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Abstract—We propose a novel decomposition framework for the
distributed optimization of general nonconvex sum-utility func-
tions arising naturally in the system design of wireless multi-user
interfering systems. Ourmain contributions are i) the development
of the first class of (inexact) Jacobi best-response algorithms with
provable convergence, where all the users simultaneously and it-
eratively solve a suitably convexified version of the original sum-
utility optimization problem; ii) the derivation of a general dy-
namic pricing mechanism that provides a unified view of existing
pricing schemes that are based, instead, on heuristics; and iii) a
framework that can be easily particularized towell-known applica-
tions, giving rise to very efficient practical (Jacobi orGauss–Seidel)
algorithms that outperform existing ad hoc methods proposed for
very specific problems. Interestingly, our framework contains as
special cases well-known gradient algorithms for nonconvex sum-
utility problems, and many block-coordinate descent schemes for
convex functions.

Index Terms—Nonconvex multi-agent problems, parallel and
distributed optimization, successive convex approximation.

I. INTRODUCTION

W IRELESS networks are composed of users that may
have different objectives and generate interference,

when no multiplexing scheme is imposed a priori to regulate
the transmissions; examples are peer-to-peer, ad-hoc, and
cognitive radio systems. A usual and convenient way of de-
signing such multiuser systems is by optimizing the “social
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function”, i.e., the (weighted) sum of the users’ objective func-
tions. Since centralized solution methods are too demanding in
most applications, the main difficulty of this formulation lies
in performing the optimization in a distributed manner with
limited signaling among the users. When the social problem
is a sum-separable convex programming, many distributed
methods have been proposed, based on primal and dual decom-
position techniques; see, e.g., [2]–[4] and references therein.
In this paper we address the more frequent and difficult case
in which the social function is nonconvex. It is well known
that the problem of finding a global minimum of the social
function is, in general, NP hard (see e.g., [5]), and centralized
solution methods (e.g., based on combinatorial approaches)
are too demanding in most applications. As a consequence,
recent research efforts have been focused on finding efficiently
high quality suboptimal solutions via easy-to-implement (pos-
sibly) distributed algorithms. A recent survey on nonconvex
resource allocation problems in interfering networks modeled
as Gaussian Interference Channels (ICs) is [6].
In an effort to obtain distributed albeit suboptimal algorithms

a whole spectrum of approaches has been explored, trying
to balance practical effectiveness and coordination require-
ments. At one end of the spectrum we find game-theoretical
approaches, where users in the network are modeled as players
that greedily optimize their own objective function. Game-the-
oretical models for power control problems over ICs have been
proposed in [7]–[11] and [12]–[14] for SISO and MISO/MIMO
systems, respectively. Two recent tutorials on the subject are
[15], [16], while recent contributions using the more gen-
eral mathematical theory of Variational Inequalities [17] are
[18]–[20]. The advantage of game-theoretic methods is that
they lead to distributed implementations (only local channel
information is required at each user); however they converge to
Nash equilibria that in general are not even stationary solutions
of the nonconvex social problem. In contrast, other methods
aim at reaching stationary solutions of the nonconvex social
problem, at the cost of more signaling and coordination. Se-
quential decomposition algorithms were proposed in [21]–[24]
for the sum-rate maximization problem over SISO/MIMO
ICs, and in [25] for more general (nonconvex) functions. In
these algorithms, only one agent at a time is allowed to update
his optimization variables; a fact that in large scale networks
may lead to excessive communication overhead and slow
convergence.
The aim of this paper is instead the study of more appealing

simultaneous distributed methods for general nonconvex
sum-utility problems, where all users can update their variables
at the same time. The design of such algorithms with provable
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convergence is much more difficult, as also witnessed by
the scarcity of results available in the literature. Besides the
application of the classical gradient projection algorithm to the
sum-rate maximization problem over MIMO ICs [26], parallel
iterative algorithms (with message passing) for DSL/ad-hoc
SISO networks and MIMO broadcast interfering channels were
proposed in [27]–[29] and [30], respectively. Unfortunately,
the gradient schemes [26] suffer from slow convergence and do
not exploit any degree of convexity that might be present in the
sum-utility function; [27]–[29] hinge crucially on the special
log-structure of the users’ rate functions; and [30] is based on
the connection with a weighted MMSE problem. This makes
[27]–[30] not applicable to different classes of sum-utility
problems.
Building on the idea first introduced in [1], the main contri-

bution of this paper is to propose a new decomposition method
that: i) converges to stationary points of a large class of (non-
convex) social problems, encompassing most sum-utility func-
tions of practical interest (including functions of complex vari-
ables); ii) decomposes well across the users, resulting in the par-
allel solution of convex subproblems, one for each user; iii) con-
verges also if the users’ subproblems are solved in an inexact
way; and iv) contains as special case the gradient algorithms
for nonconvex sum-utility problems, and many block-coordi-
nate descent schemes for convex functions. Moreover, the pro-
posed framework can be easily particularized to well-known ap-
plications, such as [21]–[24], [29], [31], giving rise in a unified
fashion to distributed simultaneous algorithms that outperform
existing ad-hocmethods both theoretically and numerically. We
remark that while we follow the seminal ideas put forward in
[1], in this paper, besides providing full proofs of the results in
[1], we i) consider a much wider class of social-problems and
(possibly inexact) algorithms, including [1] as special cases, ii)
discuss in detail the case of functions of complex variables, and
iii) compare numerically to state-of-the-art alternative methods.
To the best of our knowledge, this paper is the first attempt to-
ward the development of decomposition techniques for general
nonconvex sum-utility problems that allow distributed simul-
taneous (possibly inexact) best-response-based updates among
the users.
On one hand, our approach draws on the Successive Convex

Approximation (SCA) paradigm, but relaxes the key require-
ment that the convex approximation must be a tight global upper
bound of the social function, as required instead in [27], [32],
[33] (see Section VI for a detailed comparison with [27], [32],
[33]). This represents a turning point in the design of distributed
SCA-based methods, since up to date, finding such an upper
bound convex approximation for sum-utility functions having
no specific structure (as, e.g., [24], [26]–[30]) has been an elu-
sive task.
On the other hand, our method also sheds new light on widely

used pricing mechanisms: indeed, our scheme can be viewed
as a dynamic pricing algorithm where the pricing rule derives
from a deep understanding of the problem characteristics and is
not obtained on an ad-hoc basis, as instead in [21]–[24], [31].
We conclude this review by mentioning the recent work [34],
where the authors, developing ideas contained in [30], [33], pro-
posed parallel schemes based of the SCA idea that are applicable
(only) to the class of sum-utility problems for which a connec-

tion with a MMSE formulation can be established. Note that
[33], [34], which share some ideas with our approach, appeared
after [1].
The rest of the paper is organized as follows. Section II

introduces the sum-utility optimization problem along with
some motivating examples. Section III presents our novel
decomposition mechanism based on partial linearizations; the
algorithmic framework is described in Section IV. Section V
extends our results to sum-utility problems in the complex
domain; further generalizations are discussed in Section VI.
In Section VII we apply our new algorithms to some resource
allocation problems over SISO and MIMO ICs, and compare
their performance with the state-of-the-art decomposition
schemes. Finally, Section VIII draws some conclusions.

