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Abstract—In this paper, we start with the standard support
vector machine (SVM) formulation and extend it by considering a
general SVM formulation with normalized margin. This results in
a unified convex framework that allows many different variations
in the formulation with very diverse numerical performance. The
proposed unified framework can capture the existing methods,
i.e., standard soft-margin SVM, -SVM, and SVMs with stan-
dardization, feature selection, scaling, and many more SVMs,
as special cases. Furthermore, our proposed framework can not
only provide us with more insights on different SVMs from the
“energy” and “penalty” point of views, which help us understand
the connections and differences between them in a unified way,
but also enable us to propose more SVMs that outperform the
existing ones under some scenarios.
Index Terms—Convex optimization, normalizations, support

vector machines, unified framework.

I. INTRODUCTION

S INCE the support vector machine (SVM) was established
[1]–[4], it has become the standard technique for many dif-

ferent supervised classification problems in different fields, e.g.,
the cancer diagnostic in bioinformatics, image classification in
objective detection, face recognition in computer vision, text
categorization in document processing, and for more related ap-
plications, see [5], [6].
The standard soft-margin SVM usually leads to nonsparse so-

lutions. However, in many real applications it is imperative to
perform feature selection to detect which features are actually
relevant. The common way of doing it is with a sparsity penalty
[7]. Some examples are the classic -norm penalty [8], the ex-
ponential concave penalty [9], or adding convex relaxation con-
straints on -norm penalty [10]. An alternative way is to in-
troduce one more 0-1 variable to do hard feature selection for
each input feature [11]. Paper [12] provided numerical studies
for some specific data sets.
Feature scaling can be treated as a generalization of feature

selection by weighting or scaling the features with different
scalars rather than only 0 or 1. From this point of view, the
method of standardizing the input data before training the SVM
is a special case of feature scaling where each feature is inde-
pendently normalized so that it has zero mean and unit vari-
ance. However, all the knowledge of the location and scale of
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the original data may be lost after standardization [13], [14] and
there is no guarantee that standardization will improve the clas-
sification performance in general [15]. Still, data standardiza-
tion is useful to avoid the features with larger dynamic range
dominating those with smaller ones and the numerical difficul-
ties during the calculation [13], [14]. Some methods have been
proposed to find better feature scaling. Papers [16] and [17]
focused on finding the optimal feature scaling via minimizing
some analytical upper bounds on the leave-one-out cross vali-
dation error, since the gradient of such objectives with respect
to the scaling variables can be easily computed and the simple
gradient method can be implied to find at least some local op-
timal solution easily. Later, [18] proposed an adaptive method
to avoid potential overfitting.
However, the aforementioned methods all lead to nonconvex

problems. To overcome this drawback, [19] proposed the con-
cept “normalizedmargin” and the optimization problem ofmax-
imizing “normalized margin” can be reformulated into convex
form. They were able to link their problem with the traditional
-SVM and pointed out their problem indeed is a weighted
-SVM where the weights can be computed based on the input

data directly. More recent related works on SVM can be found
in [20] and references therein.
In this paper, motivated by the work in [19], we propose a

unified framework that can capture many existing linear SVMs
(including [19]) as special cases by taking different normaliza-
tions, show the connections and differences between different
SVMs clearly, and moreover provide more insights on different
SVMs from the “energy” and “penalty” points of view. We also
benefit from the unified framework by having some new SVMs
that are comparable with or even better than the existing ones
under small training size scenarios.
This paper is organized as follows. Basic standard linear

SVMs are reviewed in Section II. An extended general
linear SVM with normalized margin, the main result, and
the detailed contributions are provided in Section IV. Then
Sections IV–VI show the detailed procedure of obtaining the
main result. More specifically, Section IV provides a solving
approach for the extended general linear SVM, Section V ex-
plores the general linear SVM with more normalizations, and
Section VI summarizes the general linear SVM and explorations
to propose a unified framework. At last, Section VII presents
the numerical experiments, and Section VIII concludes the
paper.
Notation: We adopt the notation of using boldface lower case

for vectors , upper case for matrices . The notation de-
notes all one column vector with proper size. The Moore-Pen-
rose pseudo-inverse operator is , the transpose operator is

, the trace operator is , and means the matrix
Frobenius norm. The curled inequality symbol denotes the
generalized inequality: means that is an Her-
mitian positive semidefinite matrix. The element of matrix
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at the -th row and -th column is denoted by . The nota-
tion denotes principal square root of matrix .
denotes a diagonal matrix with diagonal elements equal to that
of , and its principal square root is . The nota-
tion stands for the range space of . The notation
stands for the optimal value of problem .

II. LINEAR SUPPORT VECTOR MACHINES

Consider a binary classification problem:
, . The goal of a linear classification

problem is to find a linear decision boundary that classifies the
according to their binary labels . Generally speaking, a

linear separating hyperplane can be expressed as

(1)

where and are the linear classifier parameters to learn from
the training data set , and the classification prediction
for a new outcome sample simply is .
The soft-margin SVM aiming at finding the trade-off between

the large margin and small misclassification has the following
problem formulation [4]:

(2)

It turns out that has a nice interpretation that measures
the separation between the two classes. For example, for the
linear separable case, it equals to theminimum distance between
the samples from either class and the linear decision boundary.
Because of that, the quantity is also called “margin”.
A well-known method to induce feature selection or sparsity

in consists in replacing the -norm with -norm1 [8]:

(3)

