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Abstract—The problem of estimating sparse eigenvectors of a
symmetric matrix has attracted a lot of attention in many appli-
cations, especially those with a high dimensional dataset. While
classical eigenvectors can be obtained as the solution of a maxi-
mization problem, existing approaches formulate this problem by
adding a penalty term into the objective function that encourages
a sparse solution. However, the vast majority of the resulting meth-
ods achieve sparsity at the expense of sacrificing the orthogonality
property. In this paper, we develop a new method to estimate dom-
inant sparse eigenvectors without trading off their orthogonality.
The problem is highly nonconvex and hard to handle. We apply
the minorization–maximization framework, wherein we iteratively
maximize a tight lower bound (surrogate function) of the objective
function over the Stiefel manifold. The inner maximization prob-
lem turns out to be a rectangular Procrustes problem, which has a
closed-form solution. In addition, we propose a method to improve
the covariance estimation problem when its underlying eigenvec-
tors are known to be sparse. We use the eigenvalue decomposition
of the covariance matrix to formulate an optimization problem
wherein we impose sparsity on the corresponding eigenvectors. Nu-
merical experiments show that the proposed eigenvector extraction
algorithm outperforms existing algorithms in terms of support re-
covery and explained variance, whereas the covariance estimation
algorithms improve the sample covariance estimator significantly.

Index Terms—Covariance estimation, minorization-
maximization, procrustes, sparse PCA, stiefel manifold.

I. INTRODUCTION

PRINCIPAL Component Analysis (PCA) is a popular tech-
nique for data analysis and dimensionality reduction [2]. It

has been used in various fields of engineering and science with a
large number of applications such as machine learning, financial
asset trading, face recognition, and gene expression data anal-
ysis. Given a data matrix A ∈ Rn×m with rank(A) = r, PCA
finds sequentially orthogonal unit vectors v1 , . . . ,vr , such that
the variance of Avi , which essentially is the projection of the
data on the direction vi , for i = 1, . . . , r, is maximized. The
directions vi are known as principal component (PC) loadings,
while Avi are the corresponding principal components (PCs).
The PC loadings are effectively the right singular vectors of A or
the eigenvectors of the sample covariance matrix S = 1

n AT A.
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PCA has many optimal properties that made it so widely
used. First, it captures the directions of maximum variance of
the data, thus enabling us to compress the data with minimum
information loss. Further, these directions are orthogonal to each
other, i.e., they form an orthonormal basis. Finally, the PCs
are uncorrelated which aids further statistical analysis. On the
other hand, a particular disadvantage of PCA is that the PCs are
usually linear combinations of all variables, i.e., the eigenvectors
of S are dense. Even if the underlying covariance matrix from
which the samples are generated indeed has sparse eigenvectors,
we do not expect to get a sparse result due to estimation error.
Further, in many applications the PCs have an actual physical
meaning. Thus, a sparse eigenvector could significantly help the
interpretability of the result.

Many different techniques have been proposed in this direc-
tion during the last two decades. In one of the first approaches,
Jolliffe used various rotating techniques to obtain sparse loading
vectors [3]. He showed though that it is impossible to preserve
both the orthogonality of the loadings and the uncorrelatedness
of the rotated components. In the same year, Cadima and Jol-
liffe suggested to simply set to zero all the elements that their
absolute value is smaller than a threshold [4]. In [5], the au-
thors propose the SCoTLASS algorithm which maximizes the
Rayleigh quotient of the covariance matrix, while sparsity is
enforced with the Lasso penalty [6]. Many recent approaches
are based on reformulations or convex relaxations. For example
in [7], Zou et al. formulate the sparse PCA problem as a ridge
regression problem, while sparsity is imposed again using the
Lasso penalty. In [8], d’Aspremont et al. form a semidefinite
program (SDP) after a convex relaxation of the sparse PCA
problem, leading to the DSPCA algorithm. In [9], the authors
propose a greedy algorithm accompanied with a certificate of
optimality. Low rank approximation of the data matrix is con-
sidered in [10], under sparsity penalties, while in [11], Journeé
et al. reformulated the problem as an alternating optimization
problem, resulting in the GPower algorithm. This algorithm
turns out to be identical to the rSVD algorithm in [10], except
for the initialization and the post-processing phases. Similar
power-type truncation methods were considered in [12], [13].
In [14], the authors propose an iterative thresholding sparse PCA
(ITSPCA) algorithm based on the QR decomposition. This al-
gorithm is similar to the orthogonal iteration method with an
additional truncation step to enforce sparsity. As the authors
state though, convergence of the algorithm is not guaranteed.
Finally, in [15], the sparse generalized eigenvalue problem is
considered only for the first principal component, where the
minorization-maximization (MM) framework is used.

Apart from the typical sparse PCA problem, several varia-
tions have been considered. Zass et al. impose sparsity on the
eigenvectors while restricting all the elements of the eigenvec-
tors to be non-negative [16], while in [17] a sparse PCA method
is proposed with the additional constraint that the supports of
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the eigenvectors are non-overlapping. Although useful, these
extensions are not in the focus of this paper.