II. PROBLEM FORMULATION

We consider the design of a multiuser system composed of
coupled users . Each user makes decisions on
his own -dimensional real strategy vector , which belongs
to the feasible set ; the vector variables of the other users
is denoted by ; the users’
strategy profile is , and the joint strategy set of the
users is . The system design is formulated as

(1)

with . Observe that, in principle, the set of
objective functions is different from the set of users; we show
shortly how to explore this extra degree of freedom to good
effect. Of course, (1) contains the most common case where
there is exactly one function for each user, i.e., .
Assumptions: We make the following blanket assumptions:
A1) Each is closed and convex;
A2) Each is continuously differentiable on ;
A3) Each is Lipschitz continuous on , with constant

; let ;
A4) is coercive with respect to .

The assumptions above are quite standard and are satisfied
by a large class of problems of practical interest. In particular,
condition A4 guarantees that the social problem has a solution,
even when the feasible is not bounded; if is bounded A4 is
trivially satisfied. Note that, differently from classical Network
Utility Maximization (NUM) problems, here we do not assume
any convexity of the functions , thus, (1) is a nonconvex min-
imization problem. For the sake of simplicity, in (1) we assume
that the users’ strategies are real vectors; in Section V, we ex-
tend our framework to complex matrix strategies, to cover also
the design of MIMO systems.
1) A Motivating Example: The social problem (1) is general

enough to encompass many sum-utility problems of practical
interest. It also includes well-known utility functions studied in
the literature; an example is given next. Consider an -parallel
Gaussian IC composed of active users, and let
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be the maximum achievable rate on link , where
denotes the power allocation of user over the parallel chan-
nels, is the power profile of all the other
users , is the gain of the channel between
the -th transmitter and the -th receiver, is the variance
of the thermal noise over carrier at the receiver , and

represents the multiuser interference gen-
erated by the users at the receiver . Each transmitter is
subject to the power constraints , with

(2)

where the inequality, with given and
is intended to be component-wise. Note that the

linear (vector) constraints in (2) are general enough to model
classical power budget constraints and different interference
constraints, such as spectral mask or interference-temperature
limits. Finally, let be the utility functions of the
users’ rates. The system design can then be formulated as

(3)

Note that (3) is an instance of (1), with ; moreover as-
sumptions A1–A4 are satisfied if the utility functions are
i) concave and nondecreasing on , and ii) continuously dif-
ferentiable with Lipschitz gradients. Interestingly, this class of
functions includes manywell-known special cases studied
in the literature, such as the weighted sum-rate function, the har-
monic mean of the rates, the geometric mean of (one plus) the
rates, etc.; see, e.g., [6], [21], [22], [35].
Since the class of problems (1) is in general nonconvex (gen-

erally NP hard [5]), the focus of this paper is on the design of
distributed solution methods for computing stationary solutions
(possibly local minima) of (1). Our major goal is to devise si-
multaneous best-response schemes fully decomposed across the
users, meaning that all the users can solve in parallel a sequence
of convex problems while converging to a stationary solution of
the original nonconvex problem.

III. A NEW DECOMPOSITION TECHNIQUE

We begin by introducing an informal description of our new
algorithms that sheds light on the core idea of the novel decom-
position technique and establishes the connection with classical
descent gradient-based schemes. This will also explain why our
scheme is expected to outperform current gradient methods. A
formal description of the proposed algorithms along with their
main properties is given in Section IV for the real case, and in
Section V for the complex case.

A. What Do Conditional Gradient Methods Miss?

A classical approach to solve a nonconvex problem like
(1) would be using some well-known gradient-based descent
scheme. A simple way to generate a (feasible) descent di-
rection is for example using the conditional gradient method
(also called Frank-Wolfe method) [4]: given the current iterate

, the next feasible vector is given by

(4)

where , is the solution of the
following set of convex problems (one for each user):

(5)

for all , and is the step-size of the algorithm
that needs to be properly chosen to guarantee convergence.
Looking at (5) one infers that gradient methods are based on

solving a sequence of parallel convex problems, one for each
user, obtained by linearizing the whole utility function
around , a fact that does not exploit any “nice” structure that
the original problem may potentially have.
At the basis of the proposed decomposition techniques, there

is instead the attempt to properly exploit any degree of con-
vexity that might be present in the social function. To capture
this idea, for each user , let be the set of indices
of all the functions that are convex in on , for
any given :

is convex on
(6)

and let be a given subset of . The idea is to preserve
the convex structure of the functions in while linearizing the
rest. Note that we allow the possibility that , even if we
“hope” that , and actually this latter case occurs in most
of the applications of interest, see Section VII. For each user

, we can introduce the following convex approximation of
around :

(7)

with

(8)

where is the complement of , is a given non-
negative constant, and is an uniformly posi-
tive definite matrix (possibly dependent on , i.e.,

, for some positive . For notational simplicity,
we omitted in the dependence on and .
Note that in (7), we added a proximal-like regularization term,
in order to relax the convergence conditions of the resulting al-
gorithm or enhance the convergence speed (cf. Section IV). A
key feature of we will always require is that be
uniformly strongly convex. By this we mean the following. Let

be the constant of strong convexity of . We re-
quire that

(9)

Note that this is not an additional assumption, but just a require-
ment on the way is chosen. Under the uniformly positive def-
initeness of , condition (9) is always satisfied if ;
however it is also satisfied with if is
uniformly strongly convex on ; a fact that occurs in many
applications, see, e.g., Section VII.
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Associated with each we can define the following
“best response” map that resembles (5):

(10)

Note that, in the setting above, is always well-de-
fined, since the optimization problem in (10) is strongly convex
and thus has a unique solution. Given (10), we can introduce the
best-response mapping of the users, defined as

(11)

and also set . The proposed search direction at
point in (4) becomes then . The challenging
question now is whether such direction is still a descent direc-
tion for the function at and how to choose the free pa-
rameters (such as ’s, ’s, and ’s) in order to guar-
antee convergence to a stationary solution of the original non-
convex sum-utility problem. These issues are addressed in the
next sections.

