constraint
(with ).
An example for (1) is the inhomogeneous QCQPwith double-

sided constraints:

(2)

since its equivalent homogenized version with an extra variable
is (cf. [12]):

(3)

In particular, we note that a real-valued QCQP with one double-
sided constraint was studied in [10] (see also [12]).
We now list some applications of (1) in signal processing.

A. Robust Receive Beamforming

In a design of robust receive beamforming (cf. [8] and ref-
erences therein), also termed robust adaptive beamforming, the
narrowband signal received by a -antenna array is given by

where , and are statistically independent vec-
tors corresponding to the signal of interest (SOI), interference,
and noise, respectively, is the SOI waveform, and is its
steering vector (the actual array response or spatial signature of
the SOI). The receive beamformer outputs the signal

where is the vector of beamformer complex weight
coefficients. The beamforming problem is to find an optimal
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beamvector maximizing the beamformer output signal-to-in-
terference-plus-noise ratio (SINR)

(4)

where is the SOI power and is the interference
plus noise covariance. In practical cases, the true covari-
ance is unavailable and, thus, the data sample estimate

is used instead, with being the number
of available snapshots. The SINR maximization problem is
equivalent to the following convex problem:

and a solution is

(5)

This is the well-known sample matrix inversion (SMI) based
minimum variance (MV) beamformer, and the corresponding
beamformer output power is written as

(6)

In practice (e.g., multi-antenna wireless communications
and passive source localization), the beamformer suffers from
dramatic performance degradation due to mismatch between
the actual steering vector and the presumed steering vector
. To mitigate the degradation, robust receive beamforming
techniques have been proposed in the last decade (e.g., see
[27]–[33], and references therein).
A popular robust receive beamformer adopts the beamvector

(5) with therein replaced by an optimal estimate via dif-
ferent methods (in addition to the robust adaptive beamformer
based on worst-case strategies, e.g., see [27], [32], and refer-
ences therein). For example, a recent effective technique of re-
ceive beamforming is addressed in [33]. Therein, the optimal es-
timate of signal steering vector is obtained by maximizing the
beamformer output power (6) subject to a constraint of avoiding
the convergence of the estimate to the region where the inter-
ference steering vectors and their linear combinations are lo-
cated, as well as a norm constraint. The following formulation
is a generalization by allowing the norm of the steering vector
to lie on an interval:

(7)

where is the steering vector associ-
ated with that has the structure defined by the antenna array
geometry, and is the complement of the prefix angular sector
where the SOI is located. Also, the parameters and are

and , respectively,
and the positive parameters and control the perturbation
bound. We highlight that the second double-sided constraint ac-
counts for the steering vector gain perturbations caused, e.g., by

the sensor amplitude and phase error as well as by the sensor po-
sition error (cf. ([30], pp. 2408 and 2414)).
Note that the constraint in the first double-sided

constraint is necessary for the completeness of problem formu-
lation, even in the particular case of . In fact, as-
sume that is the case. Then the known lower bound
for is . If (it is true in Ex-
ample 2 of [33]), then provides additional informa-
tion (otherwise, it is redundant). Evidently, if
and happens to be equal to , then (7) reduces to the
beamforming problem (23)–(25) in [33]. As for more motiva-
tions and interpretations of the first constraint in (7), we refer to
([33], Section III).
Another example of robust receive beamforming (based on

steering vector estimation) is the design of a doubly constrained
Capon beamformer considered in [30] (later extended in [21]).
A more general Capon beamforming optimization problem in-
cluding a double-sided constraint is formulated as:

(8)

where , and are given parameters. The for-
mulation in (8) embraces the problems in [21] and [30], and gen-
eralizes them by allowing the norm to lie on an interval. In (8),
minimizing the objective is identical to maximizing the output
power (6), while the first constraint governs the possible steering
vectors around the nominal (presumed) and the second de-
scribes the norm constraint perturbed possibly by some coarse
array calibration procedure.
It is clear that problems (7) and (8) are two particular in-

stances of (1) (also of (2)), and we will be able to solve them
using a proposed randomized algorithm via SDP relaxation (see
Section IV.A).
In addition, there are other robust receive beamforming

problem formulations (cf. [31], [34]), where the resulting opti-
mization problems belong to the class of QCQPs (1). Further,
we highlight the QCQP applications to robust adaptive radar
detection in the presence of steering vector mismatches (e.g.,
see [24], and references therein).