In the vast majority of the aforementioned algorithms, apart
from the fact that the PCs are correlated, the orthogonality prop-
erty of the loadings is also sacrificed for sparse solutions. The
only two exceptions are: 1) the SCoTLASS algorithm that is
suboptimal in the sense that it finds a sparse basis sequentially,
rather than jointly, and 2) the ITSPCA algorithm proposed in
[14] that we will use as a benchmark along with the GPower
method.

The advantages of an orthogonal basis are well known. To
begin with, an orthonormal basis can be extremely useful since
it can reduce the potential computational cost of any process-
ing procedure; this may not seem much for vector spaces of
small dimension but it is invaluable for high dimensional vector
spaces or function spaces. As an example, consider the solution
of a linear system via Gaussian elimination. It requires O(m3)
operations for a non-orthogonal basis, compared to O(m) op-
erations if the basis is orthogonal, where m is the dimension.
Apart from all potential computational gains, orthogonality is
a property much needed in various applications. Consider for
example the problem of locating a moving object over time, the
well known object tracking problem in computer vision commu-
nity. Among other works, in [18] the authors use a set of features
for object representation. They extract basic object models as
subsets of this feature set. Sparse PCA is used so the models
can capture the tracking object’s varying appearance, while at
the same time maintain a small number of features. One of the
conditions for the object models to be good in terms of tracking
performance and efficiency is that they are complementary to
each other. This property is achieved through the orthogonality
of the sparse eigenvectors.

Another issue in many contemporary applications is that the
number of features m in the corresponding datasets is extremely
large, while in many cases the number of samples n is limited.
It is well know by now that the sample covariance S can be a
very poor estimate of the population covariance matrix Σ if the
number of samples is restricted. Since the population covariance
matrix Σ is unknown, the classical PCA estimates the leading
population eigenvectors by using the sample covariance ma-
trix S, which coincides with the maximum likelihood estimator
(MLE) if n ≥ m and under the assumption that the samples are
independent and identically distributed (i.i.d.), drawn from an
m-dimensional Gaussian distribution. Many methods have been
proposed to improve the covariance estimation in different set-
tings and for different applications, e.g., for some representative
works see [19]–[27] and references therein. However, in many
cases we expect sparsity in the eigenvectors. For example, in
the well-known protein-folding problem in bioinformatics, the
underlying eigenvectors are expected to be sparse by nature as
the number of protein positions in contact in a 3D fold is very
small compared to the total number of positions in the protein
[28]. Nevertheless, none of the existing methods has considered
to combine the prior information of sparsity in the eigenvectors
with the covariance estimation, especially in low sample settings
where the estimation is poor.

In this paper we focus and solve the two aforementioned prob-
lems: 1) the orthogonal sparse eigenvector extraction and 2) the
joint covariance estimation with sparse eigenvectors. First, we
apply the MM framework on the sparse PCA problem which re-
sults in solving a sequence of rectangular Procrustes problems.

With this approach, we obtain sparse results but with the orthog-
onality property retained. Then, we consider low sample settings
where the population covariance matrices are known to have
sparse eigenvectors. We formulate a covariance estimation prob-
lem where we impose sparsity on the eigenvectors. We propose
two methods, i.e., alternating and joint estimation of the eigen-
values and eigenvectors, based on the MM framework. Both
methods reduce to an iterative closed-form update with bounded
iterations for the eigenvalues and a sequence of Procrustes prob-
lems for the eigenvectors, which maintain their orthogonality.

Throughout the paper we consider real-valued matrices for
simplicity. However, all the results hold for complex-valued
matrices with trivial modifications: in the complex-valued case
|xi | denotes the modulus of xi rather than the absolute value,
while we should replace the transpose operation (i.e., (·)T ) with
the conjugate transpose operation (i.e., (·)H ). Finally, we do
not assume direct access to the data matrix A. Nevertheless, all
the formulations hold if either the data matrix A or the sample
covariance matrix S is provided.

The rest of the paper is organized as follows: In Section II
we first formulate the sparse eigenvector extraction and the co-
variance estimation problems. Then, we give a short review of
the MM framework which will be the main tool to tackle both
of the aforementioned problems. Finally we present the Pro-
crustes problem since the solution of both our problems involve
certain Procrustes reformulations. In Section III we present
the solution of the sparse eigenvector extraction problem. In
Section IV we consider the problem of joint covariance estima-
tion with sparse eigenvectors and we propose two algorithms
to iteratively minimize the associated objective function. In
Section V we provide a convergence analysis of the proposed
algorithms, while in Section VI we present an acceleration
scheme that improves the convergence speed of the algorithms.
Further, we provide a parameter selection analysis. Finally, in
Section VII we present numerical experiments on artificial and
real data, while we conclude the paper in Section VIII.