III. A GENERAL LINEAR SVM FORMULATION WITH
NORMALIZED MARGIN

A. Problem Statement
Consider the general linear mapping:

(4)

where . If is square and diagonal, the mapping is
scaling the features so that they are independent of the units in
which they were measured [19]. The more general nonsquare
and nondiagonal allows for more degrees of freedom; for ex-
ample, the features can be rotated prior to the scaling. Here, we
extend the concept of normalized margin (NM) proposed in [19]
by taking more general “normalization” as follows:

(5)

1Usually is used in the objective rather than . However, those two
formulations are equivalent for an appropriate choice of . For the consistency
of presentation in this paper, we adopt here.

where is the margin, and is a general normalization
term that measures how compact the training data is. Rather than
focusing on some specific definition of the normalization ,
we suppose a general assumption as stated below.
Assumption 1: We assume is function of and can

always be written in the following form

(6)

where matrix is positive semi-definite and rep-
resents the information abstracted from the training data

indexed by the parameter .
Note that defined by (6) is convex in since it is the

pointwise maximum of a family of quadratic convex functions
of indexed by . To understand how measures the com-
pactness of the training data, let us visit the normalization term
used in [19]:
Example 1: The normalization in [19]

(7)

uses the summation of squared distances among the same class
data instances to measure the compactness of the transformed
training samples, and it is a specific example of (6) with

(8)

(9)

To keep the problem statement as general as possible, we
make use of the general expression (6) for the normalization

in the following part of this section. The underlying idea
is to maximize the margin while making each class as compact
as possible.
To start with, consider the linearly separable case first, and the

problem of jointly finding the linear mapping and the param-
eters of the separating hyperplane with the normalized margin
maximized can be formulated as:

(10)

Since for any feasible and , any positively scaled multiple
is also feasible and we can arbitrarily set and
problem (10) can be reformulated as:

(11)

Similar to the soft-margin SVM (2), the linearly nonseparable
case of maximizing normalized margin problem can be formu-
lated as:

(12)
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TABLE I
SUMMARY OF DIFFERENT PROBLEMS IN THE UNIFIED FRAMEWORK

The idea of the linear transformation here is quite similar to
many problems in signal processing, for example, the optimal
linear precoding designs for the multiple-input-multiple-output
(MIMO) communication systems [21] or wideband noncoop-
erative systems [22], and or in financial engineering, e.g., the
worst-case factor loading matrix in robust portfolio selection
problems [23].

B. Main Result and Contributions
Note that the extended general linear SVM formulation with

normalized margin (12) is nonconvex and it allows us to con-
sider two extensions: i) more general transform , and ii) more
general distance measurements as the normalizations for the
normalized margin. Fortunately, in this paper, we are able to
show that (12) equals to a convex unified framework (UF) in
Table I, in which the norm is controlled by the transform and
weight matrix is controlled by distance measurement. In addi-
tion, the detailed contributions of the extended general linear
SVM formulation with normalized margin (12) and its equiva-
lent convex formulation can be summarized in several aspects
as follows:
• The proposed unified framework is general enough to
characterize many linear SVMs in a unified form via
different normalizations or, more generally, different
weighted vector norm penalties (as shown in Table I).

• The proposed unified framework enables us to understand
different SVMs in a unified way: to connect different
SVMs via the relationship between their normalizations.

• The proposed unified framework provides us with more
meaningful insights: different normalizations/penalties
mean different compactness measures among the data.

• The proposed unified framework benefits us with more
new meaningful SVMs, e.g., the new SVMs we will ex-
plore later in Sections IV–VI.

In the following Sections IV–VI, we will propose an efficiently
solving approach for (12), explore many more normalizations,
gain some insights, and finally propose the convex unified
framework (UF) and obtain the results in Table I. Meanwhile,
we will also gain the above detailed contributions.

IV. PROPOSED SOLVING APPROACH

Obviously, the problem of interest (12) is nonconvex. Fortu-
nately, we are able to reformulate it into a convex form. Since

is quadratic in for any given
, we can always scale and appropriately so that
. Furthermore, the constraint can be relaxed to

since the equality will always be active at the optimal point,
otherwise we could scale down and scale up with the same
scalar to find another feasible point but with the objective value
further reduced. Then, problem (12) is equivalent to:

(13)

which can be further reformulated as:

(14)

To proceed, we consider the following different problem:

(15)

Interestingly, we have the following result.
Proposition 1: Problem (14) and problem (15) have the same

optimal value and their optimal solutions have the following
relationships:
• If is a optimal solution of problem
(14), then it is also a optimal solution of problem (15);

• If is a optimal solution of problem
(15), then is a optimal solu-
tion of problem (14), where 2 is the projector that
projects any vector onto .
Proof: See Appendix A.

In other words, Prop. 1 simply says that problem (14)
and problem (15) are equivalent, and thus we can investi-
gate problem (15) instead. Denote the variables ,

, and by the Schur complement
[25], problem (15) can be rewritten as a semi-definite program-
ming (SDP) (recall that ):

(16)

2 , where is the pseudo inverse of [24].
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Note that, if the above problem is still nonconvex due
to the rank constraint . However, under some
condition, we can show that the SDP relaxation (SDR) in fact is
tight.
Proposition 2: Problem (16) is bounded below by:

(17)

In addition, if there exists some full rank, the lower bound
is tight, and the optimal solution of (17) is the optimal solution
of (16) with .

Proof: See Appendix B.
Thus, when there exists some full rank, problem (12) and

(17) are indeed equivalent no matter the size of .
Next, we revisit the case being diagonal. Similar to the

derivation procedure from (12)to (16), we can easily check that
problem (12) can be reformulated as:

(18)

Furthermore, we can have the following result.
Proposition 3: Problem (18) is bounded below by:

(19)

In addition, if there exists some full rank, the lower
bound is tight, and the optimal solution of (19) is the optimal
solution of (18) with
where .

