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Abstract—The traditional Markowitz portfolio optimization
proposed in the 1950s has not been embraced by practitioners
despite its theoretical elegance. Recently, an alternative risk parity
portfolio design has been receiving significant attention from
both the theoretical and practical sides due to its advantage in
diversification of (ex-ante) risk contributions among assets. Such
risk contributions can be deemed good predictors for the (ex-post)
loss contributions, especially when there exist huge losses. Most of
the existing specific problem formulations on risk parity portfolios
are highly nonconvex and are solved via standard off-the-shelf
numerical optimization methods, e.g., sequential quadratic pro-
gramming and interior point methods. However, for nonconvex
risk parity formulations, such standard numerical approaches
may be highly inefficient and may not provide satisfactory solu-
tions. In this paper, we first propose a general risk parity portfolio
problem formulation that can fit most of the existing specific risk
parity formulations, and then propose a family of simple and
efficient successive convex optimization methods for the general
formulation. The numerical results show that our proposed
methods significantly outperform the existing ones.

Index Terms—Efficient sequential algorithms, risk budgeting,
risk parity, successive convex optimization.

I. INTRODUCTION

S INCE the mean-variance portfolio optimization frame-
work was introduced by Markowitz over fifty years ago

[1]–[3], it has been well-researched in the academic field. How-
ever, practitioners have not embraced such a nice theoretical
framework. There are several reasons. The first reason is that
this approach relies on the estimates of expected returns and the
obtained portfolio is highly unstable. This may be overcome
partially by introducing additional constraints on the portfolio.
Another severe drawback of the Markowitz portfolio is that
this approach tends to provide an excessively concentrated
portfolio and risk over a few assets, which goes against the
common sense of diversification as a way to reduce the risk.
During normal times this may not cause a serious issue, but if
a financial crisis were to happen, such a concentrated portfolio
would probably incur huge losses.
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The new paradigm of risk parity portfolio was precisely intro-
duced tomake the portfolio, and hence the risk, trulymore diver-
sified. Qian [4], [5] first showed that uniform risk contributions
actually lead to a diverse enough portfolio, and the (ex-ante) risk
contributions (i.e., the risks computed using historical data) are
not only a mathematical measurement of how diverse the risk
is, but also good indicators of the (ex-post) loss contributions
of the assets (i.e., the observed risks and losses in the future),
especially when there exist large losses. According to this ob-
servation, the way to avoid a potential huge loss is to distribute
the risk contributions. This method has been receiving signifi-
cant attention recently, especially after the 2008 financial crisis
[6], and it has been shown that a risk parity portfolio is also more
robust than the Markowitz portfolio [7].
By taking volatility as the risk measurement, Maillard et al.

[8] first analyzed the properties of the equal risk contribution
portfolio and showed that it is actually a trade-off between
the minimum variance and equally weighted portfolios. To
find the risk parity portfolio, they formulated one logarithmic
constrained convex problem for the long-only risk parity port-
folio and one nonconvex problem for the general risk parity
portfolio. Following [8], there were some works exploring
different extensions. A number of empirical experiments were
conducted in [9] and it was found that the risk parity portfolio
does have several interesting characteristics, e.g., balanced
risk allocation and less (ex-post) volatile performance char-
acteristics (e.g., Sharpe ratio) over time. Later, Bai et al. [10]
considered a slight variation of the problem formulation that
appears in [8] by simplifying the objective function. At the
same time, the risk parity portfolio was extended to the risk
budgeting portfolio [11], and the group risk parity portfolio
[10], [12]. Instead of focusing on the assets directly, the risk
factor model was introduced into the risk parity portfolio
formulation [12], [13], and then the risk was diversified among
the underlying risk factors. Apart from focusing on risk only,
the expected returns were also incorporated into the problem
formulation [14]. The aforementioned works mainly took
volatility as a measure of risk, more realistic measures of risk
including Value-at-Risk (VaR) and Conditional-VaR (CVaR)
were considered in [15]–[17] in the context of the risk parity.
Meanwhile, the robustness of the risk parity was studied in [18]
and it was found that incorporating some constraints on the risk
parity portfolio generates an improvement in the out-of-sample
performance [13]. A recent book [7] serves as a good summary
on the state-of-the-art.
We need to point out that in the previous reviewed litera-

ture most of the formulations for the risk parity portfolio are
nonconvex. To compute such risk parity portfolio, usually
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traditional off-the-shelf nonlinear optimization methods, like
sequential quadratic programming (SQP) [19] and interior point
methods (IPM) [20] built in the MATLAB function ,
are used in practice [8], [10]–[12], [17], [21]. However, for the
nonconvex risk parity problem, in general they are time con-
suming and sometimes may not even converge globally [10],
[17], [21]. There exists one improved algorithm based on the
alternative linearization method [10], but it is too specific and
only works for the problem in [10]. For the special long-only
risk parity portfolio, there exist several ad-hoc methods. Chaves
et al. [22] first proposed a Newton-based efficient algorithm,
however, it only works when there are no constraints on the
portfolio, which is unrealistic in practice where constraints
always exist. Later, two different efficient algorithms, i.e.,
Newton-Nesterov (NN) method [23] and Cyclical Coordinate
Descent (CCD) method [21], were proposed and they work in
a similar fashion.
To the best of our knowledge, there does not exist any nu-