Notation: N denotes the set of natural numbers, R denotes
the real field, Rm (Rm

+ ) the set of (non-negative) real vectors
of size m, and Rn×m the set of real matrices of size n × m.
Vectors are denoted by bold lower case letters and matrices
by bold capital letters i.e., x and X , respectively. The i-th
entry of a vector is denoted by xi , the i-th column of matrix
X by xi , and the (i-th,j-th) element of a matrix by xij . A
size m vector of ones is denoted by 1m , while Im denotes
the identity matrix of size m. vec(·) denotes the vectorized
form of a matrix. The superscripts (·)T and (·)H denote the
transpose and conjugate transpose of a matrix, respectively, and
Tr(·) its trace. Diag(X) is a column vector consisting of all
the diagonal elements of X and diag(x) is a diagonal matrix
formed with x at its principal diagonal. Given a vector x ∈
Rmn , [x]m×n is an m × n matrix such that vec([x]m×n ) =
x. ‖x‖0 denotes the number of nonzero elements of a vector
x ∈ Rm and ‖X‖F the Frobenius norm of matrix X . S � 0
means that the symmetric matrix S is positive semidefinite,
while λ

(S)
max denotes its maximum eigenvalue. X ⊗ Y is the

Kronecker product of the matrices X and Y . N (μ,Σ) denotes
the normal distribution with mean μ and covariance matrix Σ.
card(A) denotes the cardinality of the set A, A

⋃
B the union

of the sets A and B, and A \ B their difference. [i : j] with
i ≤ j, denotes the set of all integers between (and including)
i and j.
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II. PROBLEM STATEMENT AND BACKGROUND

A. Sparse Eigenvector Extraction

Given a data matrix A ∈ Rn×m , encoding n samples of di-
mension m, we can extract the leading eigenvector of the scaled
sample covariance matrix S = AT A by solving the following
optimization problem:

maximize
u

uT Su

subject to uT u = 1.
(1)

In order to get a sparse result, we can include a regularization
term in the objective that imposes sparsity, i.e.,

maximize
u

uT Su − ρ‖u‖0

subject to uT u = 1,
(2)

where ρ is a regularization parameter. Problem (2) can be gen-
eralized to extract multiple eigenvectors as follows:

maximize
U

Tr
(
UT SUD

)
−

q∑

i=1

ρi‖ui‖0

subject to UT U = Iq .

(3)

Here, q is the number of eigenvectors we wish to estimate,
U ∈ Rm×q , and D � 0 is a diagonal matrix giving weights to
the different eigenvectors. In the case where q = m, D should
be different from the (scaled) identity matrix since the first term
reduces to a constant and U � = P m , where P m is a permutation
matrix of size m. Many variations of this formulation have been
considered for the extraction of multiple sparse eigenvectors,
e.g., see [8], [11].

The optimization problem of (3) involves the maximization
of a non-concave discontinuous objective function over a non-
convex set, thus the problem is too hard to deal with directly.
In order to handle the discontinuity of the �0-norm of (3), we
approximate it by a continuous function gp(x), where p > 0 is
a parameter that controls the approximation. Following [15],
we consider an even function defined on R, which is differ-
entiable everywhere except at 0, concave and monotone in-
creasing on [0,+∞), with gp(0) = 0. Among the functions that
satisfy the aforementioned criteria, in this paper we choose the
function

gp(x) =
log (1 + |x|/p)
log (1 + 1/p)

, (4)

with 0 < p ≤ 1. This function is also used to replace the �1-
norm in [29], and leads to the iteratively reweighted �1-norm
minimization algorithm.

The function gp(·) is not smooth which may cause an opti-
mization algorithm to get stuck at a non-differentiable point [30].
To deal with the non-smoothness of gp(·) we use a smoothened
version, based on Nesterov’s smooth minimization technique
presented in [31] and following the results of [15], which is
defined as:

gε
p(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2

2ε(p + ε)log (1 + 1/p)
, |x| ≤ ε,

log
(

p+ |x|
p+ε

)
+ ε

2(p+ε)

log (1 + 1/p)
, |x| > ε,

(5)

with 0 < p ≤ 1 and 0 < ε � 1. This leads to the following
approximate problem:

maximize
U

Tr
(
UT SUD

)
−

q∑

j=1

ρj

m∑

i=1

gε
p (uij )

subject to UT U = Iq .

(6)

The problem presented in [15], is a special case of the
above optimization problem, with q = 1. Nevertheless, it is
not possible to follow the same procedure as in [15] to
solve the problem due to the orthogonality constraint. Instead,
we tackle this problem using the MM algorithm, which re-
sults in solving a sequence of rectangular Procrustes prob-
lems that have a closed-form solution based on singular value
decomposition.