Proof: See Appendix C.
In fact, problem (23) in [19] is a specific case of problem (19)

such that and are given by (8) and (9). However, our proof
in Appendix C is much simpler and more straightforward.
Remark 1: If we compare Props. 2 and 3, we can see that

different normalizations/transformations result in different
penalties:
• When only scaling is considered, i.e., is restricted to be
a square diagonal matrix in mapping (4), the normalized
margin can be interpreted as the reciprocal of the weighted
-norm of the normal vector of the separating hyperplane,

where the weight matrix may represent the
prior data structure information.

• When is allowed to be any -by- matrix in mapping
(4), the normalized margin can be interpreted as the recip-
rocal of the weighted -norm of the normal vector of the
separating hyperplane, where the weight matrix may
represent the prior data structure information.

The above interpretations might indicate that the SVMs (17) and
(19) based on normalized margin formulation may be able to
improve the classification performance for some data sets since
they can consider data structure information in the problem for-
mulations. This is an interesting observation and wewill explore
it in detail in this paper.

V. EXPLORATION WITH MORE NORMALIZATIONS

Recall that the underlying idea of normalizedmargin problem
(12) is to maximize the margin and make the data to be compact
at the same time. However, the aforementioned normalization
(7) in [19] (e.g, Example 1) is only one specific example of the
general normalization in Assumption 1. In this section, we will
mainly explore the problem of interest (12) by considering more
different normalizations.
Before proceeding, let us introduce several definitions.

Without loss of generality, we assume that the first training
samples have label 1 and the remaining training
samples have label 1, i.e., for and

for . Then we denote

(20)

(21)

the means of the whole training samples, the samples within
class 1, and the samples within class 1 respectively.
For sake of clarity, we allow ourselves the slight abuse of

notations , and from case to case in the following
part of this section.

A. Normalizations Based on Squared Distances Among
Samples
1) Summation of Squared Distances Among Samples: The

normalization is defined as the summation of squared distances
among all the training samples:

(22)

where

(23)

Remark 2: Note that the normalization (22) is a specific case
of (6) with and defined by (23). For the problem of
interest (12) with this newly defined normalization (22), Prop.
2 and Prop. 3 apply for the cases of general and diagonal
respectively.
2) Maximum of Squared Distances Among Samples Within

Each Class: Instead of summation, we now consider the
maximum of the squared distances among the training samples
within the same classes as the normalization:

(24)
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where

(25)

(26)

The matrix in (9) is the summation of (25) and (26).
Remark 3: Note that the normalization (24) is a specific case

of (6) with and and defined by (25)
and (26). For the problem of interest (12) with this newly defined
normalization (24), Prop. 2 and Prop. 3 apply for the cases of
general and diagonal respectively.

B. Normalizations Based on Squared Distances to the Center
of Gravity
1) Summation of Squared Distances to the Center of Gravity:

Now the normalization is defined as the summation of squared
distances to the center of gravity:

(27)

It is not hard to see that , and thus

(28)

where

(29)

Remark 3: Note that the normalization (27), or equivalently
(28), is a specific case of (6) with and defined by
(29). For the problem of interest (12) with this newly defined
normalization (27), Prop. 2 and Prop. 3 apply for the cases of
general and diagonal respectively.
2) Summation of Squared Distances to the Center of Gravity

of Each Class: Now, the normalization is defined as:

(30)
Similar to the derivation from (27) to (28), it is not hard to
rewrite as where

(31)

Remark 5: Note that the normalization (30) is a specific case
of (6) with and the above defined by (31). For the
problem of interest (12) with this newly defined normalization
(30), Prop. 2 and Prop. 3 apply for the cases of general and
diagonal respectively.

3) Maximum of Squared Distances to the Center of Gravity
of Each Class: The normalization now is defined as:

(32)

Similar to the derivation from (27) to (28), can be rewritten
as where

(33)

(34)

Remark 6: Note that the normalization (32) is a specific case
of (6) with and the above and defined
by (33) and (34). For the problem of interest (12) with this newly
defined normalization (32), Prop. 2 and Prop. 3 apply for the
cases of general and diagonal respectively.

C. Normalizations Based on Squared Radius of the Smallest
Sphere
1) Squared Radius of the Smallest Sphere Containing All the

Training Samples: The radius of the smallest sphere that con-
tains all the transformed training samples is defined as3:

(35)

Now, we can define the normalization as:

(36)

Under this normalization, the normalized margin becomes .
Interestingly, the number ofmisclassification errors of the leave-
one-out error is upper bounded by [3], which provides a
nice interpretation for the problem of interest (12).
By finding the dual problem of (36) and after some mathe-

matical manipulations, can be expressed as:

(37)

where

(38)

(39)

(40)

3If we define as , we will get the
same result.
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Remark 7: Note that the normalization (36) is a specific case
of (6) with and defined by (38) and (40).
For the problem of interest (12) with this newly defined normal-
ization (36), Prop. 2 and Prop. 3 apply for the cases of general
and diagonal respectively.
2) Summation of Squared Radius of the Smallest Sphere Con-

taining the Training Samples Within Each Class: Define the
normalization as the summation of the squared radius of the
smallest spheres that contain training samples within each class,
that is

(41)

where

(42)

(43)

Similar to (37), easily we can rewrite as:

where

(44)

(45)

(46)

(47)

Remark 8: Note that the normalization (41) is a specific case
of (6) with and where the
sets and matrices are defined by (44)–(47). For the problem of
interest (12) with this newly defined normalization (41), Prop.
2 and Prop. 3 apply for the cases of general and diagonal
respectively.
3) Maximum of Squared Radius of the Smallest Sphere Con-

taining the Training Samples Within Each Class: Now, instead
of considering summation in (41), we move to the maximum
and define as:

(48)

and similar to (37), it can be rewritten as:

(49)

where , , and are defined by (44)–(47).
Note that the normalization (49) is a little bit more compli-

cated than (6). However, for the problem (12) with the above
normalization (49), similar to Prop. 2 and Prop. 3 in Section IV,
we can have the following results.