merically efficient method for the general risk parity portfolio
problem. The main contribution of this paper is first to propose
a framework general enough to characterize most of the existing
specific risk parity problems taking volatility, Gaussian VaR or
Gaussian CVaR as risk measurements and then to provide a
family of efficient algorithms having the following good prop-
erties: i) provable convergence to a stationary point; ii) able to
cope with any kind of portfolio constraints (e.g., both long-only
and general long/short constraints); and iii) much better perfor-
mance compared with benchmarks for the general long/short
portfolio and similar performance for the long-only portfolio.
This paper is organized as follows. Section II briefly re-

views the concepts of risk contribution and risk parity/budget
portfolio. Section III proposes the general risk parity port-
folio problem formulation with connections to the existing
specific formulations. Then Section IV presents the proposed
efficient solving approach. Section V considers the detailed
explorations for some specific cases, and Section VI extends
the approach by considering more alternative approximations.
At last, Section VII provides some numerical results and
Section VIII concludes the paper.
Notation: We use a boldface lower letter for vectors , and

upper case letter for matrices . The notation denotes all-one
column vector with proper size. The transpose, Moore-Penrose
pseudo-inverse, and inverse operators are denoted by the sym-
bols , , and , respectively. denotes a di-
agonal matrix with diagonal elements equal to that of , and its
principal square root is denoted by . The scalar
denotes a constant with proper value.

II. RISK PARITY/BUDGETING PORTFOLIO

A. Risk Contribution
Suppose there are assets with random returns , and

themean vector and (positive definite) covariance matrix are de-
noted as and . We use to denote the
normalized portfolio (e.g., ), which describes how the
total capital budget is to be allocated over the assets. To study
the risk parity portfolio, we need some well defined risk mea-
surement so that the “risk contribution” of each asset to

Fig. 1. One example that satisfies Euler property (1).

the risk of the whole portfolio can be quantified. The following
desired property is always introduced in risk parity literature.
Theorem 1 (Euler’s Theorem): Let a continuous and differen-

tiable function : be a positively homogeneous func-
tion of degree one1. Then

(1)

One observation from property (1) is that the component
can be regarded as the risk contribution from asset to

the total risk .
Interestingly and fortunately, most of the existing risk mea-

surements do satisfy the Euler property (1) either directly (VaR
and CVaR) or indirectly (variance) (see the next subsection).
Fig. 1 shows an example of (see
(2) later) and we can see that the function is linear along any
direction starting from the origin.

B. Risk Measurements Satisfying the Euler Property
1) Volatility: Note that variance does not

satisfy (1) directly. Fortunately, it is easy to check that volatility
does satisfy (1)

(2)

Thus variance fits (1) indirectly via volatility.
2) VaR and CVaR: For any portfolio , the definition

of VaR and CVaR are given as follows:

(3)
(4)

where denotes the (random) loss of portfolio .

1A function is a positively homogeneous function of degree one if
holds for any constant .
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It was shown in [24] that is a linear homoge-
neous function of weight and the VaR contribution of the -th
asset is

(5)

thus satisfies property (1).
Similarly, Scaillet [25] showed that the CVaR contribution of

the -th asset is

(6)
thus satisfies property (1) as well.
In practice, risk contribution expressions (5) and (6) are not

used because they are not numerically computable in general.
Fortunately, there exist several ways to compute them either
exactly or approximately.

Gaussian Case: For the Gaussian distribution, VaR and
CVaR can be expressed explicitly as [26]

(7)
(8)

where and . Here,
we implicitly assume that is small (e.g., ) and
and are both positive.
From (7) and (8) we can see that if , volatility, VaR,

and CVaR are equal up to a positive scalar.
More generally, the Gaussian distribution can be extended to

elliptical distributions [27] for which VaR and CVaR both are
mean and standard deviation trade-off expressions.

Non-Gaussian Case: For the non-Gaussian case, we
cannot obtain VaR and CVaR explicitly. The alternative ap-
proach is to obtain some tight approximations.
One option is the Cornish-Fisher approximation based on the

first two and high-order moments of the distribution of the port-
folio return, however, the expression is complicated. Since this
is not the main goal of this paper, we do not present it in de-
tail here. The interested reader is referred to [5] and [15] for the
Cornish-Fisher approximations of VaR and CVaR, respectively.
There are also other popular save convex approximations for
VaR and CVaR, see [28].
We need to point out that all the above analytical approxima-

tions are differentiable and the solving approach developed in
the following content of this paper always applies.

C. Risk Parity/Budgeting Portfolio

The risk parity portfolio is a portfolio such that each asset has
the same risk contribution. That is, given the risk measurement

, the risk parity portfolio should satisfy

(9)

Risk budgeting portfolio is a more general concept. Given
a budget vector , and , where

budget is interpreted as a pre-determined percentage risk con-
tribution target for all the assets, the risk budgeting portfolio
should satisfy

(10)

Obviously, the risk parity portfolio is a special case of the risk
budgeting portfolio with .
Due to the popularity of the terminology “risk parity”,

for clarity of presentation, we mainly refer “risk parity” as a
broad portfolio allocation method of risk diversification (e.g.,
including both risk parity and risk budgeting portfolios) unless
specified otherwise in this paper.

III. PROBLEM FORMULATIONS

There are many different existing specific formulations on
risk parity portfolio due to different risk measurements used or
different profiles of investors. In this section, we first propose
a general risk parity portfolio problem formulation, and then
connect it with the existing specific formulations.