B. Covariance Estimation

We first consider a typical covariance estimation prob-
lem. We assume that the random variable x ∈ Rm follows a
zero mean Gaussian distribution with covariance Σ, i.e., x ∼
N (0,Σ). Given n ≥ m i.i.d. samples xi , with i = 1, . . . , n,
our goal is to estimate Σ. The maximum likelihood estima-
tor (MLE) of Σ is given by the solution of the following
problem:

minimize
Σ

log det (Σ) + Tr
(
SΣ−1)

subject to Σ � 0,
(7)

where S is the sample covariance matrix, i.e.,

S =
1
n

n∑

i=1

xix
T
i . (8)

The above problem is not convex but it can be easily transformed
into a convex one by setting Ψ = Σ−1 . With this transformation
we get:

minimize
Ψ

−log det (Ψ) + Tr (SΨ)

subject to Ψ � 0.
(9)

The optimal solution of this problem is Ψ = S−1 , thus, the
MLE of the covariance matrix is Σ = S, which is simply the
sample covariance matrix.

Now, we consider the case where the population covari-
ance matrix Σ is composed by sparse eigenvectors. We
would like to estimate Σ taking into account the sparsity
information. Thus, we need to reformulate the covariance
estimation problem in terms of eigenvalues and eigenvec-
tors. Further, we add a cardinality penalty on the first q
principal eigenvector. Notice though that we estimate all m
eigenvectors and not only the q principal ones since it is
a covariance estimation and not an eigenvector extraction
problem. Consider the eigenvalue decomposition of Ψ, i.e.,
Ψ = UΛUT , with U ,Λ ∈ Rm×m and Λ = diag(λ)�0.



6214 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, 2016

Then, we can formulate our problem as follows:

minimize
U ,Λ

− log det (Λ) + Tr
(
SUΛUT

)
+

q∑

i=1

ρi‖ui‖0

subject to Λ � 0,

λi ≤ λi+1 , i = 1, . . . , q − 1, (10)

λq ≤ λq+i , i = 1, . . . ,m − q,

UT U = Im .

Let us first make some comments on the above problem. We
penalize the cardinality of the first q ≤ m principal eigenvec-
tors where each of them is associated with a different sparsity
inducing parameter ρi . Thus, we need to keep the order of the
first q eigenvectors intact. We succeed this by imposing or-
dering to the corresponding eigenvalues. Notice also that the
principal eigenvector corresponds to the smallest eigenvalue of
Ψ since Ψ = Σ−1 . It will be useful in the following to ex-
pand the sparsity term and include all eigenvectors by setting
the redundant sparsity inducing parameters to zero, i.e., ρi = 0
for i = q + 1, . . . ,m. Again, we approximate the �0-norm by
a differentiable function gε

p(·), given by (5). This leads to the
following approximate problem:

minimize
U ,Λ

− log det (Λ) + Tr
(
SUΛUT

)

+
m∑

j=1

ρj

m∑

i=1

gε
p (uij )

subject to Λ � 0, (11)

λi ≤ λi+1 , i = 1, . . . , q − 1,

λq ≤ λq+i , i = 1, . . . , m − q,

UT U = Im .

Although in (11) we have approximated the objective of (10)
with a continuous and differentiable function, the problem still
remains too hard to deal with directly since it involves the min-
imization of a non-convex function over a non-convex set.

C. Shrinkage

In the case where the number of samples is lower than the
dimension of the problem, i.e., when n < m, the sample co-
variance matrix S is low rank. As a result, all the covariance
estimation problems that were presented are unbounded below.

We can overcome this problem by shrinking the sample co-
variance matrix towards an identity matrix [20], [32], i.e.,

Ssh = (1 − δ)S + δIm , (12)

with 0 < δ ≤ 1. With this technique we bound the minimum
eigenvalue of Ssh by δ, the matrix becomes full rank and the
optimization problems are now well defined. We present the
effect of shrinkage in the estimation of Σ in Section VII.

D. Review of the MM Framework

The minorization-maximization (if we maximize) or
majorization-minimization (if we minimize) algorithm is a way
to handle optimization problems that are too difficult to face

directly [33]. Consider a general optimization problem

maximize
x

f (x)

subject to x ∈ X ,

where X is a closed set. We say that the function f(x) is ma-
jorized at a given point x(k) by the surrogate function g(x|x(k))
if the following properties are satisfied:

� f(x(k)) = g(x(k) |x(k)),
� f(x) ≥ g(x|x(k)), ∀x ∈ X ,
� ∇f(x(k)) = ∇g(x(k) |x(k)).

Then, x is iteratively updated (with k denoting iterations) as:

x(k+1) = arg max
x∈X

g
(
x|x(k)

)
. (13)

It can be seen easily that f(x(k)) ≤ f(x(k+1)) holds. The
majorization-minimization algorithm works in an equivalent
way, such that in each update f(x(k)) ≥ f(x(k+1)) holds.