Corollary 1: Let be a general matrix, the problem (12) with
the above definition of in (49) is bounded by:

(50)

where

and , , and are defined by (44)–(47). In
addition, if there exists either some with
being full rank or some with being full rank,
the lower bound is tight.

Proof: The proof is only a slight extension of that of Prop.
2 and thus omitted.
Corollary 2: Let be diagonal, the problem (12) with defi-

nition of in (49) is bounded by:

(51)

where

and , , and are defined by (44)–(47). In ad-
dition, if there exists either some with
being full rank or some with being
full rank, the lower bound is tight.

Proof: The proof is only a slight extension of that of Prop.
3 and thus omitted.

VI. PROPOSED UNIFIED FRAMEWORK

Based on the general linear SVM formulation (12), the
solving approach, and the explorations in Sections IV, V,
finally we are able to reach our unified framework of SVM, i.e.,
problem (UF), as stated before in Table I. The proposed unified
framework is controlled by the vector norm square ,
and , which determines the weights of the vector norm, and

which takes pointwise maximum over different weighted
vector norms.
In Table I, each row shows one type of (UF), and each com-

bination of some type of (UF) represents one normalization.
For example, Example 1 with being diagonal mentioned in
Section IV is the combination of type 1 with , -norm,
and given by (9), and the different normalizations having
been explored in Section V can also easily be found as different
combinations of some types.
Mathematically speaking, we can simply characterize (or

propose) the different existing (or new) SVM formulations
based on this unified framework by trying different combina-
tions of norm, and . The origin of having such different
methods can be nicely interpreted as taking different normal-
izations in the general linear SVM (12).
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In the following part of this section, we will explore a lot of
existing SVMs as the specific cases under the proposed unified
framework, investigate the insights under different normaliza-
tions, and furthermore propose some more SVMs based on the
unified framework. This is also the benefit of having such a gen-
eral unified framework.

A. Existing SVMs as Special Cases
1) Standard Soft-Margin SVM: Consider the normalization

(52)

where

(53)

According to Prop. 2, we can easily recover the standard
soft-margin SVM (2), which corresponds to a combination
with -norm and given by (53) of type 1 in Table I. Note
that does not take any information of the
training data into account.
2) -Norm SVM: Still, we insist on using the normalization

(52), however we set and restrict to be diagonal.
From Prop. 3, we recover the -SVM (3) as a combination with
-norm and given by (53) of type 1 in Table I.
3) SVM With Standardization: One technique often used in

the literature is to standardize the raw data first and then apply
SVM to the standardized data. This can be formulated as:

(54)

where denotes the mean of the sequence and is
diagonal matrix with denoting the sample standard devi-
ation4 of the -th feature. Obviously, problem (54) is equivalent
to:

(55)

which can be further reformulated as:

(56)

where is a diagonal matrix with , i.e., the sample
variance of the -th attribute.
Another interesting observation is that, if we define the nor-

malization:

(57)

4Note that we implicitly assume that the sample standard deviation of each
feature greater than zero. Otherwise, the feature does not affect the classification
and thus can be removed.

where

(58)

then from Prop. 2, we can recover problem (56), or equiva-
lently (54), from the general problem (12) as a combination
with -norm and given by (58) of type 1 in Table I since

indeed.
Similarly, still using (57), the -SVM with standardization

can be recovered as a combination with -norm and given
by (58) of type 1 in Table I according to Prop. 3.
Unlike in (52), the normalization (57) does make

use of the training data.
Remark 9: Note that

(59)

is equal to (29) up to a scalar . This means that (58) actually
only considers the diagonal elements of (29) where the normal-
ization is based on the distances to the center of gravity. Under
the proposed framework, easily we discover the connection be-
tween the two SVMs, i.e., (54) and (12) with defined by
(27), via the link between their normalizations, that is, (58) is
the diagonal part of (29).
Remark 10: Apart from the above standardization method

(usually called -score method also), there are many other stan-
dardization methods, say scaling all the attribute values among
[0,1]. A more detailed description on different standardizations
can be found in [13], [14]. Similar to the above -score method,
all the other standardization methods can be cast into our pro-
posed framework with some specific matrix . Since it is quite
easy and straightforward, we omit it here.

B. More Insights Based on the Unified Framework
Insights From Energy Point of View: Observe the normal-

ization definition in (52) for standard soft-
margin SVM (2) and -SVM (3), it can also be treated as total
energy of the transformation . And the inequality constraint

in formulation (57) can be interpreted as an upper
bound on the energy, which is quite similar to the power con-
straint in the precoder design problems in communication sys-
tems [21], [22]. Thus, the methods standard soft-margin SVM
(2) and -SVM (3) evaluate the energy of the transformation of
different features uniformly, i.e., they do not evaluate the energy
in the transformation of one feature more important than that of
another feature. However, the energy measure of the SVM with
standardization in (57) puts more weights on energy in the trans-
formation of the features with larger variances. One advantage
of (57) compared with is that the weights can capture
some data structure information. Similarly, the methods we have
reviewed and derived in Section IV and V can be interpreted as
different ways, i.e., different , to evaluate the energy of the
transformation based on the training data.
Insights From Penalty Point of View: If we look at the term

in the unified framework, different
combinations of norms and define different types of penalty
on the features. Thus both the soft-margin SVM (2) and -SVM
(3) do not consider the information in the training data and pe-
nalize different features equally, but they still differ from each
other by adopting different vector norms. However, the SVM