A. General Risk Parity Portfolio Problem Formulation
The general risk parity formulation can be expressed as

(11)

where
• measures the risk concentration and has the form

(12)

in which each is a smooth differentiable nonconvex
function that measures the risk concentration of the -th
asset. The smaller the quantity is, the more uniform
the risk is distributed among assets2 (see Table I later for
some specific examples of ).

• is a convex function that represents some tradi-
tional preferences on the portfolio. For example, it can
be the expected portfolio loss (e.g., ),
the mean-variance trade-off of the portfolio loss (e.g.,

where is the trade-off
parameter), or when the goal is to distribute the
risk only.

• is some trade-off parameter between the portfolio
preference and risk concentration.

• denotes the capital budget constraint.
• is a convex set that denotes the investor’s profiles, cap-
ital limitations, market regulations, etc.

In general, since each function is highly nonconvex,
problem (11) is also nonconvex and hard to solve. For technical
reasons, we need the following assumptions:

(A1) is nonempty, closed, and
convex;
(A2) and each are on an open set containing ;

2In some problem formulations, the definition is used
where measures the difference between the risk contributions of as-
sets and , for which the analytical approach derived in this paper still applies.
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TABLE I
LIST OF FUNCTION . FOR THE NOTATIONS AND , SEE SECTION III-C

(A3) is Lipschitz continuous on with constant ;
(A4) is continuous and convex on ;
(A5) is coercive with respect to .

Note that the above assumptions are standard and are satisfied
by a large class of functions. For instance, A3 is satisfied auto-
matically if is bounded, and A4 is satisfied by all the stan-
dard used in portfolio design, including ,

, and as listed before.
Assumption A5 guarantees that the sequence generated by the
solving approach later is bounded, and if is bounded A5 is
trivially satisfied. Also, A5 could be dispensed with at the price
of a more complex analysis and cumbersome statement of con-
vergence results [29], [31]. Actually for the portfolio design in
the real markets, the feasible set will always be bounded due
to some practical constraints, e.g., turnover constraints, holding
constrains, tracking error constraints, etc. [31]. Next, we move
to the existing specific risk parity formulations.

B. Specific Risk Parity Formulations

1) Volatility as Risk Measurement: Recall that the risk con-
tribution of asset is , then risk parity (9) and risk bud-
geting (10) relationships turn out to be

(13)
(14)

respectively, where is the given risk
budgeting for assets and . Actually, relationship (13)
is a special case of relationship (14) with for all .
Only when is diagonal and there exists long-only con-

straint, the nonlinear equation systems (14) admit an unique so-
lution as follows [7]:

(15)

However, for non-diagonal or when there are some additional
constraints, the closed-form solution does not exist anymore and
some optimization problems are constructed instead.
Paper [8] is one of the first few papers that focuses on finding

the risk parity portfolio via optimization. The proposed problem
formulation is to penalize the summation of squared differences
among risk contributions:

(16)

Motivated by problem (16), Bai et al. [10] simplified the ob-
jective of (16) to solve:

(17)

To find a portfolio that meets the risk budgeting targets as
much as possible, Bruder and Roncalli proposed to solve [11]:

(18)

Similarly, it is easy to have somemore alternative (but different)
problem formulations, e.g.,

(19)

and

(20)
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and

(21)

and

(22)

Note that all the above formulations are nonconvex.
2) Herfindahl Index: Now, we use the general risk measure-

ment notation . One popular measurement for the risk con-
centration is called the Herfindahl index, defined as [7]

(23)

It is easy to check that , and the extreme case
means that the risk is concentrated on only one

asset. The other extreme case denotes that the risk
is equally distributed among all the assets. Thus, the smaller the
Herfindahl index is, the more diversified the risk is.
Then one idea to achieve the risk parity is to minimize the

Herfindahl index. For example, when is
chosen, the minimization problem is

(24)

If other risk measurements are used, we can easily obtain the
corresponding formulations. Also, one can use a weighted
Herfindahl index to cover the more general risk budget portfolio
as well.
3) Group Risk Parity: The idea of group risk parity is to con-

sider the risk contributions of several assets belonging to the
same group (e.g., industry sector) as a whole. For example, sup-
pose there are ( ) groups, denoted as such
that they form a partition of assets, and the risk contribution
of the -th group is

(25)

Then we want to find some portfolio so that ,
, are less concentrated. For instance, when volatility is

used, one formulation can be [12]

(26)

where is the given risk budget for the
factors and .

In fact, we can have more formulations similar to the ones
covered before simply by replacing the risk contribution of each
asset by that of each group.
4) Risk Parity Portfolio With Risk Factors: Consider the fol-

lowing linear factor model:

(27)

where is the random returns for assets, is
the random returns of underlying factors (probably )
with mean and covariance ,
is the factor loading matrix, and is the idiosyncratic
component modeled as a noise with zero mean and diagonal
covariance matrix . All the mean and covariance
parameters are given.
Based on model (27), the random return vector has mean

and covariance:

(28)
(29)

Then the original idea of diversifying the risk among assets
may result in a portfolio such that the risk contributions among
the underlying factors are far away from well diversified.
Naturally, the idea to overcome such a drawback is to distribute
the risk among the risk factors directly. For simplicity, we focus
on the case that volatility is used as the risk measurement.