B. Properties of the Best-Response Mapping

Before introducing a formal description of the proposed algo-
rithms, we derive next some key properties of the best-response
map , which shed light on how to choose the free pa-
rameters in (10) and prove convergence.
Proposition 1: Given the social problem (1) under A1)–A4),

suppose that each for all and some
, and . Then the mapping
has the following properties:

(a) is Lipschitz continuous on , i.e., there exists a
positive constant such that

(12)

(b) The set of the fixed-points of coincides with the
set of stationary solutions of the social problem (1); there-
fore has a fixed-point;

(c) For every given , the vector is a
descent direction of the social function at such
that

(13)

for some positive constant , with

(14)

(d) If is bounded on , then there exists a finite
constant such that

(15)

Proof: See Appendix A.
Proposition 1 makes formal the idea introduced in

Section III-A and thus paves the way to the design of
distributed best-response-like algorithms for (1) based
on . Indeed, the inequality (13) states that either

or . In the
former case, [the candidate in (4)] is a descent
direction of at ; in the latter case, is a fixed-point
of the mapping and thus a stationary solution of the
original nonconvex problem (1) [Prop. 1 (b)].

Quite interestingly, we can also provide a characterization of
the fixed-points of [and thus the stationary solutions of
(1)] in terms of Nash equilibria of a game with a proper pricing
mechanism. Formally, we have the following.
Proposition 2: Any fixed-point of is a Nash equi-

librium of the game where each user solves the following
priced convex optimization problem: given ,

(16)

According to the above proposition, the stationary solutions
of (1) achievable as fixed-points of are unilaterally op-
timal for the objective functions in (16). This result is in agree-
ment with those obtained in [22], [23] for the sum-rate maxi-
mization problem over SISO frequency selective-channels. De-
spite its theoretical interest, however, Prop. 2 does not help in
practice to solve (1). Indeed, the computation of a Nash equilib-
rium of the game in (16) would require the a-priori knowledge
of the prices and thus the equilibrium itself, which of
course is not available.

IV. DISTRIBUTED DECOMPOSITION ALGORITHMS

We are now ready to introduce our new algorithms, as a direct
product of Prop. 1. We first focus on (inexact) Jacobi schemes
(cf. Section IV-A); then we show that the same results hold also
for (inexact) Gauss-Seidel updates (cf. Section IV-C).

A. Exact Jacobi Best-Response Schemes

The first algorithm we propose is a Jacobi scheme where
all users update simultaneously their strategies based on the
best-response (possibly with a memory); the formal
description is given in Algorithm 1 below, and its convergence
properties are given in Theorem 3.

Algorithm 1 : Exact Jacobi SCA Algorithm
Data : , , . Set .

(S.1): If satisfies a termination criterion: STOP;
(S.2): For all , compute [cf. (10)];
(S.3): Set ;
(S.4): , and go to (S.1).

Theorem 3: Given the social problem (1) under A1–A4, sup-
pose that one of the two following conditions is satisfied:
(a) For each , is such that for all

and some ; furthermore and
are chosen so that

(17)
with defined in (14).

(b) For each , is such that for all
and some , is such that , and

furthermore is chosen so that

(18)

Then, either Algorithm 1 converges in a finite number of iter-
ations to a stationary solution of (1) or every limit point of the
sequence (at least one such point exists) is a stationary
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solution of (1). Moreover, none of such points is a local max-
imum of .

Proof: See Appendix B.
Main features of Algorithm 1. The algorithm implements a
novel distributed SCA decomposition: all the users solve in
parallel a sequence of decoupled strongly convex optimization
problems as in (10). The algorithm is expected to perform better
than classical gradient-based schemes (at least in terms of con-
vergence speed) at the cost of no extra signaling, because the
structure of the objective functions is better preserved. It is guar-
anteed to converge under very mild assumptions (the weakest
available in the literature) while offering some flexibility in the
choice of the free parameters [conditions (a) or (b) of Theorem
3]. This degree of freedom can be exploited, e.g., to achieve
the desired tradeoff between signaling, convergence speed, and
computational effort, as discussed next.
As far as the computation of the best-response

is concerned, at each iteration, every user needs to known
and . The signaling required to

acquire this information is of course problem-dependent. If
the problem under consideration does not have any specific
structure, the most natural message-passing strategy is to
communicate directly and . However, in
many specific applications much less signaling may be needed;
see Section VII for some examples.
On the choice of the free parameters. Convergence of Algo-
rithm 1 is guaranteed either using a constant step-size rule [cf.
(17)] or a diminishing step-size rule [cf. (18)]. Moreover, dif-
ferent choices of are in general feasible for a given social
function, resulting in different best-response functions and sig-
naling among the users.
1) Constant Step-Size: In this case, for

all , where needs to be chosen together with
and so that the condition

is satisfied, with defined in (14). This can be done in several
ways. A simple (but conservative) choice satisfying that con-
dition is, e.g., for all , , and

. Note that this condition imposes a constraint
only on the ratio , leaving free the choice of one of the two
parameters.
An interesting special case worth mentioning is:
for all , for all , and large enough so
that . This choice leads to the classical Jacobi best-
response scheme (but with a proximal regularization), namely:
at each iteration ,

To the best of our knowledge, this algorithm along with its con-
vergence conditions [Theorem 3a)] represents a new result in the
optimization literature; indeed classic best-response nonlinear
Jacobi schemes require much stronger (sufficient) conditions to
converge (implying contraction) [4, Ch. 3.3.5]. Note that the
choice of ’s to guarantee convergence [i.e., ] can
be done locally by each user with no signaling exchange, once
the Lipschitz constant is known.
As a final remark, we point out that in the case of constant

and “sufficiently” small step-size , one can relax the syn-
chronization requirements among the users allowing (partially)
asynchronous updates of users’ best-responses (in the sense of
[4]); we omit the details because of space limitation.

2) Variable Step-Size: In scenarios where the knowledge of
the system parameters, e.g., , is not available, one can use
the diminishing step-size rule (18). Under such a rule, conver-
gence is guaranteed for any choice of and

such that . Note that if is
strongly convex on for any , one can also set

, otherwise any arbitrary but positive is necessary. We
will show in the next section that a diminishing step-size rule is
also useful to allow an inexact computation of the best-response

while preserving convergence of the algorithm. Two
classes of step-size rules satisfying (18) are: given ,

(19)

(20)

where in (19) is a given constant, whereas in (20)
and are two nonnegative real functions of

such that: i) ; and ii) as
while . Examples of such

and are: or , and
or , where are given constants satisfying

, , and .
Another issue to discuss is the choice of the free positive def-

inite matrices . Mimicking (quasi-)Newton-like schemes
[36], a possible choice is to consider for a proper (diag-
onal) uniformly positive definite “approximation” of the Hes-
sian matrix . The exact expression to consider de-
pends on the amount of signaling and computational complexity
required to compute such a , and thus varies with the
specific problem under consideration.
3) On the Choice of ’s: In general, more than one (feasible)

choice of is possible for a given social function, resulting
in different decomposition schemes. Some illustrative examples
are discussed next.
Example #1–(Proximal) Gradient/Newton Algorithms: If

each and , reduces to the gradient
response (5) (possibly with a proximal regularization). It turns
out that (exact and inexact) gradient algorithms along with their
convergence conditions are special cases of our framework.
Note that if for every (i.e., no convexity whatsoever
is present in ), this is the only possible choice, and indeed
our approach reduces to a gradient-like method. On the other
hand, as soon as at least some , we may depart from the
gradient method and exploit the available convexity.
Note that our framework contains also Newtown-like up-

dates. For instance, if is convex in
for any , a feasible choice is and

, resulting in:

(21)

Essentially (21) corresponds to a Newton-like step of user in
minimizing the “reduced” problem .
Example #2–Pricing Algorithms in [1]: Suppose that ,

and each (implying that is convex on
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for any ). By taking each and ,
we obtain the pricing-based algorithms in [1]:

where . Algorithm 1 based on the
above best-response implements naturally a pricing mecha-
nism; indeed, each represents a dynamic pricing that
measures somehow the marginal increase of the sum-utility
of the other users due to a variation of the strategy of user ;
roughly speaking, it works like a punishment imposed to each
user for being too aggressive in choosing his own strategy
and thus “hurting” the other users. Pricing algorithms based
on heuristics have been proposed in a number of papers for
the sum-rate maximization problem over SISO/SIMO/MIMO
ICs [21]–[23], [31], [37]. However, on top of being sequential
schemes, convergence of algorithms in the aforementioned
papers is established under relatively strong assumptions (e.g.,
limited number of users, special classes of functions, specific
channel models and transmission schemes, etc.), see [23]. The
pricing in our framework is instead the natural consequence
of the proposed SCA decomposition technique and leads to
simultaneous algorithms that can be applied (with convergence
guaranteed) to a very large class of problems, even when
[21]–[23], [31], [37] fail.
Example #3–(Proximal) Jacobi Algorithms for a Single

(Convex) Function: Suppose that the social function is a single
function on , which is convex in each
(but not necessarily jointly). Of course, this optimization

problem can be interpreted as a special case of the framework
(1), with , for all and .
Then, setting , the best-response (10) of each user
reduces to

(22)

Algorithm 1 based on (22) reads as a block-Jacobi schemes con-
verging to the stationary solution of over (cf. Theorem
3). Note that if is jointly convex in all variables, every sta-
tionary solution is a global minimizer of on . To the best
of our knowledge, these are new algorithms in the literature;
moreover their convergence conditions enlarge current ones;
see, e.g., [4, Sec. 3.2.4]. Quite interestingly, this new algorithm
can be readily applied to solve the sum-rate maximization over
MIMO multiple access channels [38], resulting in the first (in-
exact) simultaneous MIMO iterative waterfilling algorithm in
the literature; we omit the details because of the space limitation.
Example #4–Algorithms for DC Programming: The pro-

posed framework applies naturally to sum-utility problems
where the users’ functions are the difference of two convex
functions, namely:

(23)

where and are convex and concave functions
on , respectively. Letting

the optimization problem (23) can be interpreted as a special
case of the framework (1), with , for all

. The best-response (10) of each user reduces then to

(24)

where and . The above de-
composition can be applied, e.g., to the sum-rate maximization
(3), when all , with ; see Section VII.

B. Inexact Jacobi Best-Response Schemes

In many practical network settings, it can be useful to further
reduce the computational effort needed to solve users’ (convex)
sub-problems (10) by allowing inexact computations of the
best-response functions . Algorithm 2 is a variant of
Algorithm 1, in which suitable approximations of
can be used.

Algorithm 2 : Inexact Jacobi SCA Algorithm
Data : for , , , . Set .

(S.1): If satisfies a termination criterion: STOP;
(S.2): For all , solve (10) within the accuracy : Find

s.t. ;
(S.3): Set ;
(S.4): , and go to (S.1).

The error term in Step 2 measures the accuracy used at it-
eration in computing the solution of each problem
(10). Note that if we set for all and , Algorithm
2 reduces to Algorithm 1. Obviously, the errors ’s and the
step-size ’s must be chosen according to some suitable condi-
tions, if one wants to guarantee convergence. These conditions
are established in the following theorem.
Theorem 4: Let be the sequence generated by Al-

gorithm 2, under the setting of Theorem 3 with the addition
assumption that is bounded on . Suppose that
and satisfy the following conditions: i) ; ii)

; iii) ; iv) ; and v)
for all . Then, either Algorithm

2 converges in a finite number of iterations to a stationary so-
lution of (1) or every limit point of the sequence (at
least one such points exists) is a stationary solution of (1).

Proof: See Appendix B.
As expected, in the presence of errors, convergence of Algo-

rithm 2 is guaranteed if the sequence of approximated problems
(10) is solved with increasing accuracy. Note that, in addition
to requiring , condition v) of Theorem 4 imposes also
a constraint on the rate by which the go to zero, which de-
pends on the rate of decrease of . Two instances of step-size
rules satisfying the summability condition iv) are given by (19)
and (some choices of) (20). An example of error sequence satis-
fying condition v) is , where is any finite positive
constant. Such a condition can be forced in Algorithm 2 in a
distributed way, using classical error bound results in convex
analysis; see, e.g., [17, Ch. 6, Prop. 6.3.7].
Finally, it is worth observing that Algorithm 2 (and 1) with a

diminishing step-size rule satisfying i)-iv) of Theorem 4 can be
made robust against (stochastic) errors on the price estimates,
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due to an imperfect communication scenario (random link fail-
ures, noisy estimate, quantization, etc.). Because of the space
limitation, we do not further elaborate on this here; see [39] for
details.

C. (Inexact) Gauss-Seidel Best-Response Schemes

The Gauss-Seidel implementation of the proposed SCA
decomposition is described in Algorithm 3, where the users
solve sequentially, in an exact or inexact form, the convex
subproblems (10). In the algorithm, we used the notation

and .

Algorithm 3 : Inexact Gauss-Seidel SCA Algorithm
Data : for , , , . Set .

(S.1): If satisfies a termination criterion: STOP;
(S.2): For ,

a) Find s.t. ;
b) Set

(S.3): , and go to (S.1).

Note that one round of Algorithm 3 (i.e., ) wherein
all users sequentially update their own strategies, corresponds
to consecutive iterations of the Jacobi updates described in
Algorithms 1 and 2. In Appendix C we prove that, quite inter-
estingly, Algorithm 3 can be interpreted as an inexact Jacobi
scheme based on the best-response , satisfying The-
orem 4. It turns out that convergence of Algorithm 3 follows
readily from that of Algorithm 2, and is stated next.
Theorem 5: Let be the sequence generated byAlgo-

rithm 3, under the setting of Theorem 4. Then, the conclusions
of Theorem 4 holds.

Proof: See Appendix C.