4680 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 17, SEPTEMBER 1, 2015

with standardization uses the in (57)
as penalty weights. Similarly, the methods we have covered
in Section IV and V also provide different types of penalty,
in which the vector norm depends on the transform mapping
, and the weights matrix depends on how we look at the

training data. All the above different types of penalty result from
using different normalizations .
Since it is usually easier to gain geometric insight from the
-norm, we investigate two examples with -norm. For the

case that and are given by (8) and (9), the penalty is

(60)

where is defined in (1) and rep-
resents the separating hyperplane. Since represents the
signed distance of point to the separating hyperplane up to a
common positive scalar,5 thus (60) penalizes the summation of
squared differences among the distances of the samples to the
separating hyperplane within each class.
Now, if we consider and and are

given by (33) and (34) separately, then the penalty is

(61)

where is defined in (1) and repre-
sents the separating hyperplane, and and are the means
of samples of the class 1 and 1 as defined in (21). Thus, (61)
penalizes the maximum of the summation of the squared differ-
ences between the signed distance of some sample to the sep-
arating hyperplane and the signed distance of the mean of the
same class to the separating hyperplane.
The underlying ideas of the above two penalty examples

are really the same: the samples within each class should be
somehow compact with respect to the separating hyperplane.
The only difference is that they use different quantities, i.e.,
(60) and (61), to measure the compactness of the data.
Intuitively, the above two examples make sense when the

training data is somehow flat for both classes along some direc-
tion, especially when the number of training samples is small.
Because when we do not have large enough number of training
samples, simply maximizing the soft-margin, or equivalently
penalizing only, may give us the separating hyperplane
that has wrong direction and could be really misleading for the
testing. However, once we have taken the data information into

5Actually, is exactly the signed distance from point
to the hyperplane , see [6, Eq. (4.40)].

the consideration of the formulation, i.e., penalizing (60) or (61)
instead, we can get better separating hyperplane that is closer to
the true one. We will use numerical examples to illustrate the
insights clearly in Section VII and the numerical experiments
show that the proposed methods perform really well for a large
range of data sets with different feature label distributions not
limited to the flat ones.
Now it is quite straightforward to gain the insights from the

penalty point of view for the other normalizations explored in
this paper. Since the procedures are really similar to that for the
above two examples and thus are omitted.

C. Combinations of Normalizations
Similar to the maximum or summation normalizations we

have explored in Section V, easily we can have more various
normalizations by combining different normalizations.
1) Maximum of Normalizations: First of all, we can gener-

ally have more normalizations as the maximum of two normal-
izations:

where and can be any weight matrices, and this can be
easily extended to more than two normalizations.
2) Summation of Normalizations: Another thing is that we

can also easily obtain a new normalization term simply by
adding two existing normalizations:

(62)

where and can be any weight matrices, and is
the trade-off parameter. Note that if we only considers
the first normalization and if we only considers the
second normalization. Also, obviously this can be extended to
the summation of more than two normalizations.
An interesting case is to combine with some other

normalization:

(63)

Here, can be any weight matrix. For example, if and
are given by (8) and (9) and -norm is used, similar to (60),
normalization (63) gives the penalty:

(64)
where the quantity can be in-
terpreted as the measurement how compact the samples within
each class are with respect to the separating hyperplane, and

stands for the soft-margin. Thus, penalizing (64) means
finding the trade-off between concrete compaction of the sam-
ples (i.e., small ) and large soft-
margin (i.e., small ).
The above new normalizations show that the proposed uni-

fied framework can benefit us with more optional SVMs. More-
over, we need to point out that the above newly proposed com-
binations of normalizations are only some examples. It is actu-
ally quite simple and straightforward for us to have much more
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TABLE II
THE SIMULATED SVMS. HERE SO THAT

SVMs based on our proposed unified framework, and this shows
the great potential wide applications of the proposed unified
framework on different kinds of data sets.

D. Discussion on Extensions to Kernel SVMs
The extension of the idea of “normalized margin” and the fol-

lowing unified framework from linear SVM to kernel versions
in general is not easy. Given the kernel, one way is to follow
the heuristic in [19, Section 5] to construct a nonlinear mapping
which induces the same sample training and testing kernels, and
then the linear SVMwith “normalized margin” (or equivalently,
the proposed unified framework) in this paper can be applied as
usual to the mapped training and testing data.

VII. NUMERICAL EXPERIMENTS

A. Simulated Methods
Now we have all the reviewed and proposed SVMs summa-

rized as the combinations in Table I. However, there are too
many combinations and some of them are quite similar. To keep
the numerical experiments simple while illustrating the bene-
fits of the proposed framework clearly, we evaluate only some
combinations via numerical examples based on both synthetic
data and real-world data from different sources. Basically, we
will mainly study how the proposed SVMs, like the ones with
penalties (60), (61), (62), and (64), etc., perform compared to
the existing ones, e.g., the traditional -norm, -norm SVMs
and the one proposed in [19], especially when the number of
training samples is not large enough. Table II summarizes the
seven SVMs we will simulate named methods I–VII respec-
tively in this section. All the optimization problems are solved
via the commercial solver MOSEK [26] in MATLAB.
Before we have shown that the proposed unified framework is

able to take the data information into the problem formulation,

e.g., see Remark 1. Here we also want to compare the methods
in Table II with the classical linear discriminate analysis (LDA)
method, which also uses data information.
For the binary classification problem, the LDA finds [6]

(65)

(66)

where

(67)

and the classification prediction for a new outcome sample
is . The interpretation of the LDA
is that is the direction along which the ratio of the be-
tween-class variance to the within-class variance of the projec-
tions of is maximized. That is, maximizes

where is called the
between-class scatter matrix and is called the
within-class scatter matrix.