Risk Contributions of Factors: It was shown that when
volatility is used the risk contribution of the -th factor can be
defined as [12]

(30)

Diversifying the Risk Among Factors: Similar to the pre-
vious problem formulations covered in this section, we can have
different risk parity formulations simply by replacing the risk
contribution of each asset by that of each factor. For example,
similar to (21), Roncalli and Weisang studied [12]

(31)

where is the given risk budget for the
factors and .
5) VaR and CVaR as Risk Measurements: Apart from

volatility, VaR and CVaR have also been introduced into risk
parity portfolio formulations [15], [16].
In [16], instead of being formulated into the objective, the risk

parity property was added as constraints, e.g.,
, , where can be either VaR or CVaR. Paper [15]

focused on CVaR and proposed to minimize the CVaR con-
centration, e.g., . However, this objective,
which is a piecewise function of some nonconvex functions, is
not differentiable. Due to the intractability of VaR and CVaR ex-
pressions, usually VaR and CVaR problems are solved via the
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Monte Carlo method [16] or are based on the analytical approx-
imation [15].
In this paper, we can adopt problem formulations similar to

the previous ones in Section III-B1 which can be solved numer-
ically. For example, for the Gaussian CVaR (8) we have the risk
contribution of asset expressed in closed-form

, then similar to (20), we can formulate

(32)

If we change to , the problem is then formulating
VaR instead.
6) Incorporating Expected Returns Into the Risk Parity Port-

folio: Instead of focusing on risk diversification only, paper [14]
introduced expected returns into the risk parity portfolio. How-
ever, it only focused on the long-only portfolio.
For the general long/short portfolio, the risk parity portfolio

with expected returns incorporated can be formulated as

(33)

where , is the expected loss, and
can be any measurement on the risk concentration.

C. Connections Between the Specific Formulations and (11)
Recall that , , and are the numbers of assets, factors,

and groups, respectively. Let us denote the sparse
matrix with its -th row being the same as that of the covariance
matrix and 0 elsewhere, and denote the sparse
matrix with only the -th diagonal element being 1 and 0 else-
where, and we define matrices , ,
where and are given in (27) and (29).
Then for all the previous specific problems in Section III-B,

we can put them in a form of general formulation (11) quite
compactly with different specific functions , as listed in
Table I. Also, we can easily have more possible formulations
by combining VaR and CVaR and the different forms of .
Since the derivation of such formulations is quite similar to the
existing specific formulations covered in Section III-B it is thus
omitted.

IV. PROPOSED SOLVING APPROACH

As mentioned in the introduction before, the general stan-
dard off-the-shelf numerical nonconvex nonlinear optimization
methods, like SQP and IPM, are not efficient for the nonconvex
problems like (11). In this section, we explore the structure of
nonconvex part of , i.e., , and
propose a simple and efficient algorithm with provable global
convergence to a stationary point.

A. Solving Procedure
At the -th iteration, the proposed method aims to solve

(34)

where is the parameter for the regularization term. Here,
we convexified the nonconvex term by linearizing each

inside the square operation and added the proximal term
for convergence reasons [29].

The beauty of the approximation is that it is an
easily computable quadratic convex function and has the same
gradient as at each iteration point

(35)

where denotes the partial gradient of
with respect to the first argument .
Because can be rewritten more compactly as

(36)

where

(37)

(38)

Problem (34) can be further rewritten as

(39)

where

(40)

(41)

In general, under the assumption that is convex, for
nonempty convex set (recall that )
and , problem (39) is strongly convex and can be solved
by the existing efficient solvers (e.g., MOSEK [32], SeDuMi
[33], SDPT3 [34], etc.). Moreover, if is linear or convex
quadratic, and only contains linear constraints, problem
(39) reduces to a Quadratic Programming (QP).
Alg. 1 summarizes the sequential solving approach and we

refer to it as SCRIP (Successive Convex optimization for RIsk
Parity portfolio) since it is based on a successive convex opti-
mization method.
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Algorithm 1: Successive Convex optimization for RIsk Parity
portfolio (SCRIP)

Input: , , ,
Output: a stationary point of problem (11)
1: repeat
2: Solve (39) to get the optimal solution
3:
4:
5: until convergence

B. Convergence Analysis

Fortunately, the convergence analysis of Alg. 1 can be ob-
tained based on the theoretical framework developed in [29].
Proposition 2: Under assumptions A1-A5, suppose ,

, , and ,
and let be the sequence generated by Alg. 1. Then either
Alg. 1 converges in a finite number of iterations to a stationary
point of (11) or every limit of (at least one such point
exists) is a stationary point of (11).

Proof: Under assumptions A1–A5 and given and
as above, it is easy to check that the approximated problem

(39) is a partial linear approximation of (11) with a quadratic
uniformly strongly convex proximal term (since the quadratic
coefficient matrix is ). That is, [29, Assumptions A1–A4]
and [29, condition (b) in Theorem 3] are satisfied, and the proof
of Prop. 2 follows directly from [29, Theorem 3].
Remark 3: In the general SQP procedure, usually the deriva-

tive vector and the Hessian matrix of the Lagrangian function
are used to construct some convex quadratic approximation at
each iteration [19]. However, since the general risk parity for-
mulation (11) is highly nonconvex, the Hessian matrix is not
necessarily positive semidefinite, and some approximations of
the Hessian matrix (e.g., full quasi-Newton, reduced-Hessian
approximations [19]) based on the finite difference method are
needed instead. Constructing such Hessian approximations may
be time consuming and they may not approximate the original
problem well since the structure of the objective is not explored
at all. If we observe Alg. 1 carefully, we can see that indeed it
solves a sequence of strongly convex QPs. That is, it is also a
specific SQP method. However, the beauty of Alg. 1 is that it
keeps the original convex part and explores the struc-
ture of the nonconvex part , and pro-
vides an easily computable convex quadratic approximation