B. Optimum Coded Waveform Design for Radar

Radar waveform optimization in the presence of colored dis-
turbance has been addressed for two decades. A recently popular
signal design approach relies on the modulation of a pulse train
parameters (amplitude, phase, and frequency) in order to syn-
thesize waveforms with some specified properties. This tech-
nique is known as radar coding. In [25], the design of optimal
coded waveforms in the presence of colored Gaussian distur-
bance is formulated as the maximization of the detection perfor-
mance under a control both on the region of achievable values
for the Doppler estimation accuracy and on the degree of simi-
larity with a pre-fixed radar code. This last constraint is equiv-
alent to forcing a similarity between the ambiguity functions of
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the devised waveform and of the pulse train encoded with the
pre-fixed sequence.
Consider a vector comprising the samples of the received

signal (after down-conversion and matched filtering) as in [25]
(or [35]):

(9)

where is the complex echo amplitude (accounting for the
transmit amplitude, phase, target reflectivity, and channels prop-
agation effects), is the vector
containing the transmitted code elements (to be optimally de-
signed), is the temporal
steering vector, denotes the normalized target Doppler fre-
quency, and is the vector
containing the disturbance samples. We assume that is a zero-
mean complex circular Gaussian vector with known positive
definite covariance matrix .
It is known, from [25] and references therein, that the detec-

tion probability (describing the detection performance) of
the generalized likelihood ratio test, for a given value of the false
alarm probability , depends on the radar code, the distur-
bance covariance matrix, and the temporal steering vector only
through the signal-to-noise ratio (SNR), defined as

(10)

which is a function of the actual Doppler frequency due to the
dependence of over . Moreover is an increasing function
of SNR and as a consequence, the maximization of can be
obtained maximizing the SNR (10).
In a design of radar waveform, it is of importance to have a re-

liable measurement of the Doppler frequency [25]. The Doppler
accuracy is bounded below by Cramér-Rao Bound (CRB) and
CRB-like techniques which provide lower bounds for the vari-
ances of unbiased estimates. Constraining the CRB is equivalent
to controlling the region of achievable Doppler estimation ac-
curacies; particularly, forcing an upper bound to CRB results in
a lower bound on the size of the region . According to this
guideline, we focus on the class of radar codes complying with
the CRB constraint [25]:

(11)

where and rules the lower
bound on the size of . Thus, adding a similarity constraint
with a known unit-norm code (cf. [30], [25]), as well as a
norm constraint (termed also energy constraint), we formulate
the waveform (radar code) design problem into the following
QCQP:

(12a)

(12b)

(12c)

(12d)

where
and characterize the allowable perturbation of the code norm

and, controls the size of the similarity region (a practical as-
sumption is that since all codes under consideration are
normalized). Note that the problem formulation (12) is more
general than that in [25], where the first constraint (i.e., the en-
ergy constraint) is the equality constraint . Clearly, (12)
is a particular case of (2) (or equivalently (1)).
Since the feasible region of (12) is larger than that of the op-

timization problem in [25], hence the performance (in term of
SNR, or equivalently probability of detection) of the optimal
code obtained herein is better. In Section IV.B, we will show
how to obtain a global solution for the problem, via SDP relax-
ation and a randomized algorithm. For an application of QCQP
to radar space-time adaptive processing, we refer to [36], and for
applications in radar signal estimation and detection, we refer to
[20] and [37].

C. Single-Group Multicast Transmit Beamforming With
Soft-Shaping Interference Constraints

Consider a downlink transmission scenario where the base
station (BS), equipped with antennas, sends a common signal

to single-antenna users (i.e., a multiple-input single-
output (MISO) system). Let denote the beamforming
weight vector applied to the transmit antenna elements. The
transmitted signal is given by , where is
assumed to be zero-mean and white with unit variance. Let

be the channel vector of user , and assume that
it is randomly fading with known second-order statistics

(cf. [22], [23]). The signal received at user is given
by

where is additive noise with power . The average SNR
can be expressed as

In the expression of SNR, we may set , if the in-
stantaneous channel state information (CSI) is available at the
BS, or if the BS employs a uniform linear antenna array under
light-of-sight propagation conditions (see e.g., [5], [38]). There-
fore, the meaningful design of the beamvector that minimizes
the total transmitted power subject to constraints on the received
SNR of each user, can be formulated as

(13)

where denotes the prescribed minimum received SNR for
user .
In a modern communication system, one may need to control

the amount of interference generated along some particular
directions, so as to protect the cochannel and coexisting systems
(e.g., see [18], [39]). The caused interference power to user
of a coexisting systems is given by
where and is the channel between the BS and
external user . Given both the SNR constraints for the internal
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users and upper bound constraints on the interference to the
external users, the beamforming problem of interest can be
written as

(14)

where is a tolerable interference threshold value for external
user . The second set of constraints is termed soft-shaping
interference constraints [39]. In particular, if , they are
called null-shaping interference constraints [39], which are
more strict; in this case, (14) reduces to the following QCQP:

(15)

The broadcasting (i.e., single multicast group) beam-
forming problem (14) is discussed for the special scenario
of for all in [41] in the context of an un-
derlay cognitive radio (CR) network. Evidently, (1) embraces
(13)–(15). In Section IV.C, we will show how to efficiently
solve some scenarios of (15) (e.g., and any ) as well
as some instances of (14), provided that their SDP relaxation
problems are solvable.