B. Experiments on Synthetic Data
To illustrate the insights clearly, we consider visualizable syn-

thetic experiments with only two attributes, that is, . Here
we consider two classes with equal probabilities, and their sam-
ples are drawn randomly from two Gaussian distributions: sam-
ples of class 1 are drawn from and samples of
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class 1 are drawn from , where
are the covariance matrices.

1) Same Covariance Matrices: First, we consider the case of
equal covariance matrices:

Under the Gaussian distribution condition and the two classes
have the same covariance matrices, the theoretical LDA pro-
vides the optimal decision boundary of those two classes [6]. For
this simulated case, the optimal decision boundary is

, and the class label prediction of simply
is . Later in Fig. 2(a), we can see the two classes
(see the green ellipses as contours) and the optimal boundary
(see the red solid line).
Now we set up the simulations. For each realization, the two

classes 1 and 1 have equal probabilities. Once the class is
determined, we can generate the data from the aforementioned
corresponding Gaussian distributions. We randomly generate
1000 samples as the synthetic data set. Since we focus on the
scenarios that the training sample size is not large, to avoid the
case that there is no training sample for one class, we randomly
draw training samples from both classes with equal numbers.
Say the training sample size is , then we randomly se-
lect 5 from both classes 1 and 1, and the remaining samples
are used for testing. Then, we simply run all the SVMs listed
in Table II for the tuning parameter .
To avoid that the performance is biased by one realization, we
repeat the above realization for 100 times, compute average test
error rate for each tuning parameter for each SVM, and report
the best average test error rate for each method. For methods
IV–VII, we set and keep the
best result.
Intuitively, for the linearly nonseparable Gaussian distribu-

tions, all the methods should work pretty well and perform quite
closely to each other when there are enough training samples
because all the SVMs have enough training samples and the
learnt separating hyperplanes will be somehow close to the true
one. However, when there are not enough samples, the proposed
SVMs which take the data information into consideration may
outperform the existing ones which do not consider data infor-
mation. Fig. 1 shows the results of the average test error rate
versus the number of training samples. Obviously, we can see
that the proposed methods outperform the existing ones, espe-
cially when the training sample size is relatively small, which
coincides with the above intuition and the insights we explored
before in Section VI-B as well. Thus, we are more interested in
the (relatively) small sample regime.
To understand why the proposed SVMs perform better than

the existing ones when the training size is relatively small, we
study two specific realizations in Fig. 2. The first realization in
Fig. 2(a) shows that the existingmethod II aiming atmaximizing
the soft-margin may be misleading as shown as the blue dotted
line since only a few support vectors matter and the other sam-
ples do not affect the separating hyperplane at all. Fortunately,
this drawback can be overcome by the proposed methods, see
the separating black dash-dotted line andmagenta dashed line in
Fig. 2(a) found by the proposed methods IV and VI separately.
Even though the theoretical LDA is optimal, however, the em-
pirical LDA does not provide good classifier because of small
training set, see the red dotted line in Fig. 2(a). Fig. 2(b) shows

Fig. 1. Synthetic example with same covariance matrices: average test error
rate versus number of training samples.

Fig. 2. Two specific synthetic realizations with same covariance matrices:
existing SVM II may be misleading when there are not enough training samples
(blue dotted line), this drawback can be overcome by the proposed methods
(black dash-dotted line and magenta dashed line). (a) Data and classifiers.
(b) ROC curves. (c) Data and classifiers. (d) ROC curves.

the Receiver Operating Characteristic (ROC) curves of different
methods. We can clearly see that the two proposed methods
outperform the standard soft-margin SVM and the LDA. The
insight is that the proposed methods take all the training data
into account and thus aim at finding the large margin and let
all the samples within the same class be compact to each other
w.r.t. the separating line at the same time, just what we have
explained before in Section VI-B and VI-C. The second real-
ization in Fig. 2(c) is somehow more ordinary, however, we can
still observe that the proposed methods slightly outperform the
existing method II and the LDA based on the ROC curves in
Fig. 2(d).



FENG AND PALOMAR: NORMALIZATION OF LINEAR SUPPORT VECTOR MACHINES 4683

Fig. 3. Synthetic example with same covariance matrices: average test error
rate versus tuning parameter . (a) . (b) . (c) .
(d) .

As to the effect of the tuning parameter , Fig. 3 shows the
average test error rate versus the tuning parameter for dif-
ferent number of training samples, e.g., , 10, 18, 48.
We have several interesting observations. First, the proposed
SVMs tend to outperform the existing SVMs over all the
values and the LDA for many values, especially when
is small (e.g., see Fig. 3(a)). Second, when is larger, all the
methods tend to perform better and more closely. Third, inter-
estingly, one more advantage of the proposed methods we can
observe from Fig. 3 is that they are relatively more robust to
the tuning parameter than the existing ones. Fourth, note that
the optimal classifier (i.e., the theoretical LDA) and the empir-
ical LDA are independent of , and when gets larger, the
empirical LDA should be closer to the theoretical LDA and it
is verified in Fig. 3 as we look at Figs. 3(a)–(d), the empirical
LDA methods performs more and more closely to the optimal
method when grows from 6 to 48.
2) Different Covariance Matrices: Nowwe move to the case

of different covariance matrices:

and

where is a rotation matrix. Since

, the theoretical LDA is no longer optimal. Actually,
by discriminate analysis [6], the optimal decision boundary is
quadratic given by

, and the class label prediction of simply

Fig. 4. Synthetic example with different covariance matrices: average test error
rate versus number of training samples.