V. THE COMPLEX CASE

In this section we show how to extend our framework to
sum-utility problems where the users’ optimization variables
are complex matrices. This will allow us to deal with the de-
sign of MIMO multiuser systems. Let us consider the following
sum-utility optimization:

(25)

where , with being the (matrix)
strategy of user , , and , with

; let define also . We study
(25) under the same assumptions A1–A4 stated for the real case,
where in A2 the differentiability condition is now replaced by
the -differentiability (see, e.g., [40], [41]), and in A3 is
required to have Lipschitz conjugate-gradient on ,
with constant , where is the conjugate of .
A Motivating Example.An instance of (25) is the MIMO ver-

sion of (3):

(26)

where is the rate over the MIMO link ,

(27)

is the covariance matrix of transmitter ,
is the covariance matrix of the multiuser in-

terference plus the thermal noise (assumed to be full-rank),
with , is the channel matrix between the
-th transmitter and the -th receiver, and is the set of con-
straints of user ,

In we also included an arbitrary convex and closed set ,
which allows us to add additional constraints, such as: i) null
constraints , where is a full rank ma-
trix with ; ii) soft-shaping constraints

, with for some ; iii) peak-power
constraints , with for
some ; and iv) per-antenna constraints .
Note that the optimization problems in [23], [24], [26] are spe-
cial cases of (26).

A. Distributed Decomposition Algorithms

At the basis of the proposed decomposition techniques for
(25) there is the (second order) Taylor expansion of a continu-
ously -differentiable function [41]:

(28)

where , denotes the “vec”
operator, and is the so-called augmented Hessian
of , defined as [41]

(29)
In [41], we proved that plays the role of the Hessian
matrix for functions of real variables. In particular, is strongly
convex on if and only if there exists a , the
constant of strong convexity of , such that

(30)

for all and , where denotes the
Frobenius norm. When (30) holds, we say that is
augmented uniformly positive definite, and write

[41]. If is only convex but not strongly convex, then
in (30) is zero.

Motivated by the Taylor expansion (28), and using the same
symbols and to denote the complex counterparts of
and introduced for the real case [cf. (6)], let us consider for
each user the following convex approximation of at :
denoting by ,

(31)
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with

(32)

where is any given 2 nm 2 nm matrix such that

, for all and some .
Note that if , the quadratic term in (31) reduces to
the standard proximal regularization . Then, the
best-response matrix function of each user is

(33)

Decomposition algorithms for (25) are formally the
same as those proposed in Section IV for (1) [namely Al-
gorithms 1–3], where the real-valued best-response map

is replaced with the complex-valued counterpart
. Convergence conditions read

as in Theorems 3–5, under the following natural changes: i)
becomes ; ii) the condition for

all reads as , for all ; and
iii) in the constant defined in (14) is replaced with

, where is the constant of strong convexity
of [41]:

VI. EXTENSIONS AND RELATED WORKS

The key idea in the proposed SCA schemes, e.g., (33), is
to convexify the nonconvex part of via partial linearization
of , resulting in the term . In
the same spirit of [27], [32], [33], it is not difficult to show
that one can generalize this idea and replace the linear term

in (31) with a nonlinear scalar function
. All the results

presented so far are still valid provided that enjoys
the following properties: for all ,

P1) is -continuously differentiable on ;
P2) ;
P3) is uniformly Lipschitz on ;
P4) is continuous in .

Similar conditions can be written in the real case for the non-
linear function replacing
the linear pricing . It is interesting to compare P1-P3
with conditions in [27], [32], [33]. First of all, our conditions do
not require that the approximation function is a global upper
bound of the original sum-utility function, a constraint that re-
mains elusive for sum-utility problemswith no special structure.
Second, even when the aforementioned constraint can be met,
it is not always guaranteed that the resulting convex subprob-
lems are decomposable across the users, implying that a central-
ized implementation might be required. Third, SCA algorithms
[27], [32], [33], even when distributed, are generally sequen-
tial schemes (unless the sum-utility has a special structure). On
the contrary, the algorithms proposed in this paper do not suffer
from any of the above drawbacks, which enlarges substantially

the class of (large scale) nonconvex problems solvable using our
framework.

VII. APPLICATIONS AND NUMERICAL RESULTS

In this section, we customize the proposed decomposition
framework to the SISO and MIMO sum-rate maximization
problems introduced in (3) and (26), respectively, and compare
the resulting new algorithms with state-of-the-art schemes
[23], [24], [29], [30], [33]. Quite interestingly, our algorithms
are shown to outperform current schemes, in terms of conver-
gence speed and computational effort, while reaching the same
sum-rate. It is worth mentioning that this was not obvious at
all, because algorithms in [23], [24], [29], [30], [33] are ad-hoc
schemes for the sum-rate problem, whereas our framework has
been introduced for general sum-utility problems.

A. Sum-rate maximization over SISO ICs

Consider the social problem (3), with
, where are positive given weights; to avoid

redundant constraints, let also assume w.l.o.g. that all the
columns of are linearly independent. We describe next
two alternative decompositions for (3) corresponding to differ
choices of and the sets .
1) Decomposition #1–Pricing Algorithms: Since each user’s

rate is concave in , a natural choice is
and , which leads to the following class of

strongly concave subproblems [cf. (7)]: given
and choosing , the best-response of user is

where is the pricing factor, given by

(34)

denotes the set of neighbors of user , i.e., the set of users ’s
which user interferers with; and and are the SINR
and the multiuser interference-plus-noise power experienced by
user , generated by the power profile :

The best-response can be computed in closed form (up
to the multipliers associated with the inequality constraints in
) according to the following multi-level waterfilling-like ex-

pression [41]:

(35)

where denotes the Hadamard product,
and , with the multi-

plier vector chosen to satisfy the nonlinear complementarity
condition (CC) . The optimal
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satisfying the CC can be efficiently computed (in a finite
number of steps) using a multiple nested bisection method
as described in [41, Alg. 6]; we omit the details because of
the space limitation. Note that, in the presence of the power
budget constraint only (as in [23], [29], [30]), reduces to a
scalar quantity such that ,
whose solution can be obtained using the classical bisection
algorithms (or the methods in [42]).
Given , one can now use any of the algorithms in-

troduced in Section IV. For instance, a good candidate is the
exact Jacobi scheme with diminishing step-size (Algorithm 1),
whose convergence is guaranteed if, e.g., rules in (19) or (20)
are used for the sequence (Theorem 3). Note that the pro-
posed algorithm is fairly distributed. Indeed, given the inter-
ference generated by the other users [and thus the MUI coef-
ficients ] and the current interference price , each
user can efficiently and locally compute the optimal power allo-
cation via the waterfilling-like expression (35). The es-
timation of the prices requires however some signaling
among nearby users. Interestingly, the pricing expression in (34)
as well as the signaling overhead necessary to compute it coin-
cides with that in [23]. But, because of their sequential nature,
algorithms in [23] require more CSI exchange in the network
than our simultaneous schemes.
2) Decomposition #2–DC Algorithms: An alternative class

of algorithms for the sum-rate maximization problem under
consideration can be obtained exploring the D.C. nature of the
rate functions (cf. Example #4 in Section IV-A). The sum-rate
can indeed be decomposed as the sum of a concave and convex
function, namely , where

which is an instance of (23) with . A natural choice
of is then for all , resulting in the best-
response:

where , with

(36)