D. Other Applications

Some other applications include the following:
• the crosstalk resilient Capon beamformer design for micro-
phone arrays in [26];

• the multicast transmit beamforming problem in [5], [38]
and [40];

• the transmit beamforming problem for a CR network in
[41]–[43] and [44];

• the optimal relay network beamforming problems in [45]
and [46];

• the optimal fusion designs for distributed networks in [47]
and [48];

• the portfolio risk management in financial engineering in
[49].

III. GLOBALLY OPTIMAL SOLUTIONS OF QCQP VIA
RANDOMIZATION

We aim at obtaining randomized algorithms for solving ho-
mogeneous QCQP in this section. To be more specific, a global
solution of QCQP is generated by randomization techniques
following the resolution of the SDP relaxation, which is dif-
ferent from the existing ones (i.e., rank reduction-based tech-
nique (e.g., [11] and [18]), the rank-one matrix decomposition
theorems (e.g., [13] and [15]), solving the quadratic feasibility
problems proposed in [14], [21]).
The random variables that we adopt are bounded (without

tails), which are different from commonly used Gaussian

random variables in the context of SDP relaxation.2 Specifi-
cally, we consider either the binary distribution (i.e., Bernoulli)

(16)

or the uniform distribution on the unit circle3

(17)

We will use to denote a vector with independent and identi-
cally distributed (i.i.d.) random components having distribution
(16) or (17).
To proceed, let us recall the conventional SDP relaxation of

(1):

...
(18)

and its dual

(19)

where the dual operation is defined by

(20)

Note that the operator represents the inner product, namely
. Assume that is a primal-

dual feasible pair, it then follows from the strong duality the-
orem (cf. ([2], Theorem 1.4.2)) that it is a pair of optimal solu-
tions (respectively for the primal and dual SDPs) if and only if
the complementary conditions are satisfied:

(21)

(22)

(23)

Let us start with the case of homogeneous QCQP with one
double-sided constraint.

2In optimization and signal processing literature, Gaussian random variables
are often considered to generate an approximate solution for an NP-hard opti-
mization problem (e.g., an NP-hard QCQP problem) based on SDP relaxation
techniques. The key to the analysis of approximation bounds (to measure the ap-
proximation quality) is based on the mathematical estimate of tail probabilities
of the distribution of the quadratic form of a Gaussian random vector (e.g., see
Lemmas 3.1 and 5.1 in [4]). However, the uniform or binary random variables
are bounded, which is a key to allow us to yield a globally optimal solution for
a solvable QCQP problem.
3We note that such random variables have been adopted to generate approxi-

mate solutions for an optimal transmit beamforming problem in [5]. Herein the
distribution will be used instead to yield an optimal solution.
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A. Homogeneous QCQP With One Double-Sided Constraint

Consider the QCQP:

(24)

where and . For QCQP (24) with
real-valued parameters and variables, the discussion is similar.
Suppose that the SDP relaxation (18) (with only one double-
sided constraint) of (24) is solvable; to this end, it suffices to
assume that the corresponding dual (19) is bounded above and
strictly feasible (from the strong duality theorem ([2], Theorem
1.4.2)). Upon an optimal solution for the relaxed formulation
(18), we are about to construct a randomized optimal solution
for (24).
Proposition 3.1: Suppose that is an optimal solution

for the relaxed problem (18) in the real- or complex-valued
case with (one double-sided constraint). Consider the
eigenvalue decomposition .4

Then, is an optimal solution for (24), where is any
vector with its components .

Proof: See Appendix A.
Algorithm 1 summarizes the procedure (as stated in the

proof, see Appendix A) producing a globally optimal solution
for Problem (24).

Algorithm 1 Randomization procedure for homogeneous
QCQP (24)

Input: ;

Output: An optimal solution of problem (24);

1: solve the SDP (18) with one constraint only ,
finding ;

2: implement the eigen-decomposition
;

3: generate a random with i.i.d. components having
binary distribution (16);

4: output .

If multiple optimal solutions are required, then one may have
to perform step 3 in Algorithm 1 multiple times. We note that
vector in step 3 could be chosen randomly or deterministi-
cally as a vector with components (e.g., simply as the
all-one vector). The computational complexity of Algorithm 1
is dominated by solving the SDP (18) which is of a worst-case
complexity with a prefixed solution accuracy
(cf. [7]).
We note that if the binary distribution (16) is changed to the

uniform distribution (17) over the unit circle in step 3 of Al-
gorithm 1 (this only applies to the complex-valued version of
QCQP (24)), then it can be shown in the same way that the
random vector is also optimal.

4Here, denotes the unique Hermitian/symmetric square root matrix
such that .

It is noteworthy that Problem (24) could be possibly solved
with the existing algorithms, namely, solving the SDP relax-
ation problem followed by the rank reduction technique (cf. [11]
and [18]), the rank-onematrix decomposition theorem (cf. [13]),
and solving the quadratic feasibility problem proposed in [14].
The difference between Algorithm 1 and the three aforemen-
tioned approaches is twofold: (1) Our proposed algorithm con-
tains an intrinsically probabilistic step (i.e., step 3, even though
in practice it can be performed deterministically) while the other
ones are all deterministic; (2) when the SDP relaxation has a
high-rank solution, our algorithm appears quick and clean (see
steps 2 and 3) to generate a rank-one solution of the SDP relax-
ation problem (whereas the other ones are of a more iterative
nature; for example, the rank reduction technique is iterative,
the specific rank-one matrix decomposition theorem includes
rotation steps). In any case, despite the differences of the dif-
ferent approaches, all of them can give an optimal solution to
the problem.