Fig. 5. One specific synthetic realization with different covariance matrices:
existing SVM II may be misleading when there are not enough training samples
(blue dotted line), this drawback can be overcome by the proposed methods
(black dash-dotted line and magenta dashed line). (a) Data and classifiers.
(b) ROC curves.

is . Later in Fig. 5(a), we can see the classes
(see the green ellipses as contours) and the optimal boundary
(see the red solid curve).
The simulation setup is the same as that for the previous

synthetic experiment. Fig. 4 shows the results of the average
test error rate versus the number of training samples. Similar
to Fig. 1, we can see that the proposed SVMs outperform
the existing ones, especially when the training sample size is
small. However, there are also two differences when comparing
Fig. 4 with Fig. 1. First, the LDA performs relatively worse
than the SVMs and is not stably decreasing as goes larger.
This is because that the theoretical LDA method is no longer
optimal and it does not take the classification error into problem
formulation. Second, there always exists gap between the linear
SVMs and the optimal boundary. Again, this is because the
optimal boundary is quadratic however the linear SVMs can
only provide linear classifiers.
Fig. 5 shows one specific realization. We can see that the pro-

posed methods are better than the existing ones and the LDA
based on the ROC curves in Fig. 5(b).
Fig. 6 shows the average test error rate versus the tuning pa-

rameter for , 10, 18, 48. We observe the first three ob-
servations similar to that from Fig. 3, however, now we cannot
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Fig. 6. Synthetic example with different covariance matrices: average test
error rate versus tuning parameter . (a) . (b) . (c) .
(d) .

TABLE III
SUMMARY ON DATA SETS FROM DIFFERENT SOURCES

observe that the empirical LDA performsmore andmore closely
to the optimal one as becomes larger, which coincides with
the results in Fig. 4.

C. Experiments on Real Data

Nowwemove to the experiments on real data. Table III briefly
summarizes different real data sets used in this paper.
Real Data Sets: For the real experiments, we consider dif-

ferent binary classification data sets from different sources, i.e.,
Statlog [29] and UCI [27], [30], and [28], etc. The data dimen-
sions vary from less than ten (i.e., No. 1–3) to less than one
hundred (i.e., No. 4–7), and then to several hundreds (i.e., No.
8–10). The sizes of the data sets are generally around several
hundreds (i.e., No. 1–7 and 10) or even much more (i.e., No. 8
and 9). Such various data sets provide enough different real fea-
ture label distributions for the proposed and existing SVMs to

Fig. 7. Fourclass: average test error rate versus number of training samples.

explore. To avoid the features with larger dynamic range dom-
inating those with smaller ones and the numerical difficulties
during the calculation [13], [14], for data sets No. 1–7, we
adopt the scaled version of the different real data sets avail-
able6 in the popular SVM package LIBSVM [31] and the data
set fourclass is transformed to two-class in LIBSVM. For
the grayscale image data sets, i.e., data sets No. 8–10, we lin-
early transform the pixel values from [0, 255] to [ 1, 1]. For
the digits classification data sets USPS and MNIST, we focus on
the most difficult task, e.g., the classification between the sim-
ilar digits four and nine. For the face recognition data set CMU
face, we consider the classification between “look at left” and
“look at right”.
Experiment Setup: For each realization, similar to the reason

in the synthetic experiments, we first randomly select equal
number of training samples for both classes when is rela-
tively small compared with data dimensions, that is, when

for fourclass in Fig. 7 or takes the values for
other data sets in Fig. 10. When for fourclass
data set, we randomly select samples from the whole data
set and leave the remaining ones for testing. For the MNIST
data set, the training samples are drawn from the training set
and the whole test set is always used for testing. We repeat the
realization for each data set. The number of realizations for
each real data set is in column “# Realz.” in Table III. The other
parameter settings, e.g., the values of , , and , are the
same as that for the synthetic experiments.
We begin with the real visualizable data set fourclass

since it has only two features. Fig. 7 shows the results of the av-
erage test error rate versus the number of training samples. We
have that the proposed methods outperform the existing ones
when the number of training samples is relatively small, e.g.,

. The differences between the average test error rates
are becoming smaller as the number of training samples is get-
ting larger, e.g., . This is quite similar to what we
have observed in the synthetic numerical experiments. When
is even larger, , it seems -norm SVMs perform rel-
atively better. This may mean that the feature label distribution
is also important. Here, as before, we are more interested in the

6http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Fig. 8. Fourclass: small versus large number of training sizes. (a) .
(b) ROC curves. (c) . (d) ROC curves.

regime that the number of samples is relatively not too large, say
for fourclass. Comparing Fig. 7 with Figs. 1 and 4,

we can observe similar but more nonsmooth decay trend. This
is reasonable because that the numerical results depend strongly
on the feature label distribution [12] and the real data four-
class has much more complicated feature label distribution
than the synthetic data sets.
Similar to Fig. 2, Fig. 8 shows two specific realizations. Based

on the ROC curves, we see that when is small, the proposed
methods provide better linear classifiers, and when is large,
all the methods provide similar linear classifiers.
Fig. 9 shows the average test error rate versus the tuning pa-

rameter . It shows similar patterns as Figs. 3 and 6.
For other real data sets, similar results can be obtained and

for clarity of presentation and due to space limitations, we only
focus on the scenarios that the training sets relatively small
compared to the data dimensions (e.g., see the values of in
Fig. 10 for different data sets).
Fig. 10 shows all the numerical results. First of all, it

is obvious that the LDA is much more worse than SVMs.
Figs. 10(a), 10(e), and 10(i) show that the proposed methods
perform better than the existing ones when the number of
training samples is very small, say , 14, 18, 22, 26
for liver disorders, , 16, 22, 28 for iono-
sphere and , 60, 100, 150 for CMU face. However,
when gets relatively larger for liver disorders (e.g.,