In practice, it is not a trivial task to find a surrogate function
such that the maximizer of the minorization (or minimizer of
the majorization) function of the objective can be easily found
or even have a closed-form solution. The following lemma will
be useful for the MM algorithms that will be derived throughout
this paper:

Lemma 1: On the set
{
U ∈ Rm×q |UT U = Iq

}
, the

function
∑q

j=1 ρj

∑m
i=1 gε

p(uij ) is majorized at U 0 by

2Tr(HT U) + c, where

H = [diag (w − wmax ⊗ 1m ) u0 ]m×q , (14)

c = 2
(
1T

q wmax
)
− u0

T diag (w) u0 . (15)

The weights w ∈ Rmq
+ are given by

wi =

⎧
⎪⎨

⎪⎩

ρi

2ε(p + ε)log (1 + 1/p)
, |u0,i | ≤ ε,

ρi

2log (1 + 1/p)|u0,i | (|u0,i | + p)
, |u0,i | > ε,

(16)

where u0 = vec(U 0), and wmax ∈ Rq
+ , with wmax,i being the

maximum weight that corresponds to u0,i .
Proof: See Appendix A. �

E. Procrustes Problems

Consider the following optimization problem:

maximize
X

Tr
(
Y T X

)

subject to XT X = Iq ,
(17)

where X,Y ∈ Rm×q . Notice that problem (17) is equivalent to

minimize
X

‖X − Y ‖2
F

subject to XT X = Iq ,
(18)

which is a Procrustes problem.
Lemma 2: For m = q (m > q), problem (17) can be trans-

formed into an orthogonal (rectangular) Procrustes problem and
its optimal solution is X� = V LV T

R , where V L ,V R are the
left and right singular vectors of the matrix Y , respectively [34],
[35, Proposition 7].
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III. SPARSE PCA

In this section we return to the sparse eigenvector extraction
problem as formulated in (6). In the following, we apply the MM
algorithm and derive a tight lower bound (surrogate function),
g(U |U (k)), for the objective function of (6), denoted by f(U),
at the (k + 1)-th iteration.

Proposition 1: The function f(U) is lowerbounded at U (k)

by the surrogate function

g
(
U |U (k)

)
= 2Tr

((
G(k) − H (k)

)T

U

)

+ const, (19)

where

G(k) = SU (k)D, (20)

H (k) =
[
diag

(
w(k) − w(k)

max ⊗ 1m

)
u(k)

]

m×q
, (21)

u(k) = vec(U (k)), and const denotes an optimization irrelevant
constant. Equality is achieved when U = U (k) .

Proof: The first term of the objective is convex so a lower
bound can be constructed by its first order Taylor expansion:

Tr
(
UT SUD

)
≥ 2Tr

((
SU (k)D

)T

U

)

+ c1 , (22)

where c1 = −Tr(U (k)T
SU (k)D) is a constant. For the sec-

ond term, using the results from Lemma 1 it is straight-
forward to show that it is lowerbounded by the function
−2Tr(H (k)U) − c2 , where H (k) is given by (21) and c2 =
2(1T

q wmax) − u(k)T
diag(w)u(k) is a constant. �

Now, we drop the constants and the optimization problem of
every MM iteration takes the following form:

maximize
U

Tr

((
G(k) − H (k)

)T

U

)

subject to UT U = Iq .

(23)

Proposition 2: The optimal solution of the optimization
problem (23) is U � = V LV T

R , where V L ∈ Rm×q and V R ∈
Rq×q are the left and right singular vectors of the matrix
(G(k) − H (k)), respectively.

Proof: The proof comes directly from Lemma 2. �
In Algorithm 1 we summarize the above iterative procedure.

We will refer to it as IMRP. Since the algorithm does not perform
any hard thresholding, the resulting eigenvectors do not have
zero elements but rather very small values. To this end, we
can set to zero all the values that are below a threshold and
obtain sparse eigenvectors. As it will be shown in the numerical
experiments, the effect of this thresholding on the orthogonality
of the eigenvectors is negligible.

A. Computational Complexity of IMRP

In this section we study the computational complexity of
IMRP. In every iteration, first we need to compute the matrices
G and H which involve some matrix multiplications. Then, we
need to perform an SVD and finally a matrix multiplication for
the variable update. The matrices G,H can be computed in
O(mqn) and O(mq) operations, respectively. The complexity
of the SVD is O(mq2), while the last matrix multiplication can
be computed in O(mq2) operations. Thus, the complexity of the
algorithm in every iteration is O(mqn + mq2).

Algorithm 1: IMRP - Iterative Minimization of Rectangular
Procrustes for the Sparse Eigenvector Problem (6).

1: Set k = 0, choose U (0) ∈ {U |UT U = Iq}
2: repeat:
3: Compute G(k) ,H (k) with (20)-(21)
4: Compute V L , V R , the left and right singular

vectors of (G(k) − H (k)), respectively
5: U (k+1) = V LV T

R
6: k ← k + 1
7: until convergence
8: return U (k)

In general, in high dimensional problems we are interested in
extracting a low dimensional subspace that contains most of the
data information. Further, it is common in the high dimensional
datasets that the number of samples is limited or significantly
lower than the dimension of the problem, i.e., m  n. In these
cases, IMRP is scalable to very high dimensions as will be
shown in Section VII.