B. Homogeneous QCQP With Two Double-Sided Constraints

Consider now the following homogeneous QCQP:

(25)

where and . The conventional
SDP relaxation of (25) and its dual are (18) and (19) with ,
respectively.
Proposition 3.2: Suppose that ( ) is a primal-

dual optimal pair for (18)–(19) in the real- or complex-valued
case with . Then, there is a randomized solution (see
Algorithm 2) such that it is globally optimal for (25).

Proof: See Appendix B.

Algorithm 2 Randomization procedure for homogeneous
QCQP (25)

Input: ;

Output: An optimal solution of problem (25);

1: solve the SDP (18) finding ; let
(suppose w.l.o.g.);

2: implement the eigen-decomposition
;

3: draw a realization of the random vector with i.i.d.
components having the binary distribution (16), such
that is satisfied
if ;

4: let , and output
;

It is noteworthy that we resort to the complementary condi-
tions (21)–(23) to show the randomized solution is optimal but
we cannot ensure that the randomized solution is optimal with
probability one (i.e., in step 3 of Algorithm 2, one may have to
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draw multiple realizations until the condition is satisfied), un-
like Proposition 3.1 where any randomly or deterministically
constructed vector is optimal. In this sense, Proposition 3.1 is
stronger, due to the reduced number of constraints.
Note also that the elements of in step 3 of Algorithm 2 could

be drawn randomly from (17) (accordingly, is changed to
in steps 3 and 4) if the optimization variables of (25) are

complex-valued, and the proof of Proposition 3.2 remains the
same (in addition to the change of into ). As before, the
computational complexity of the algorithm consists mainly of
solving the SDP relaxation.

C. Homogeneous QCQPWith Three Double-Sided Constraints

Consider the following QCQP:

(26)

where , and . Suppose that
both the primal SDP (18) and the dual SDP (19) are solvable
with . Based on a solution pair of the primal and dual
SDPs, we are about to retrieve an optimal solution of (26),
in a randomized way. To proceed, let us first state the following
lemma.
Lemma 3.3: Suppose that is an real-valued diagonal

matrix and belongs to . Then there is a vector
such that

(27)

Proof: See Appendix C.
The proof is constructive, and we summarize the randomiza-

tion procedure into Algorithm 3.

Algorithm 3 Randomization procedure for generating a
complex vector satisfying (27)

Input: (real diagonal matrix), (with
)

Output: A complex-valued vector such that
and ;

1: take two random vectors and , with i.i.d.
components having the binary distribution (16), such
that ;

2: if or then
3: output or such that ;
4: else
5: set

, and

output .

6: end

We remark that from (57) in the proof in Appendix C, one can
only find a complex vector such that (27) is satisfied and the

result does not extend to the real-valued case. For some and
, there is not a real complying with (27); for example, it is

verified that it is the case with

It is noteworthy that Algorithm 3 can be used to solve
the complex version of the QCQP with two double-sided
constraints in (25)5 (i.e., with and ).
Indeed, obtaining an optimal solution for the SDP relax-
ation (18) of (25) and an eigen-decomposition

, we call Algorithm 3 (with the inputs and
) to output . It then is easily veri-

fied that is feasible and optimal for problem
(25).6

Now let us see how to obtain an optimal solution for the
QCQP with three double-sided constraints in (26) using the ran-
domization procedure of Algorithm 3.
Proposition 3.4: Suppose that is a

primal-dual optimal pair for (18)–(19) for the complex-valued
case with . Then, there is a randomized solution (see
Algorithm 4) such that it is globally optimal for (26).

Proof: See Appendix D.

Algorithm 4 Randomization procedure for complex-valued
homogeneous QCQP (26)

Input: ;

Output: A solution ;

1: solve the SDP (18) finding ; evaluate
; let

(suppose that );
2: while do
3: decompose , where ;
4: implement the eigen-decomposition

; let
;

5: ,
and set and ;

6: if then
7: output ; terminate;
8: else
9: let and

;
10: end
11: end while
12: return such that .

As can be seen, the computational load includes solving the
SDP relaxation problem and some eigen-decompositions, and
thus the total computational complexity of the algorithms is
dominated by solving the SDP.
We note that the real homogeneous QCQP with three double-

sided constraints or more cannot be solved to achieve the global

5In contrast, Algorithm 2 is applicable to both and .
6The proof is similar to that of Proposition 3.2.