We remark that the best-response can be efficiently com-
puted by a fixed-point iterate, in the same spirit of [29]; we
omit the details because of the space limitation. Note that the
communication overhead to compute the prices (34) and (36)
is the same, but the computation of requires more CSI
exchange in the network than that of , since each user
also needs to estimate the cross-channels .
Numerical Example #1. We compare now Algorithm 1 based
on the best-response in (35) (termed SJBR), with those
proposed in [29] [termed SCALE and SCALE one-step, the
latter being a simplified version of SCALE where instead of

Fig. 1. Average number of iterations versus number of users in SISO fre-
quency-selective ICs. Note that all algorithms are simultaneous except MDP;
this means that, at each iteration, in MDP there is only one user updating his
strategy, whereas in the other algorithms all users do so).

solving the fixed-point (16) in [29], only one iteration of (16) is
performed],[23] (termed MDP), [30] (termed WMMSE). Since
in the aforementioned papers only power budget constraints
can be dealt with, to allow the comparison, we simplified the
sum-rate maximization problem described above and consid-
ered only power budget constraints (and all ). We assume
the same power budget , noise variances ,
and for all the users. We simulated
SISO frequency channels with subcarriers; the chan-
nels are generated as FIR filters of order , whose taps are
i.i.d. Gaussian random variables with zero mean and variance

, where is the distance between the trans-
mitter and the receiver . All the algorithms are initialized by
choosing the uniform power allocation, and are terminatedwhen
(the absolute value) of the sum-utility error in two consecutive
rounds becomes smaller than . The accuracy in the bi-
section loops (required by all methods) is set to . In our
algorithm, we used rule (19) with and set all .
In Fig. 1, we plot the average number of iterations required by
the aforementioned algorithms to converge versus the number
of users; the average is taken over 100 independent channel re-
alizations; we set and and
for all and . As benchmark, we also plot two instances
of proximal conditional gradient algorithms [4], which can be
interpreted as special cases of our SJBR with for all

(cf. Ex. #1 in Section IV-A). In one instance [termed Gra-
dient (SJBR tuning)] we set the free parameters and as in
SJBR, whereas in the other one [termed Gradient (opt. tuning)]
we chose for all and , which leads
experimentally to the fastest behavior of the gradient algorithm.
All the algorithms reach the same average sum-rate (that thus

is not reported here, see [43]), but their convergence behavior
is quite different. The figure clearly shows that our SJBR out-
performs all the others (note that SCALE, WMMSE, and the
proximal gradient are also simultaneous-based schemes). For
instance, the gap with the WMMSE is about one order of mag-
nitude, for all the network sizes considered in the experiment,
while the gap with MDP is up to three orders of magnitude. The
good behavior of our scheme has been observed also for other
choices of , termination tolerances, and step-size rules;
we cannot present here more experiments because of space lim-
itation; we refer the interested reader to the technical report [43]
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for more numerical results. Note that SJBR, SCALE one-step,
WMMSE, MDP, and gradient schemes have similar per-user
computational complexity, whereas SCALE is much more de-
manding and is not appealing for a real-time implementation.
Therefore, Fig. 1 provides also a rough indication of the per-user
cpu time of SJBR, SCALE one-step, WMMSE, and gradient
algorithms.
It is also interesting to compare the proposed algorithm with

gradient schemes. A first natural question is whether the par-
tial linearization (as performed in SJBR) really improves the
convergence speed of the algorithm. The answer is given by
the comparison in Fig. 1 between SJBR and “Gradient (SJBR
tuning)”. One can see that, under the same choice of and

, the former is almost three order of magnitude faster
then the latter, for all the network sizes considered in the exper-
iment. If an independent, ad hoc tuning of and is
performed for the gradient algorithm, the gap reduces up to one
order of magnitude, still in favor of SJBR. This result supports
the intuition motivating this work: preserving the structure of
the problem via a partial linearization can significantly improve
the convergence speed of the algorithm.
The comparison with gradient algorithms also reveals a

well-known issue of these schemes: the convergence behavior
strongly depends on the choice of the step-size sequence
and the proximal gains . It is then natural to ask whether also
the proposed algorithms suffer from the same drawback. To
answer this question, in Fig. 2 we compare the convergence
behavior of the proximal condition gradient algorithm with
that of SJBR, using the step-size rule (19), but changing the
free parameter by several orders of magnitude. For
gradient schemes, we considered two choices of , namely:

and (as in Fig. 1); the latter resulting in
the experimentally fastest behavior of gradient schemes (see
Fig. 1). More specifically, in Fig. 2, we plot the average number
of iterations needed to reach convergence within the accuracy
of versus , for different number of users (the
rest of the setting is as in Fig. 1). The figure clearly shows that,
differently from gradient algorithms, the convergence behavior
of our scheme appears to be almost independent of the choice
of . This is a very desirable feature that lets one avoid the
expensive and difficult tuning of the step-size, thus making the
proposed algorithms a very good candidate in many applica-
tions. We remark one more time that the gradient method is
very sensitive to the choice of parameters; indeed, based on
further simulations that we do not report here for lack of space,
the behavior of the gradient method is very sensitive to the
number of users and characteristics of the network (SNR, pair
distances, etc ) and its optimal behavior requires different
tunings of parameters each time.

B. Sum-rate maximization over MIMO ICs

Let us focus now on the MIMO formulation (26), assuming
, with .

1) Decomposition #1: Pricing Algorithms: Choosing
, , and , the best-response of user is

(37)

Fig. 2. Proximal conditional gradient algorithms versus SJBR: Average
number of iterations versus [cf. (19)].

with

where is defined as in the SISO case, and

Note that, once the price matrix is given, the
best-response can be computed locally by each
user solving a convex optimization problem. Moreover, for
some specific structures of the feasible sets , the case of
full-column rank channel matrices , and , a solution
in closed form (up to the multipliers associated with the power
budget constraints) is also available [24]. Given ,
one can now use any of the algorithms introduced in Section V.
To the best of our knowledge, our schemes are the first class
of best-response Jacobi (inexact) algorithms for MIMO IC
systems based on pricing with provable convergence.
Complexity Analysis and Message Exchange. It is interesting

to compare the computational complexity and signaling (i.e.,
message exchange) of our algorithms, e.g., Algorithm 1 based
on the best-response (termed MIMO-SJBR) with
those of the schemes proposed in the literature for a similar
problem, namely the MIMO-MDP [23], [24], and the MIMO-
WMMSE [30]. We assume that all channel matrices ’s are
full-column rank, and set in (37). For the purpose of
complexity analysis, since all algorithms include a similar bi-
section step which generally takes few iterations, we will ignore
this step in the computation of the complexity (as in [30]). Also,
WMMSE and SJBR are simultaneous schemes, while MDP is
sequential; we then compare the algorithms by given the per-
round complexity, where one round means one update of all
users. Denoting by (resp. ) the number of antennas at each
transmitter (resp. receiver), the computational complexity of the
algorithms is:
• MIMO-MDP:
• MIMO-WMMSE:
[30]