B. Explained Variance

In the ordinary PCA the principal components are uncorre-
lated while the corresponding loadings are orthogonal. If we
denote by Y the ordinary principal components, the total ex-
plained variance can be calculated as Tr(Y T Y ). If the principal
components are correlated though, computing the total variance
this way will overestimate the true explained variance. An ap-
proach to overcome this issue was first suggested in [7] (and
adopted in [11]), where the authors introduced the notion of
adjusted variance. The idea is to remove the correlations of the
principal components sequentially. This can be done efficiently
by the QR decomposition: if A ∈ Rn×m is a data matrix and
U ∈ Rm×q are the q estimated loadings, then the adjusted vari-
ance is simply

AdjVar (U) = Tr
(
R2) , (24)

where AU = QR, is the QR decomposition of AU . The
explained variance percentage can be then computed as
AdjVar(U)/AdjVar(UPCA), where UPCA are the first q eigen-
vectors of AT A.

As mentioned in [10], in the above approach the lack
of orthogonality in the loadings is not addressed. Thus, a
new approach was proposed: when the loading vectors are
not orthogonal we should not consider separate projections
of the data matrix onto each of them. Instead, we should
project the data matrix onto the q-dimensional subspace, i.e.,
Aq = AU(UT U)−1UT . Then, the total variance is simply
Tr(AT

q Aq ) and the cumulative percentage of explained vari-
ance (CPEV) can be computed as

CPEV = Tr
(
AT

q Aq

)
/Tr

(
AT A

)
. (25)

In this paper we adopt the second approach and compute the
explained variance using (25).

IV. SPARSE EIGENVECTORS IN COVARIANCE ESTIMATION

In this section we return to the problem of covariance esti-
mation with sparse eigenvectors. We consider the formulation
(11), i.e.,
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minimize
U ,Λ

− log det (Λ) + Tr
(
SUΛUT

)

+
m∑

j=1

ρj

m∑

i=1

gε
p (uij )

subject to Λ � 0,

λi ≤ λi+1 , i = 1, . . . , q − 1,

λq ≤ λq+i , i = 1, . . . , m − q,

UT U = Im .

To deal with this problem, we propose two methods based on
the MM framework. In Section IV-A we perform an alternat-
ing optimization of the eigenvalues and eigenvectors, while in
Section IV-B we estimate them jointly.

A. Alternating Optimization Using the MM Framework

We begin with the optimization problem (11) which is highly
non-convex. We tackle it by alternating optimization of U and
Λ. For fixed U the optimization problem over λ can be written
in the following form:

minimize
λ

−
m∑

i=1

log λi +
m∑

i=1

ziλi

subject to λi ≤ λi+1 , i = 1, . . . , q − 1,

λq ≤ λq+i , i = 1, . . . , m − q,

(26)

where we have dropped the positive semidefinite constraint of
Λ = diag(λ) since it is implicit form the log function, and z =
Diag(UT SU) ≥ 0, since S � 0.

The optimization problem (26) is convex thus we can use
any standard solver to obtain the optimal solution. However,
since the problem has to be solved several times during the MM
procedure the computational cost can be significant, especially
for high dimensions. To this end, we propose an iterative closed-
form update of the parameter z that will allow us to obtain the
optimal solution for λ with a lower complexity. This algorithm
terminates in at most min(2q − 1,m − 1) steps and is scalable
to very high dimensions as will be shown in Section VII.

We start from the corresponding unconstrained version of
problem (26) whose solution is

λ(0) =
1

z(0) , (27)

where z(0) = z. If this solution is feasible then it is the optimal
one. Else, we need to update z. In every iteration, all the non-
overlapping blocks of zi’s that satisfy certain conditions need to
be updated in parallel. In the k-th iteration we distinguish three
different cases:
Case 1: λ(k) = 1/z(k) satisfies all the constraints of problem
(26). Then the optimal solution is λ� = λ(k) .
Case 2: λ(k) = 1/z(k) violates r ≥ 1 consecutive ordering con-
straints of the first q eigenvalues (first constraint set of (26)). For
any such block violation we need to update z(k) .
Case 3: λ(k) = 1/z(k) violates r + l ≥ 1 consecutive ordering
constraints, with r ≥ 0 and l ≥ 1, including the last r + 1 or-
dered and a set of l unordered eigenvalues (second constraint
set of (26)). Since we do not impose ordering on the m − q last
eigenvalues, any of them could violate the inequality with λq

Fig. 1. Visual illustration of the two constraint violation cases.

and not only the neighboring ones. Thus, we use the indices
c1 , . . . , cl , with ci > q, for i = 1, . . . , l, and ci ∈ C, with C
the set of indices of the eigenvalues that violate the inequal-
ity constraints with λq . We further denote by A ⊆ C, with
card(A) = p < l, the set of indices given by

A =

{

ci

∣
∣
∣
∣
∣
z(k)
ci

≥ 1
r + l − i + 1

(
r∑

s=0

z
(k)
q−s +

l−i−1∑

s=0

z(k)
cl−s

) }

.

(28)
For any such block violation we need to update z(k) .