1100 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 5, MARCH 1, 2014

optimality in general (cf. [16]) and the same thing happens for
the complex homogeneous QCQP with four double-sided con-
straints or more (cf. [17]); in other words, the SDP relaxation is
not tight for any of the two cases, and the duality gap between
the primal QCQP and its dual is positive. Nevertheless, for the
case of complex QCQP (1) with (four double-sided con-
straints), some mild sufficient conditions could be added to en-
sure the QCQP is convex (similar comments are valid for the
real homogeneous QCQP with three constraints). For example,
if there is a nonzero such that

, and an optimal solution of the dual (19)
of the SDP relaxation has the null space of dimension more than
two (i.e., ), then the QCQP is solvable (cf. [17]). For gen-
eral number of one-sided constraints, it is known that the QCQP
is NP-hard, and some interesting randomized approximate so-
lution schemes with provable approximation quality have been
well studied in optimization literature (e.g., see [3], [4], and [9]).

D. Some Extensions

In this subsection, we handle some generalizations of the
previous solvable QCQPs. Suppose that

, are given with . Consider
then the following separable homogenous QCQP:

(28)

Specially, if , and , the
above QCQP reduces to (26); and if , then the separable
QCQP is identical to (26) with block-diagonal matrix parame-
ters . In a similar way, we can deal with (28)
with one or two double-sided constraints.
Let us see how Algorithm 4 is applied to solve (28). Suppose

that the SDP relaxation of (28)

(29)

and its dual

(30)

are solvable, and let be an op-
timal primal-dual pair. Then they satisfy the complementary
conditions (similar to (21)–(23)): (i) ; (ii)

; (3)
.

We can invoke Algorithm 4 times to generate an optimal
solution for (28): (i) solve the primal and dual SDPs (29)–(30)
getting an optimal solution ; (ii) let

with the input ,
where for each , step 1 in Algorithm 4 should be adapted and
changed to: evaluate and let

(suppose that ). It is not hard to show
that the obtained tuple is optimal for (29)7, and thus

is optimal for (28).
More generally, let us consider the following separable SDP:

...

(31)

where all are Hermitian, and for all . One may
conclude that a solution with

for the above SDP can be found in polynomial time, under some
mild conditions (cf. ([18], Theorem 3.2)).

IV. APPLICATION OF THE PROPOSED RANDOMIZED
ALGORITHMS TO SOLVE PROBLEMS (8), (12), AND (14)

In this section, we demonstrate how to employ the random-
ized algorithms previously designed to the three signal pro-
cessing applications formulated in Section II.

A. Solving the Robust Receive Beamforming Problems (7)
and (8)

The robust receive beamforming problem (7) is a particular
instance of (1) with two double-sided constraints and, thus, ran-
domized Algorithm 2 can be immediately employed to solve it.
The generalized doubly constrained Capon beamforming

problem (8) has the equivalent form of homogenous QCQP:

(32)

7It is seen that the solution is feasible for the constraint ,
due to and the obtained , and that

is a primal-dual pair satisfying the comple-
mentary conditions for (29)–(30), i.e., an optimal pair.
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where the matrix parameters are

In words, if solves (32), then
solves (8) (conversely, if solves (8), then is an
optimal solution for (32)). Also, the optimal values are equal:

. Since (32) is in a special form of (26),
hence Algorithm 4 is applicable to (32).

B. Solving the Radar Code Maximization Problem (12)

Like (32), the optimal radar code problem (12) has the fol-
lowing equivalent homogeneous QCQP reformulation with four
constraints:

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)

where matrices are defined as follows:

(34)

(35)

It is seen that the optimal values of (12) and (33) are equal,
i.e.,

(36)

The conventional SDP relaxation for (33) is as follows:

(37)

which is also an SDP relaxation for (12), considering (36).
Note that (33) does not belong to the class of (28). Nonethe-

less, we show that the SDP relaxation (37) is tight (i.e.,
), and it turns out that the proof is based

on exploiting the structure that the constraint functions in (12b)
and (12d) share the same Hessian . In other words, the QCQP
(12) is hidden convex and can be solved polynomially. The
proof can be found in Appendix E. According to the proof, we
summarize how to solve (12): (i) solve (37) getting a solution

(as in (67)), (ii) apply Algorithm 4 to solve (71) in which

is set8, obtaining solution , and (iii) return
(which is optimal for (12)).

C. Solving the Single-Group Multicast Downlink Beamforming
Problem (14)

It is clear that the beamforming problem (14) is a QCQP with
one-sided constraints. Thus, Algorithm 2 is applicable

if , and Algorithm 4 can be employed to solve it
if (e.g., and ). Furthermore, for
the beamforming problem (15) with null-shaping interference
constraints, it is solvable for up to three and any number
of null-shaping constraints, provided that the SDP relaxation
of it is solvable. As a matter of fact, (15) is tantamount to the
following QCQP:

(38)

where . When , Problem (38) belongs
to the class of QCQP (28) (with ). Therefore the algorithm
proposed in Section III.D for (28) can be utilized to solve (38)
(or equivalently (15)), as long as its SDP relaxation problem (cf.
(29)) is solvable.