, 34) and CMU face (e.g., ) all the methods
perform really closely to each other. When gets larger for
ionosphere (e.g., ), the existing method II slightly
outperforms the proposed ones, however, the proposed methods
IV and VI still perform quite closely to the best method II.
Figs. 10(b), 10(c) and 10(d) look similar. When is too

small, e.g., , 16 for pima indians diabetes,
, 26, 30 for heart, and , 22 for german, the

proposed methods (mainly methods IV and VI) and the existing

Fig. 9. Fourclass: average test error rate versus tuning parameter . (a) .
(b) . (c) . (d) .

method II perform closely to each other. This may due to that
is too small for the data set and the advantage of the pro-

posed methods is not so obvious. Once gets slightly larger,
e.g., for pima indians diabetes, for
heart and for german, the proposed methods ob-
viously perform better than the existing method II. Meanwhile,
the differences between the proposed methods and the other ex-
isting methods I and III become smaller.
Fig. 10(f) shows the results for sonar. Since the data set

sonar has 60 attributes and there are only 208 samples in total,
we cannot set the number of training samples to be too large.
Fortunately, for almost all the number of training samples we
have simulated, the proposed methods (especially method VI)
always tend to outperform the existing ones.
Figs. 10(g) and 10(h) look similar. We can see that all the

proposed methods outperform or at least are comparable to the
existing methods for all the simulated number of samples.
To summarize, even though the simulation results based on

different synthetic and real data sets are different from each
other, however, they do share a similar pattern: when the number
of training samples is not large relative to the data dimen-
sion, the proposed methods tend to perform better than the ex-
isting ones. The fact that all the twelve numerical experiments
(e.g., two synthetic and ten real experiments) we have simulated
share the similar pattern strongly convinces us that the proposed
methods based on our proposed unified framework do perform
better when the number of training samples is small (e.g., see
Figs. 1, 4, 7, and 10), and we also have nice interpretations and
insights (for instance, see Figs. 2, 5, and 8). Thus, the proposed
unified framework does benefit us with more optional SVMs.

VIII. CONCLUSION
In this paper, we have proposed a unified framework that

can characterize both the proposed and many existing SVMs
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Fig. 10. Average test error rate versus number of training samples for different real data sets. (a) liver. (b) pima. (c) heart. (d) german. (e) ionosphere. (f) sonar.
(g) USPS. (h) MNIST. (i) CMU face.

by simply selecting different types of weighted vector norms.
The origin of having such different methods is based on the
general linear SVM problem formulation with different normal-
ization measures. The unified framework can provide us with
more insights and help us understand the connections and dif-
ferences between different SVMs. The numerical experiments
on both the synthetic and real data sets show that the proposed
methods derived from the unified framework outperform the ex-
isting ones when the number of training samples is not large.

APPENDIX
PROOFS AND DERIVATIONS

A. Proof of Proposition 1
For any point feasible for problem (14), it is

also feasible for problem (15), thus .
Now, since is optimal for problem (15),

and we can always project orthogonally onto two orthog-

onal subspace and :
. It is easy to verify that

is feasible and therefore optimal for problem (15). Furthermore,
we have

(68)

Then, it is obvious that is
also feasible for problem (14). Recall the relationship
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, we then have , and
is optimal for problem (14).

As pointed out before, the optimal solution
for problem (14) must also be feasible for

problem (15), then considering , it must
also be optimal for problem (15).

B. Proof of Proposition 2
The SDR of problem (16) is:

(69)

For any point feasible for problem (69),
we can readily see that is feasible for problem (17),
and we have for :

(70)

As for , we must have according to the linear
matrix inequality constraint in problem (69) and (70) still holds.
That is, we always have .
Now, assume is optimal for (17), we can

always construct . Note that
under the condition that there exists some is full rank, if

, we must have . Thus, we can choose as:

. Then, obviously

is feasible for problem (69) with the objective equal to that in
problem (17). Together with , straightfor-
wardly we can conclude that , and thus

is also optimal for problem (69). Note that
we also have satisfied, thus the SDR
(69) equals to the SDP (16).

C. Proof of Proposition 3
Given any point feasible for problem

(18), if for some , , we must have , oth-
erwise the point cannot be feasible due to the linear matrix
inequality and being diagonal constraints. For simplicity of
presentation, we make the convention that when

. Then we can readily see that is feasible
for problem (19), and we have

(71)

where the third inequality “ ” is due to Cauchy-Schwartz in-
equality property and the equality holds if and only if
and , , have the same linear dependence,
that is, there exists some such that

(72)

According to (71), we can conclude that
Now, assume is optimal for (19). Under the con-

dition that there exists some full rank , we have:
• If , then , and
we choose and .

• If ,
we can first find some such that

. Then inspired
by (72), we can construct the diagonal matrix such
that , e.g., ,
where is given by solving , that is,

. After that, we furthermore
construct and get

(73)

Therefore, no matter what the case is, we always have that
is feasible for problem (18) with the

objective equal to that in problem (19). Combining with
, we can have , and

thus is also optimal for problem (18).
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