, for which we only need to compute some simple
closed-form first order derivatives (i.e., ). Meanwhile, the
convergence of Alg. 1 is perfectly guaranteed by the framework
developed in [29], which usually provides a really fast numer-
ical solving procedure for various applications, see [29], [31],
[35], [36].
Remark 4: Another observation is that the proposed Alg. 1

may look similar to some numerical optimization methods for
a nonlinear least-square problem, e.g., Gauss-Newton and Lev-
enberg-Marquardt methods [19]. This is only because we use
the specific quadratic squared loss function (see the next sub-
section for more general loss functions for which the proposed

successive convex approximation based algorithm is still ap-
plicable). But even in the quadratic case, the convergence of
Gauss-Newton and Levenberg-Marquardt methods in general is
not guaranteed in theory [19]. Fortunately, by adding the prox-
imal term in the objective and incorporating the
previous iteration point into the update procedure (as stated in
step 3 of Alg. 1), Alg. 1 can be guaranteed to converge globally
when the step-size parameter is properly chosen. One prac-
tical rule of choosing is: given , let

(42)

where is a given constant [31], [36]. This rule has
been applied in various numerical experiments and in general
it enjoys really fast numerical convergence speed (e.g., see the
numerical experiments simulated in [29], [31], [35], [36] and
Section VII of this paper later).

C. More General Risk Concentration Criteria
In this part, we briefly discuss some risk concentration criteria

more general than considered before
in (12).
Consider the following risk concentration function:

(43)

where is convex and differentiable.
Similar to the above solving procedure, if we define the fol-

lowing convex (not necessarily quadratic) function

(44)
it is easy to check that and have the same first
order derivative w.r.t. at , i.e.,

(45)

Then we can minimize (nonconvex) via min-
imizing a sequence of (convex) approximation

and the convergence to a stationary point can be guar-
anteed under similar conditions.
In fact, the previous risk concentration criterion (12) can be

regarded as a special case of (43) where

(46)

Moreover, we can have more optional loss functions, e.g., the
Huber loss

otherwise (47)

or the log-barrier loss

otherwise
(48)

where ’s in the above Huber and log-barrier losses are prede-
fined parameters.
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One step further, we can even have some nondifferentiable
loss functions, e.g., the absolute value loss

(49)

or the deadzone-linear loss

(50)

where is a predefined parameter, since we can always
smooth the loss function around the nondifferentiable point with
arbitrarily high precision [37].
Interestingly, for any given convex and differentiable loss

function , the approximations are efficiently
computable since all and listed in Table I are
efficiently computable. Thus, the sequential solving procedure
based on is really similar to the previously derived
one. Because the least-square loss function is used more often
in practice and for simplicity, we mainly focus on exploring the
risk concentration criterion based on the least-square loss func-
tion (i.e., defined in (12) or equivalently for

defined in (43)) in the following content of the paper.

V. ADVANCED SOLVING APPROACHES

Recall that in step 2 of Alg. 1, problem (39) is convex and we
can always use existing efficient solvers to solve it numerically.
However, it is still interesting to derive some simple and fast
procedures to solve (39) for some cases.
Here, if we furthermore assume is twice differentiable

convex and we use the second order Taylor approximation to ap-
proximate , then problem (11) still has a convex quadratic
approximation at each iteration and Alg. 1 still converges to a
stationary point globally. Without loss of generality, we set

, and the approximated problem (39) becomes

(51)

where and are given in (40) and (41).
Specifically, our goal now is to solve (51) efficiently, e.g.,

either in closed-form or via explicit update equations.

A. Analytical Solution for Linear Equality Constraints

Suppose that the nonempty set contains only linear
equality constraints (including ) and they can be
rewritten as . Here, can be assumed to be a non-tall
matrix with full row rank, otherwise either it can be reduced
to a non-tall matrix with full row rank by eliminating the
redundant constraints or the problem is infeasible if there are
no redundant constraints.
Then by solving the KKT conditions, the optimal solution of

problem (51) can be found in closed-form as

(52)

where .
Then the solving approach can be simplified as Alg. 2.

Remark 5: Note that Alg. 2 is a special case of Alg. 1 and
inherits the same convergence property as Alg. 1.

Algorithm 2: SCRIP with Linear Equality Constraints
(SCRIP-LEC)
Input: , , ,
Output: a stationary point of problem (11) with LEC
1: repeat

2:

3:
4:
5:
6: until convergence

B. Dual Decomposition for Linear Constraints
First, problem (51) with linear equality and inequality con-

straints can be written as

(53)

where and is given in (40) and (41) as before, and , ,
and are given parameters with proper sizes.
Unfortunately, problem (53) does not admit a closed-form

solution [38]. One way to find an optimal solution is via the dual
decomposition method. Here, we employ the accelerated dual
decomposition method [39, Alg. 1] to solve the approximated
problem (53) with rate of convergence being , where
is the number of (inner) iterations.
Alg. 3 summarizes the whole solving procedure of the orig-

inal problem (11) where and steps 3–9 de-
note the accelerated dual decomposition method of solving the
inner subproblem (53) at each iteration.

Algorithm 3: Dual Gradient ascent based SCRIP with Linear
Constraints (DualGrid SCRIP-LC)
Input: , , , , ,
Output: a stationary point of problem (11) with LC
1: repeat

2: , ,
3: repeat
4:
5:

6:

7:
8:
9: until convergence
10: ,
11:
12:
13:
14: until convergence
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Remark 6: Alg. 3 is a special case of Alg. 1 where the ap-
proximated problem (53) is solved via the accelerated dual de-
composition method, so it converges as Alg. 1.