V. AN ALTERNATIVE PROOF OF STURM-ZHANG RANK-ONE
MATRIX DECOMPOSITION THEOREM

In [13], a specific rank-one decomposition for a positive
semidefinite matrix was proposed, and it turns out that the ma-
trix decomposition technique is useful and fundamental as it can
be used to prove some convexity results of joint numerical range
and -lemma (cf. [13], [15], and [17]). We start by quoting
the rank-one decomposition theorem, and then we present an
alternative (shorter) proof using probabilistic methods as done
in the previous section. This result is a byproduct of this paper.
Like the advantages of the rank-one decomposition theorems,
one can exploit the probabilistic methods to show the convexity
for some joint numerical ranges, and -lemma. Now, let us
start with the case of real matrices.
Lemma 5.1 ([13]): Suppose that is a real positive

semidefinite matrix of rank and is a symmetric ma-
trix. Then, there is a rank-one decomposition
such that

(39)

Proof: First we claim that there is a vector
such that and .

In fact, let and . It thus follows
that . Take any vector such that its compo-
nents . Alternatively, draw a random vector

8When implementing Algorithm 4, we particularly solve the SDP relaxation
(73) of (71) in step 1 of Algorithm 4, obtaining a solution ; however, we do
not have to solve (73) in that step, because the block of (the solution of
(37) just obtained) is optimal for (73), due to the last remark in Appendix E.
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according to the distribution (16). And set . It
is verified that is the desired vector.
Let , and it is seen that
. We repeat the above procedure, getting vector so that

. Repeating the procedure
iteratively, we obtain vectors such that they satisfy
(39).
Likewise, capitalizing on Lemma 3.3, we can provide another

proof of the rank-one decomposition theorem for Hermitian ma-
trices in [15].
Lemma 5.2 ([15]): Suppose that is a complex

Hermitian positive semidefinite matrix of rank , and are
two given Hermitian matrices. Then, there is a rank-one
decomposition such that

Proof: We claim that there is a such that

(40)

In fact, let
( and are ), and . It follows from
Lemma 3.3 that there is a randomized vector such that

, and
. It is easily verified that is the

intended vector satisfying (40).
Like the second paragraph in the proof of Lemma 5.1, we can

obtain such that and
. This completes the proof.

We remark that the rank-one decomposition Lemma 5.2 can
be utilized to show Lemma 3.3. However, the difference lies in
that the proof of Lemma 5.2 in [15] (cf. [13]) includes some de-
terministic rotation procedures to generate the desired vectors,
while the selection of a vector in the proof of Lemma 3.3 is
based on some randomization steps.

VI. NUMERICAL EXAMPLES

In this section, we present some numerical examples to il-
lustrate the performance of the algorithms. The numerical ex-
amples are from both robust receive beamforming and optimal
downlink transmit beamforming.

A. Simulation Examples: Robust Receive Beamforming
Problem (7)

In the simulations, we assume a uniform linear array with
omni-directional sensors spaced half a wavelength and

with spatially and temporally white Gaussian noise whose co-
variance is given by . Two equal-power interferers with the
interference-to-noise ratio (INR) of 30 dB are assumed to im-
pinge on the array from the angles and with
respect to the array broadside. The angular sector of interest is
preset to with . The actual SOI is assumed
to impinge on the array from the direction (which could
be viewed as a 4 mismatch in the signal look direction from the

Fig. 1. Average output array SINR versus SNR.

presumed ), and it is always present in the training data with
training sample size . The norm perturbation parameters
both and are set to . All results are averaged over 200
simulation runs. In each run, both the beamforming problem (7)
and the beamforming problem (23)–(25) in [33] are solved for
different SNR dB. The two beamforming prob-
lems are termed “Proposed Beamformer” and “KVH Beam-
former” respectively in the following figures.
Further, we assume that the SOI steering vector from the

angle is distorted by wave propagation effects in the way
that independent-increment phase distortions are accumulated
by the components of the SOI steering vector (starting from
zero), and assume that the phase increments are independent
Gaussian variables with zero mean and standard deviation 0.08,
and they are randomly generated and remain frozen in each sim-
ulation run.
Simulation Example 1: We evaluate the performance in

terms of both beamformer output SINR (4) and output power
(6). Fig. 1 shows the output array SINR versus the SNR, and
Fig. 2 displays the beamformer output power curves versus
SNR. As we can see, the output SINR by (7) is only slightly
better than that by the beamforming problem in [33], while the
former beamformer has higher output power than the latter one.
It is expected, since the double-sided constraint describing the
norm perturbation in (7) allows the larger feasible region for
searching the optimal steering vector.