• MIMO-SJBR: .
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It is clear that the complexity of the three algorithms is very
similar, and same in order in the case in which ( ),
given by .
We remark that, in a real system, theMUI covariancematrices

come from an estimation process. It is thus interesting
to understand how the complexity changes when the computa-
tion of from is not included
in the analysis. We obtain the following:
• MIMO-MDP:
• MIMO-WMMSE:

• MIMO-SJBR: .
Finally, if one is interested in the time necessary to complete

one iteration, it can be shown that it is proportional to the above
complexity divided by .
As far as the communication overhead is concerned, the same

remarks we made about the schemes described in the SISO set-
ting, apply also here for the MIMO case. The only difference is
that now the users need to exchange a (pricing) matrix rather
than a vector, resulting in amount of message ex-
change per-iteration for all the algorithms.
2) Decomposition #2–WMMSE Algorithms: In [30], the

authors showed that the MIMO problem (26) (under power
constraints only) is equivalent to the sum-MSE minimization
shown in (38) at the bottom of the page, where ,

, and are two
auxiliary matrix variables, and is the MSE matrix at
the receiver (see (3) in [30]). The formulation (38) has some
desirable properties, namely: i) is continuously
( -)differentiable with Lipschitz continuous (conjugate) gra-
dient on the feasible set; ii) is convex in each
variables , , ; iii) the minimization of
w.r.t. to each , , can be performed in parallel by the
users; and iv) the optimal solutions of the individual mini-
mizations are available in closed form, see [30] for details. We
will denote such optimal solutions as , ,
and , for all , where we made explicit the
dependence on the variables that are kept fixed. In [30] the
authors proposed to use the (Gauss-Seidel) block coordi-
nate descent method to solve (38), resulting in the so-called
MIMO-WMMSE algorithm.
It is not difficult to see that (38) can be

cast into our framework, resulting in the fol-
lowing best-response mapping for each user :

.
We can then compute a stationary solution of (38) and thus
(26) using any of the Jacobi algorithms introduced in the
previous sections based on (or its inexact
computation). Note that the computational complexity as well
as the communication overhead of such algorithms are roughly
the same of those of the MIMO-WMMSE [30].

TABLE I
AVERAGE NUMBER OF ITERATIONS ( )

TABLE II
AVERAGE NUMBER OF ITERATIONS ( )

Numerical Example #2. In Tables I and II we compare
the MIMO-SJBR, the MIMO-MDP [23], [24], and the
MIMO-WMMSE [23], [24], in terms of average number
of iterations required to reach convergence, for different
number of users, normalized distances (with

and for all and ), and termination
accuracy (namely: and ). We considered the
following setup. All the transmitters/receivers are equipped
with 4 antennas; we simulated uncorrelated fading channel
model, where the coefficients are Gaussian distributed with
zero mean and variance ; and we set for all ,
and . We used the step-size rule (19) with

and . We computed the best-response (37)
using the closed form solution [24].
In our simulations all the algorithms reached the same av-

erage sum-rate. Given the results in Tables I and II, the fol-
lowing comments are in order. The proposed SJBR outperforms
all the others schemes in terms of iterations, while having sim-
ilar (or even better) computational complexity. Interestingly, the
iteration gap with the other schemes reduces with the distance
and the termination accuracy. More specifically: i) SJBR seems
to be much faster than all the other schemes (about one order of
magnitude) when [say low interference scenarios],
and just a bit faster (or comparable to MIMO-WMMSE) when

[say high interference scenarios]; and ii) SJBR is
much faster than all the others, if an high termination accuracy
is set (see Table I). Also, the convergence speed of SJBR is not
affected too much by the number of users. Finally, in our exper-
iments, we also observed that the performance of SJBR are not
affected too much by the choice of the parameter in the (19): a
change of of many orders of magnitude leads to a difference in
the average number of iterations which is within 5%; we refer
the reader to [43] for details, where one can also find a com-
parison of several other step-size rules. We must stress however
thatMIMO-MDP andMIMO-WMMSE do not need any tuning,
which is an advantage with respect to our method.

(38)
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Fig. 3. WMMSE and SJBR over Interference Broadcast Channels. (a) Average
cpu time versus # of mobile terminals. (b) Average sum-rate versus # of mobile
terminals.

Numerical Example #3. Finally we compare WMMSE [30]
and our algorithm (still termed SJBR) in a more realistic sce-
nario, namely a MIMO broadcast cellular system composed of
multiple cells, with one Base Station (BS) and multiple ran-
domly generated Mobile Terminals (MTs) in each cell. No or-
thogonal transmissions are imposed a priori among the BSs (and
the MTs inside each cell); therefore each MT experiences both
intra-cell and inter-cell interference. We refer to [30] for a de-
tailed description of the system model, the explicit expressions
of the BS-MT downlink rates, and the corresponding sum-rate
maximization problem.
The setup of our experiments is the following. We simulated

seven cells with multiple randomly generatedMTs; each BS and
MT is equipped with four transmit and receive antennas. Chan-
nels are Rayleigh fading, whose path-loss are generated using
the 3 GPP(TR 36.814) methodology [44]. We assume white
zero-mean Gaussian noise at each mobile receiver, with vari-
ance , and same power budget for all the BSs; the SNR
is set to . Both algorithms WMMSE
and SJBR are initialized by choosing the same feasible ran-
domly generated point, and are terminated when (the absolute
value) of the sum-rate error in two consecutive rounds becomes
smaller than . In our algorithm, we used the step-size rule
(19), with and , and we set all ;
the unique solution of each (strongly convex) subproblem [cf.

(33)] is computed in closed form (up to the multiplier associ-
ated with the power constraints that can be efficiently computed
using bisection) adapting the procedure in [24], we omit further
details because of space limitation. The accuracy in the bisec-
tion loops (required by both algorithms) is set to . Our ex-
periments were run using Matlab R2012a on a 12 2.40 GHz
Intel Xeon E5645 Processor Cores machine, equipped with 48
GB of memory and 24576 Kbytes of data cache; the operation
system is Linux (RedHat Enterprise Linux 6.1 2.6.32 Kernel).
In Fig. 3(a) we plot the average cpu time versus the total number
of MTs for the two algorithms under the same termination crite-
rion, whereas in Fig. 3(b) we reported the final achieved average
sum-rate. The curves are averaged over 1500 channel/topology
realizations. It can be observed that SJBR significantly outper-
formsWMMSE in terms of cpu time when the number of active
users is large; moreover SJBR also yields better sum-rates. We
observed similar results also under different settings (e.g., SNR,
number of cells/BSs, etc.); we refer to the technical report [43]
for more experiments.