In Fig. 1 we illustrate the two possible cases of constraint
violations, i.e., cases 2 and 3. We observe that for any block
violation, all the involved eigenvalues will become equal in the
next iteration. The procedure is summarized in Table I. We will
refer to it as AOCEλ hereafter.

Proposition 3: The iterative-closed form update procedure
given in Table I converges to the solution of problem (26).

Proof: See Appendix B. �
Now, for fixed Λ the problem over U becomes:

minimize
U

Tr
(
SUΛUT

)
+

q∑

j=1

ρj

m∑

i=1

gε
p (uij )

subject to UT U = Im .

(29)

For the second term we can use the same bound as the one
for problem (6). However, we cannot linearize the first term as
previously since the linear approximation is a lower and not an
upper bound of a convex function.

To minimize the objective function we apply the MM al-
gorithm and derive a tight upper bound, galt(U |U (k)), for the
objective function of (29), denoted by falt(U), at the (k + 1)-th
iteration.

Proposition 4: The function falt(U) is upper bounded at
U (k) by the surrogate function

galt

(
U |U (k)) = 2Tr

((

G
(k)
alt + H (k)

)T

U

)

+ const, (30)

where

G
(k)
alt =

[(
Λ ⊗

(
S − λ(S)

maxIm

))
u(k)

]

m×m
, (31)

H (k) =
[
diag

(
w(k) − w(k)

max ⊗ 1m

)
u(k)

]

m×m
, (32)

u(k) = vec(U (k)), and const denotes an optimization irrelevant
constant. Equality is achieved when U = U (k) .
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TABLE I
UPDATES AND OPTIMAL SOLUTION OF THE ITERATIVE PROCEDURE THAT SOLVES THE OPTIMIZATION PROBLEM (26)

Proof: For the first term of the objective it holds
that

Tr
(
SUΛUT

)
= uT (Λ ⊗ S)u, (33)

where u = vec(U). In a similar manner as in the proof
of Lemma 1, it is easy to show that the following
holds:

uT (Λ ⊗ S)u ≤ 2Tr(G(k)
alt

T
U) + c3 , (34)

where G
(k)
alt = [(Λ ⊗ (S − λ

(S)
maxIm ))u(k) ]m×m and c3 =

2λ
(S)
max1T λ − u(k)T

(Λ ⊗ S)u(k) is a constant. For the sec-
ond term it is straightforward from Lemma 1 that an up-

per bound is the function 2Tr(H (k)T
U) + c4 , with H (k) =

[diag(w(k) − w
(k)
max ⊗ 1m )u(k) ]m×m and c4 = 1T

m w
(k)
max −

u(k)T
diag(w(k) − w

(k)
max ⊗ 1m )u(k) a constant. �

Now, we drop the constants and the optimization problem of
every MM iteration takes the following form:

minimize
U

Tr

((
G

(k)
alt + H (k)

)T

U

)

subject to UT U = Im .

(35)

Proposition 5: The optimal solution of the optimization
problem (35) is U � = V LV T

R , where V L ∈ Rm×m and V R ∈
Rm×m are the left and right singular vectors of the matrix
−(G(k)

alt + H (k)), respectively.
Proof: The proof comes directly from Lemma 2. �
In Algorithm 2 we summarize the above iterative procedure.

We will refer to it as AOCE.

B. Joint Optimization Using the MM Framework

Let us consider again the formulation (11) with the vari-
able transformation Ξ = Λ−1 . The optimization problem

Algorithm 2: AOCE - Alternating Optimization for
Covariance Estimation for the Problem (11).

1: Set k = 0, choose U (0) ∈ {U |UT U = Iq}
2: repeat:
3: Compute λ(k+1) from Proposition 3
4: Compute G

(k)
alt ,H (k) with (31)-(32)

5: Compute V L , V R , the left and right singular
vectors of −(G(k)

alt + H (k)), respectively
6: U (k+1) = V LV T

R
7: k ← k + 1
8: until convergence
9: return U (k) ,λ(k)

becomes:

minimize
U ,Ξ

log det (Ξ) + Tr
(
SUΞ−1UT

)

+
m∑

j=1

ρj

m∑

i=1

gε
p (uij )

subject to Ξ � 0,

ξi ≥ ξi+1 , i = 1, . . . , q − 1,

ξq ≥ ξq+i , i = 1, . . . ,m − q,

UT U = Im .

(36)

Here U ,Ξ ∈ Rm×m , with Ξ = diag(ξ) � 0. Now, we derive
a tight upper bound, gjnt(U ,Ξ|U (k) ,Ξ(k)), for the objective
function of (36), denoted by fjnt(U ,Ξ), at the (k + 1)-th
iteration.