B. Simulation Examples: Optimal Multicast Downlink
Beamforming Problem (15)

In the subsection, we test several simulated scenarios for
the single-group multicast downlink beamforming problem
(15) with null-shaping interference constraints described in
Sections II.C and IV.C.
We consider a simulated scenario with a 16-antenna base sta-

tion transmitting a common data stream to three single-antenna
users, i.e., and in Problem (14). The users are
located at and relative to the
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Fig. 2. Average beamformer output power versus SNR.

array broadside of the base station. The transmit antenna array
is linear and has the elements spaced half a wavelength. The
channel covariance matrix for users is generated
according to (see [22])

(41)

, where is the angular spread of local scat-
ters surrounding user . The noise variance is set to
and the SNR threshold value for each internal user .
The channel between the base station and external user (lo-
cated at relative to the base station) is given by

(42)

with and . The tolerable value
of the soft-shaping constraint in (14) is set to zero; in words,

the stricter version (15) (or (38)) with null interference con-
straints are considered in the simulation.
Simulation Example 2: In this example, we present simula-

tion results for the beamforming problem (38) where six null
interference constraints (i.e., ) for six external users at

, together with the three in-
ternal users, are involved. In order to illustrate the effect of the
null interference constraints, we evaluate the power radiation
pattern of the base station, for , according to

(43)

where is an optimal beamvector and is defined in (42).
We report that the SDP relaxation of (38) gives a high-rank so-
lution in our simulation experiment, and thus Algorithm 4 is
applied to generate a rank-one solution. Fig. 3 displays the ra-
diation pattern of the base station with the channel covariance
matrix (high-rank) (41) employed (the minimal required trans-
mission power is 14.92 dBm).

Fig. 3. Radiation pattern of the base station, for the problem using the general-
rank channel covariance matrices for the internal users, with six null-shaping
interference constraints and transmit antennas. (The required trans-
mission power is 14.92 dBm.)

Fig. 4. Minimal transmission power versus the number of null-shaping inter-
ference constraints, with different numbers of transmit antennas, adopting the
general-rank channel covariance matrices for the internal users.

Simulation Example 3: This example shows how
the minimal transmission power in (15) is affected by
the number of null-shaping interference constraints and
by the number of transmit antennas. Apart from the
three internal users, we consider ten external users lo-
cated at

. By saying null interference
constraints, we mean the external users located at less than
or equal to the first th smallest element of .
Fig. 4 illustrates the minimal transmission power versus the
number of null interference constraints. As can be seen, higher
and higher transmission power is required to comply with null
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interference constraints for more and more external users, as
well as less and less transmit antennas. The latter observation
is due to the fact that given , the beamforming problem (15)
with larger (number of transmit antennas) possesses bigger
search space (thus the minimal value is smaller).

VII. CONCLUSION

In this paper, we have considered the QCQP with
double-sided constraints. Although the problem is typically
hard to solve in general, we have proposed efficient algorithms
for some instances of the problem with a small number of
constraints. The presented algorithms are mainly composed of
simple randomization steps following the resolution of the SDP
relaxation of the problem. The optimization problems arising
in three signal processing applications have been formulated
in a general QCQP form and it has been demonstrated how to
solve them (achieving global optimality) by the randomized
algorithms. As a byproduct, we have provided a shorter proof
for the Sturm-Zhang rank-one matrix decomposition theorem
using the probabilistic method. Numerical examples have been
conducted to show the effectiveness of the proposed algo-
rithms for the QCQP in the context of both the robust receive
beamforming problem and the broadcast MISO downlink
beamforming problem.

APPENDIX

A. Proof of Proposition 3.1

Proof: Since any with its components can be
always obtained by taking a random vector whose components
are i.i.d. variables having the distribution (16), hence it suffices
for us to show that is an optimal solution for (24),
where that is a vector whose components are i.i.d. random
variables following the binary distribution (16).
Let . It follows that

(44)

(note that when it is real-valued) and

(45)

where . We further claim that

(46)

In fact, assume that there is a random vector whose compo-
nents are i.i.d. random variables following the distribution (16),
such that

It is seen that is feasible for
Problem (18) (with one double-sided constraint), and thus is
better than the optimal value, which is an evident contradiction.

Therefore, . This
together with (45) yields

(47)

Therefore we conclude that the vector is an optimal
solution of QCQP (24).
We remark that the proof can alternatively be done in a de-

terministic way, namely, the optimal solution can be
proved always within the null space of the optimal dual solution
(i.e., the complementary condition (21)), where is a vector sat-
isfying the proposition. (However, we do not have to consider
the optimal dual solution in the probabilistic proof.)