C. Projected Gradient Method

Since the objective of (51) is simply convex quadratic and
its gradient is easily computable, we may simply employ the
projected gradient descent method to solve it numerically.
Alg. 4 states the solving procedure, where the approximated

problem (51) is solved via the accelerated projected gradient de-
scent method (e.g., steps 3–12) with adaptive restart (e.g., steps
8–10) [40], and step 4 is the projection.

Algorithm 4: Primal Gradient descent based SCRIP (PrimGrad
SCRIP)

Input: , , ,
Output: a stationary point of problem (11)
1: repeat
2: , , ,
3: repeat

4:

5:

6:

7:
8: if then
9:
10: end if
11:
12: until convergence
13:
14:
15:
16: until convergence

Remark 7: Suppose the conditions in Prop. 2 hold. Without
the adaptive restart (e.g., steps 8–10), the inner loop of Alg.
4, e.g., the accelerated projected gradient descent method,
converges at the rate of at least [41], [42], and
Alg. 4 converges as well. When there exists the adaptive
restart, even though the analytical convergence analysis is not
available, numerically it always converges [40] (and usually
it converges much faster than the one without restart, see the
example in [40, Sec. 5.3]). For the risk parity problem, Alg.
4 always converges numerically, see numerical examples later
in Section VII.
On the Projection: The projection (e.g., step 4 in Alg. 4) is

the key step that needs some computational effort. Fortunately,
it does admit a closed-form expression for some cases:
• Affine set [43, Chapter 6]:

(54)

• Simplex [44]:

(55)

for some such that .
Nevertheless, the projection of a given point onto a general
convex set can be always obtained via solving

(56)

or its dual problem, whichever is computationally cheaper [45].

VI. ALTERNATIVE APPROXIMATIONS

One observation on the previous Algs. 2 and 3 is that, for
the full matrix , the computational complexity of

is is time consuming especially when is large.
Then one natural upcoming question is can we find another ap-
proximation of at each iteration such that the quadratic
coefficient matrix has better structure, say diagonal only, and
the computational complexity is reduced?
In the following, we will explore the above question by

proposing simpler alternative approximations.
First, notice that in (36) can be rewritten as

(57)

Now, we denote another approximation as follows:

(58)

Then it is easy to verify the following property

(59)

When the approximation is used, the approxi-
mated problem turns out to be

(60)

which can be further rewritten as

(61)

where

(62)

(63)

Compared with problem (51), problem (61) in fact can be
solved more efficiently because matrix is diagonal while
matrix is full.
Alg. 5 summarizes the sequential solving approach when ap-

proximation is used. It is referred to as SCRIP with
because it takes 1-by-1 diagonal blocks (e.g., the diagonal
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part) of in the quadratic coefficient matrix (see (62)
and Remark 11 later). The convergence analysis is conducted in
Prop. 8.

Algorithm 5: SCRIP with
Input: , , ,
Output: a stationary point of problem (11)
1: repeat
2: Solve (61) to get the optimal solution
3:
4:
5: until convergence

Proposition 8: Under assumptions A1–A5, suppose ,
, , and ,

and let be the sequence generated by Alg. 5. Then either
Alg. 5 converges in a finite number of iterations to a stationary
point of (11) or every limit of (at least one such point
exists) is a stationary point of (11).

Proof: The only difference between Props. 8 and 2 is that
now instead of is used as the successive
convex approximation of . However, similar to Prop. 2,
we can still check that [29, Assumptions A1–A4] and [29, con-
dition (b) in Theorem 3] are satisfied, and the proof of Prop. 2
follows directly from [29, Theorem 3].
Furthermore, comparing Algs. 5 and 1, we have some inter-

esting remarks.
Remark 9: For Alg. 5, we can have corresponding algorithms

similar to Algs. 2–4 simply by replacing with .
Remark 10: The computational complexity of is

while that of is only . The reduction from
to is actually quite significant. Thus the compu-

tational complexity of each iteration of the algorithms based on
approximation should be much simpler than that of
the algorithms based on approximation , and the se-
quential solving algorithms based on approximation
may be faster.
Remark 11: We also should point out that with a

more complicated structure may approximate the original func-
tion better and thus provide a better solution at each itera-
tion. Then, there may exist a trade-off between simple structure
and good approximation. Actually, and are two extreme
cases: takes the 1-by-1 diagonal blocks (i.e., the diagonal
part) of as the quadratic coefficient matrix, while
takes the -by- diagonal block (i.e., as a whole)
instead. Similarly, we can even find more alternative approxi-
mations by taking the -by- diagonal blocks of as
the quadratic coefficient matrix where , and we could
have extended algorithms similar to Algs. 2–4 easily. Such new
approximations may explore the trade-off between simple struc-
ture and good approximation better.

VII. NUMERICAL EXPERIMENTS

Thus far we have proposed the general framework for risk
parity portfolio with a family of sequential algorithms. In this
section we will simulate some numerical experiments to study
the performance of the proposed algorithms.