VIII. CONCLUSION

In this paper, we proposed a novel decomposition frame-
work, based on SCA, to compute stationary solutions of general
nonconvex sum-utility problems (including social functions
of complex variables). The main result is a new class of con-
vergent distributed Jacobi (inexact) best-response algorithms,
where all users simultaneously solve (inexactly) a suitably con-
vexified version of the original social problem. Our framework
contains as special cases many decomposition methods already
proposed in the literature, such as gradient algorithms, and
many block-coordinate descent schemes for convex functions.
Finally, we tested our methodology on some sum-rate max-
imization problems over SISO/MIMO ICs; our experiments
show that our algorithms are faster than ad-hoc state-of-the-art
methods while having the same (user) computational com-
plexity in the SISO case and similar (or better) complexity
in the MIMO case. Some interesting future directions of this
work are under investigation, e.g., how to adaptively choose
the step-size rule (so that no a-priori tuning is needed), and how
to generalize our framework to scenarios when only long-term
channel statistics are available.

APPENDIX

For notational simplicity, in the following we will omit in
each [and ] the dependence on and ,
and write [and ]; also, we introduce

and .

A. Proof of Proposition 1

Before proving the proposition, let us introduce the following
intermediate result whose proof is a consequence of assump-
tions A1–A3 and thus is omitted.

Lemma 6: Let , with
defined in (7). Then the following hold:
(i) is uniformly strongly convex on with constant

, i.e.,

(39)
for all and given ;
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(ii) is uniformly Lipschitz continuous on , i.e.,
there exists a independent on such that

(40)

for all and given .
We prove now the statements of Proposition 1 in the fol-

lowing order (c)-(a)-(b)-(d).
(a): Given , by definition, each is the unique so-
lution of the problem (10) and thus satisfies the minimum prin-
ciple: for all ,

(41)

Summing and subtracting in (41), choosing
, and using , we get

(42)

for all . Recalling the definition of [cf. (14)] and using
(42), we obtain

(43)

for all . Summing (43) over we obtain (13).
(b): Let us use the notation as in Lemma 6. Given , by
the minimum principle, we have

(44)

Setting and , summing the two inequalities
above, and adding and subtracting , we obtain:

(45)

Using (39) we can now lower bound the left-hand-side of (45)
as

(46)

whereas the right-hand side of (45) can be upper bounded as

(47)

where the inequality follows from the Cauchy-Schwartz in-
equality and (40). Combining (45), (46), and (47), we obtain
the desired Lipschitz property of .
(c): Let be a fixed point of , that is .
By definition, each satisfies (41), for any given .
Setting and using , (41) reduces to

(48)

for all and . Taking into account the Carte-
sian structure of and summing (48) over we obtain

, for all , with ;
therefore is a stationary solution of (1). The converse holds
because i) is the unique optimal solution of (10) with

, and ii) is also an optimal solution of (10), since
it satisfies the minimum principle.
(d): It follows readily from (43).

B. Proof of Theorems 3 and 4

We prove Theorem 4; Theorem 3(b) is a special case; the
proof of simpler Theorem 3(a) is omitted and can be obtained
following similar steps. The line of the proof is based on stan-
dard descent arguments, but suitably combined with the prop-
erties of (cf. Prop. 1), and the presence of errors . We
will also use the following lemma, which is the deterministic
version of the Robbins-Siegmund result for random sequences
[45, Lemma 11] (but without requiring the nonnegativity of
and as instead in [45, Lemma 11]).

Lemma 7: Let , , and be three sequences
of numbers such that for all . Suppose that

and . Then either or else con-
verges to a finite value and .
We are now ready to prove Theorem 4. For any given ,

the Descent Lemma [36] yields

(49)

with , and defined in Step 2 (Algorithm 2).
Using

where in the last inequality we used , and

(50)

which follows from Prop. 1(c), (49) yields: for all ,

(51)
where .
Note that, under the assumptions of the theorem,
. Since , we have for some positive constant and

sufficiently large , say ,

(52)

Invoking Lemma 7 with the identifications ,
and while
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using , we deduce from (52) that either
or else converges to a finite

value and

(53)

Since is coercive, , im-
plying that is convergent; it follows from (53) and

that .
Using Prop. 1, we show next that
; for notational simplicity we will write
. Suppose, by contradiction, that
. Then, there exists a such that for
infinitely many and also for infinitely many
. Therefore, one can always find an infinite set of indexes, say
, having the following properties: for any , there exists

an integer such that

(54)

(55)

Given the above bounds, the following holds: for all ,

(56)

(57)

(58)

where follows from (54) and (55); is due to Prop.
1(a); comes from the triangle inequality and the updating
rule of the algorithm; and in we used (54), (55), and

, where . It
follows from (58) that

(59)

We show next that (59) is in contradiction with the conver-
gence of . To do that, we preliminary prove that, for
sufficiently large , it must be . Pro-
ceeding as in (58), we have: for any given ,

It turns out that for sufficiently large so that
, it must be

(60)

otherwise the condition would be violated
[cf. (55)]. Hereafter we assume w.l.o.g. that (60) holds for all

(in fact, one can alway restrict to a proper
subsequence).

We can show now that (59) is in contradiction with the
convergence of . Using (52) (possibly over a subse-
quence), we have: for sufficiently large ,

(61)

where in (a) we used (55) and (60), and is some positive
constant. Since converges and , (61)
implies , which contradicts (59).
Finally, since the sequence is bounded [due to the co-

ercivity of and the convergence of ], it has at
least one limit point that must belong to . By the continuity
of [Prop. 1(a)] and , it must
be . By Prop. 1(b) is also a stationary solution of the
social problem (1).
Note that, in the setting of Theorem 3, for all and ;

therefore for all . It follows from (52) that is a
decreasing sequence, which entails that no limit point of
can be a local maximum.

C. Proof of Theorem 5

The main idea of the proof is to interpret Algorithm 3 as an
instance of the inexact Jacobi scheme described in Algorithm 2,
and show that Theorem 4 is satisfied. It is not difficult to show
that this reduces to prove that, for all , the sequence
in Step 2a) of Algorithm 3 satisfies

(62)

for some such that . The following holds
for the LHS of (62):

where follows from the error bound in Step 2a) of Algo-
rithm 3; in we used Prop. 1a); follows from Step 2b);
and in we used Prop. 1d), with being a posi-
tive constant. It turns out that (62) is satisfied choosing

.
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