B. Proof of Proposition 3.2

Proof: Let . If , then
the optimal value (note that in (18)) is equal
to zero, and is optimal. Otherwise, , then
it is easily seen that , which contradicts to the
premise of SDP’s solvability. Thus we consider , without
loss of generality, in what follows.
Observe that , which amounts to

. Compute a eigen-decom-

position , and let be
a vector whose components are i.i.d. random variables with the
distribution (16). Then, it is verified that with probability one,

(48)

where we employ the fact that has diagonal elements one.
It is verified also that

where we use the fact that . It follows that there
is a realization of the random vector (with i.i.d. random
components of the distribution (16)) such that

(49)

Here, we note that the probability is
always positive for the case of (discussion is similar to
the case of ), where and

. Thus the probability that after independent trials
there is no satisfying (49) is , which equals 0.0066
for and .
Regarding (48), one may try to find a in a deterministic way

(as long as is not large and adopted in (49) is of i.i.d. com-
ponents according to (16), instead of (17)), although a sufficient
(but not excessive) number of randomizations can be generated
to find a desired .
Let

(50)
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and it is clear that . From (48) it follows that

(51)

Evidently, (50) and (51) yield

(52)

Define , and (52) is identical to

(53)

In other words, (where we note in )
is feasible for (18), and complies with the complementary
conditions (22)–(23) together with the dual optimal solution

(according to the assumption). Besides, note
that

(54)

where the last inclusion relation is due to (21)9. This means
, i.e., and fulfill the complemen-

tary condition (21). Therefore we conclude that is op-
timal for the SDP (18); that is, is an optimal solution of
the QCQP (25).

C. Proof of Lemma 3.3

Proof: Let and . Take i.i.d. random
variables of the distribution (16) for . Thus

with probability one, and
. We proceed the proof in two cases: (i)

(note that it is the case if is a diagonal
matrix); (ii) .
Case (i). Since with probability one, hence any

realization of the random vector satisfies (27).
Case (ii). Let and

. Assume that . Otherwise,
if , it then follows that and

, which is case (i) we have just shown. Let us
take a random vector which is independent from and
is with i.i.d. components having the distribution (16). Observe
that

. Therefore there are two realizations and
of the random vectors and respectively, such that10

(55)

The next step is to form another vector such that
using and .

9To be more specific, for any element , it has the prop-
erty , since , which is due to (i.e., (21)),

and . Thus it follows that .
10We note that the probability of the event that no such and are generated

after independent trials is at most , which equals 0.0059 for
and , for example. Thus such and requires relatively

few trials to generate, and the number of trials is independent from the size
of .

For easy notation, we remove the bars over and in the
remaining proof. Let , and set

(56)

(57)

It is seen that is a root of

(58)

In (58), we note that and
(recall that is symmetric and is skew-symmetric), and
that the (58) does have a root, due to (55). It is further verified
that the so-generated fulfills , and

, where the last equality amounts to (58).

D. Proof of Proposition 3.4

Proof: Assume that , and
. Let . Suppose that one of is

nonzero (if all are zero, then the optimal value and
is optimal), say .

It follows that

(59)

where . Let

(60)

(61)

Then (59) is equivalent to , and . Applying
the randomization procedure described in the proof of Lemma
3.3 (cf. Algorithm 3), we can generate a random vector
such that

(62)

Letting , it follows from (60)–(62) that

(63)

Set . If , then it is verified that

(64)

satisfies , and 11.
It follows from the complementary conditions (21)–(23) that

is optimal for the SDP (18). Then we end up with the
randomized optimal solution for (26).

11Since , hence
and and for any . That is, for

any . This implies that .
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If , then we see that the matrix

(65)

is of rank , due to (see (62)). Let

where . It is easily verified that
, and (since ). In

other words, the randomized matrix is feasible for (18)
and satisfies the complementary conditions (21)–(23), and thus
optimal with rank reduced to .
Let , and repeat the previous procedure while

is more than or equal to two. In fact, when , we repeat the
same procedure and obtain either a randomized optimal solution
for (26) (like (64)), corresponding to , or a rank-reduced
solution (i.e., a rank-one solution) for the SDP (18) (like (65)),
corresponding to .

E. The SDP Relaxation Tightness for (33)

Proof: We wish to show that the optimal value of SDP
relaxation problem (37) is equal to that of radar code problem
(33), namely,

Since it is evident that

(66)

hence we need only to show the reverse inequality. To proceed,
let

(67)

is an optimal solution for (37), and let

(68)

Let us formulate the new code design problem (specifying the
code norm):

(69)

Since , hence we have

(70)

The problem (69) can be transformed equivalently into the ho-
mogeneous QCQP

(71a)

(71b)

(71c)

(71d)

(71e)

through certain phase rotation (cf. ([25], page 5621)), i.e.,

(72)

Further, if is optimal for (71), then is optimal
for (69). Now Problem (71) can be solved by Algorithm 4, and
it can be claimed that the SDP relaxation problem for (71)

(73)

is tight, namely,

(74)

It follows from (66), (36), (70), (72), and (74) that

Thus in order to show that all the optimal values are equal (con-
sequently ), it suffices to prove that

(75)

Indeed, since any optimal solution of (37) (as in (67)) is fea-
sible for the problem itself, hence the block (of ) com-
plies with (71b), (71c), and satisfies (33d). It follows that

. Observe that (due
to ), and it follows that

which implies that also fulfills (71d). Therefore, is fea-
sible for (73). This means that any optimal solution for (37)
gives a feasible solution for (73), and hence we conclude (75).
We remark that since , hence the block
of an optimal solution (as in (67)) for (37) is optimal for

(73).
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