TABLE II
NUMERICAL METHODS FOR RISK PARITY PORTFOLIO

A. Simulation Setup
The general formulation (11) contains many problems. We

first focus on two problems, i.e., problems I and II in the fol-
lowing, in Sections VII-B–VII-D and then study more problems
in Section VII-E.
1) Problem I: We take volatility as the risk measurement and

set
(64)

(65)

Note that can be further rewritten as

(66)

where the first summation term measures the risk concentration,
and the second term is the total variance. That is, is a
trade-off between the risk concentration and total risk.
2) Problem II: We take Gaussian CVaR as the risk measure-

ment and set
(67)

(68)

3) Compared Methods: Table II lists all the simulated
methods and we compare them in terms of numerical con-
vergence speed (e.g., CPU time) and quality of the solution
(mainly in Section VII-E). The MATLAB function is
used for SQP and IPM methods.
4) Real Data: Here, we consider two types of real market

data: Eurostoxx50 and S&P500 constituents. We download the
data from Yahoo! Finance from the period 2010-01-01 to 2014-
10-30 and use daily adjusted close prices to compute the daily
returns. Since the daily returns usually are very small and to
avoid algorithms stopping too early, we scale up the daily re-
turns of Eurostoxx50 and S&P500 by positive scalars and

respectively, and then estimate the sample mean and covari-
ance of the scaled daily returns of each data set.
5) Synthetic Data: For the synthetic data, we randomly gen-

erate the expected returns as and the covari-
ance matrix as where .
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Fig. 2. One realization of problem I with long-only constraints. (a) Eurostocxx50. (b) S&P500. (c) Synthetic data with . (d) Synthetic data with .

6) Practical Implementation: All experiments are im-
plemented in MATLAB on a PC with a 3.20 GHz i5-3470
CPU and 4 GB RAM. For the proposed algorithms, we
set with and

(The parameter can be much smaller
and the proposed algorithms are numerically quite robust w.r.t.
). With such parameter settings, all the proposed methods
converge quite fast and stably in practice.

B. Specific Long-Only Risk Parity Portfolio

For the long-only portfolio, we focus on Problem I

(69)

However, CCD and NN are actually solving other different
problems. CCD [21] is proposed to solve the problem

(70)

and NN [23] aims to solve problem

(71)

where is the correlation
matrix.
It is well-known for the special long-only portfolio without

any other constraints that the risk budgeting portfolio is unique
and thus problem (69) has a unique global minimizer with the
optimal objective value being 0 [7], and the relationships among
the optimal solutions of the above three problems are [21], [23]

(72)

where , , and are the optimal solutions of problems
(69), (70), and (71), respectively.
Fig. 2 shows one realization of the objective value of (69)

versus the CPU time. Here we set and randomly
generate where . We can see
that the proposed methods perform better than the SQP and IPM
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Fig. 3. CPU time of convergence versus the number of assets of problem I
with long-only constraints.

methods, and are comparable with ad-hoc methods, i.e., CCD
and NN. Also, the results based on both real and synthetic data
look similar, therefore, we can study the effect of the portfolio
size based on synthetic data. Numerical results of the objective
value versus the number iterations are quite similar to that in
Fig. 2 and thus are omitted.
Fig. 3 shows the average CPU time of convergence over 20

realizations versus the number of assets based on synthetic
data and the convergence criterion is . Since
the SQP and IMP methods are time consuming and may not
even converge when is large, we only report the results of
CCD, NN and the proposed methods. We can see that when

, some of the proposedmethods converge slightly faster
than, or at least similar to, CCD and NN. When , CCD
converges fastest, but nerveless, some of the proposed methods
beat NN and are still efficient enough since they converge in
less than even when (the proposed methods with

will be explained later in Section VII-D).

C. General Long/Short Risk Parity Portfolio
For the general long/short risk parity portfolio, CCD and NN

methods are no longer useful (we can see this easily from formu-
lations (70) and (71)) while our proposedmethods are still appli-
cable. To explore more examples, we now consider problem II.
In general we now do not know the true optimal value, and we
set the convergence criterion to be

. The initial settings of and are the same as problem
I before. We set the trade-off parameter to for real Eu-
rostocxx50 data and synthetic data, and to for real
S&P500 data.
First, we consider the linear equality constraints. One ex-

ample can be that the total investments into different groups
should be equal. Since ourmain focus of this paper is on efficient
numerical algorithms, without loss of generality, we randomly
separate the stocks into two groups, denoted as and , and
construct the equality constraints
together with .
Fig. 4 shows one realization of the numerical results of dif-

ferent methods. The axis is the logarithmic of differences be-

tween the objective values and the minimum of objective values
provided by all the methods (the axes of the other Figs. 5 and
7 are obtained in the same way). For both Eurostocxx50 and
S&P500, we can see that the proposed methods work much
better than the existing benchmarks: SQP and IPM.
Next, we consider the case of linear equality and inequality

constraints. Again, without loss of generality, we consider in-
equality constraints , , to-
gether with the equality constraint .
Fig. 5 shows one realization of the numerical results of dif-

ferent methods. Compared with Fig. 4, we have two observa-
tions. First, SQP and IPM tend to be worse, and our methods are
still efficient. Second, the proposed method PrimGrad SCRIP
becomes worse for a small-sized portfolio (see Fig. 4(a) versus
Fig. 5(a)). The reason may be that the projection step (i.e., step
4 of Alg. 4) is not in closed-form for problem (53), and we need
to call the solver MOSEK to solve the projection problem (56).
Calling the solver also takes some time and it may be signifi-
cant compared with the algorithm update procedure when the
problem dimension is small. When the problem dimension be-
comes larger, the time of calling the solver becomes less signif-
icant, and so the method PrimGrad SCRIP still looks quite ef-
ficient (see Fig. 5(a) versus Fig. 5(b)). This observation is also
verified later in Fig. 8.

D. Do Alternative Approximations Work?
Now we study whether alternative approximations proposed

in Section VI can further improve the performance or not. We
focus on problem II with linear equality and inequality con-
straints, e.g., , , together with

. The initial settings and the convergence criterion are
the same as problem II simulated before.
Fig. 6 shows the average CPU time of convergence over 20

realizations versus the diagonal block size based on the syn-
thetic data with . As mentioned in Remark 11,
and correspond the two extreme cases of taking
the diagonal or full part of matrix respectively. We
can see that, for problem II, smaller tends to reduce the CPU
time for all the proposed algorithms.
Fig. 7 shows a realization of the objective value versus the

CPU time with . Clearly, we can see that alternative ap-
proximations do reduce the CPU time.
Fig. 8 shows the average CPU time of convergence over 20

realizations versus the number of assets . We can see that the
alternative approximation with can reduce the CPU time
of convergence for a large range of portfolio size and for all the
proposed methods. Also, if we revisit problem I, we can observe
similar results in Fig. 3.

E. Studies on Quality of the Solution
The previous numerical experiments focus on comparing the

solving speed, this part explores the quality of the solutions
given by the different methods for different problems, i.e., (18),
(20), (21), and (32).
Note that problem (18) shares similar function as problem

(24); problem (20) shares similar function as problems (16),
(17) and (22); and problem (21) shares similar function as
problems (26) and (31), hence, simulating the proposed algo-
rithms for the four problems (18), (20), (21), and (32) is enough
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Fig. 4. One realization of problem II with linear equality constraints. (a) Eurostocxx50. (b) S&P500.

Fig. 5. One realization of problem II with linear equality and inequality constraints. (a) Eurostocxx50. (b) S&P500.

Fig. 6. CPU time of convergence versus diagonal block size of problem II
with linear equality and inequality constraints.

to study the performance of the proposed algorithms for all the
problems listed in Table I.
For all the problems, the simulations are based on real data

of S&P 500 stocks and we repeat the simulations 35 times.
For each simulation realization, the initial settings and the
convergence criterion are the same as problem II simulated
before.
1) Long-Only Constraints: We first start with the long-only

constraints, i.e., and without any other
constraints. Regarding to the proposed methods, for clarity
of presentation, we simulate methods SCRIP and PrimGrad
SCRIP since the projection onto the long-only constraints
admits a closed-form solution.
For problems (18), (20), and (21) that take volatility as the

risk measurement, it is known that they have a same unique
global minimizer with the optimal value being 0 [7]. The min-
imizer, denoted as , satisfies relationship (72) in which
is the solution given by the CCD algorithm [21] and is the
solution given by the NN algorithm [23].
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TABLE III
QUALITY OF THE SOLUTIONS GIVEN BY DIFFERENT PROBLEMS WITH SPECIFIC LONG-ONLY CONSTRAINTS

TABLE IV
QUALITY OF THE SOLUTIONS GIVEN BY DIFFERENT PROBLEMS WITH GENERAL LONG/SHORT CONSTRAINTS

Fig. 7. One realization of problem II with linear equality and inequality con-
straints based on synthetic data with .

For problem (32) that takes Gaussian CVaR as the risk mea-
surement, it is also known that it has a unique global minimizer
with the optimal value being 0 [7] and there exists an extension
of the CCD algorithm [21] that can find the unique minimizer.
However, now the NN algorithm [23] is not applicable (NA)
any more.
Table III shows the average CPU time and the number of

realizations with objective value equal to or less than out
of the total 35 realizations. We can see that, for all the simulated
problems, the proposed methods (especially PrimGrad SCRIP)
are very efficient: they outperform the existing SQP and IPM
methods or at least are comparable with the ad-hoc CCD andNN
methods in terms of both converge speed and solution quality.
2) General Long/Short Constraints: As for the general long/

short constraints, we consider the following linear constraints:

Fig. 8. CPU time of convergence versus the number of assets of problem II
with linear equality and inequality constraints.

, , where is
the number of stocks. Regarding to the proposed methods, for
clarity of presentation, we simulate methods SCRIP and SCRIP
with .
For the general long/short constrained problems, the dif-

ferent problems have different optimal values strictly larger
than 0. Table IV shows the average CPU time and average ratio
between objective values by other methods (i.e., fmincon-SQP,
fmincon-IPM, and SCRIP with ) and SCRIP. We clearly
observe that, for all the simulated problems, the proposed
methods (i.e., SCRIP with and SCRIP) cost much shorter
CPU time and achieve much smaller objective values than
the existing SQP and IPM methods. Also, SCRIP with
achieves the same objective values as SCRIP and even reduces
the CPU time.
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VIII. CONCLUSION
In this paper, we have proposed a general formulation char-

acterizing many existing specific formulations on the risk parity
portfolio with a simple and efficient sequential solving ap-
proach based on the successive convex approximation method.
Furthermore, we have derived various advanced algorithms
for different specific cases or based on alternative convex ap-
proximations. Theoretically, all the proposed algorithms enjoy
global convergence to a stationary point. Extensive numerical
experiments based on both synthetic and real data show that,
in terms of numerical computation speed (i.e., CPU time) and
solution quality (i.e., the objective value of the obtained solu-
tion), our proposed methods outperform the existing methods
significantly for the general and more practical long/short risk
parity portfolio, for which existing methods may not even
work, and are comparable with some ad-hoc methods for the
specific long-only portfolio.
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