Proposition 6: The function fjnt(U ,Ξ) is upper bounded at
(U (k) ,Ξ(k)) by the surrogate function

gjnt

(
U ,Ξ|U (k) ,Ξ(k)

)
= gξ (Ξ) + gu (U) + const, (37)

where

gξ (Ξ) = log det (Ξ) + Tr
(
G

(k)
jnt Ξ

)
+ λ(S)

maxTr
(
Ξ−1) , (38)
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with

G
(k)
jnt = −

(
Ξ(k)

)−1
U (k)T

(
S − λ(S)

maxIm

)
U (k)

(
Ξ(k)

)−1

(39)
and

gu (U) = 2Tr

(

H
(k)
jnt

T
U

)

, (40)

with

H
(k)
jnt = H (k) +

(
S − λ(S)

maxIm

)
U (k)

(
Ξ(k)

)−1
. (41)

The term H (k) is given by (32), while const denotes an opti-
mization irrelevant constant.

Proof: Based on Lemma 1 we can upper bound the third

term of the objective with the function 2Tr(H (k)T
U) + c4 ,

with H (k) given by (32).
The second term of the objective function of (36), denoted by

f , is jointly convex on U ,Ξ = diag(ξ). One way to establish
convexity of f is via its epigraph using the Schur complement:

epi(f) =

{

(U , ξ, t)

∣
∣
∣
∣
∣
diag(ξ) � 0,

[
diag(ξ ⊗ 1m ) ũ

ũT t

]

� 0

}

,

where ũ = vec(S1/2U). Without loss of generality we have
assumed that all the eigenvalues ξi are strictly positive. The last
condition is a linear matrix inequality in (U , ξ, t), and therefore
epi(f) is convex.

We can subtract the maximum eigenvalue of the sample co-
variance matrix S and therefore create a jointly concave term.
An upper bound to this term is its first order Taylor expansion.
It can be shown that

Tr
(
SUΞ−1UT

)
≤ 2Tr

(

F (k)T
U

)

+ Tr
(
G

(k)
jnt Ξ

)

+λ
(S)
maxTr

(
Ξ−1) + c5

(42)

where F (k) = (S − λ
(S)
maxIm )U (k)(Ξ(k))−1 and G

(k)
jnt =

−(Ξ(k))−1U (k)T
F (k) . The constant c5 is given by c5 =

−Tr(F (k)U (k)T
) − Tr(G(k)

jnt Ξ(k)).
We observe that now the variables are decoupled. Thus, by

combining the upper bounds for the second and the third term we
can derive the functions gu (·) and gξ (·), with H

(k)
jnt = H (k) +

F (k) . �
Now, in every MM iteration we need to solve the following

optimization problem:

minimize
U ,Ξ

gξ (Ξ) + gu (U)

subject to Ξ � 0,

ξi ≥ ξi+1 , i = 1, . . . , q − 1,

ξq ≥ ξq+i , i = 1, . . . ,m − q,

UT U = Im .

(43)

Since the variables are decoupled we can optimize each one
of them separately. The optimization problem for Ξ becomes:

minimize
ξ

m∑

i=1

(

log ξi + αiξi + λ(S)
max

1
ξi

)

subject to ξi ≥ ξi+1 , i = 1, . . . , q − 1,

ξq ≥ ξq+i , i = 1, . . . ,m − q,

(44)

where α = Diag(G(k)
jnt ).

The above problem is not convex. We can make it convex
though with the following simple variable transformation:

φ =
1
ξ
. (45)

Now, the problem becomes

minimize
φ

m∑

i=1

(

−log φi + αi
1
φi

+ λ(S)
maxφi

)

subject to φi ≤ φi+1 , i = 1, . . . , q − 1,

φq ≤ φq+i , i = 1, . . . , m − q,

(46)

which is in a convex form. Similar to the alternating optimiza-
tion case, the problem (46) does not have a closed form solution
and the computational cost increases significantly in high di-
mensions. Again, we can find an iterative closed form update of
the parameter α that will provide the optimal solution.

We start from the corresponding unconstrained problem
whose solution is

φ(0) =
1 +

√

1 + 4λ(S)
maxα(0)

2λ
(S)
max

, (47)

where α(0) = α. We can distinguish the same three cases as for
problem (26), where the set A now is given by

A =

{

ci

∣
∣
∣
∣
∣
α(k)

ci
≤ 1

r + l − i + 1

(
r∑

s=0

α
(k)
q−s +

l−i−1∑

s=0

α(k)
cl−s

) }

.

(48)
The procedure is summarized in Table II. We will refer to it

as JOCEφ hereafter.
Proposition 7: The iterative closed-form update procedure

given in Table II converges to the solution of problem (46).
Proof: The proof of Proposition 7 follows the same steps as

the proof of Proposition 3, thus it is omitted. �
Having obtained the optimal φ� , it is easy to retrieve ξ� from

(45).
The optimization problem for U is the following:

minimize
U

Tr

(

H
(k)
jnt

T
U

)

subject to UT U = Im .

(49)

Proposition 8: The optimal solution of the optimization
problem (49) is U � = V LV T

R , where V L ∈ Rm×m and V R ∈
Rm×m are the left and right singular vectors of the matrix
−H

(k)
jnt , respectively.

Proof: The proof comes directly from Lemma 2. �
In Algorithm 3 we summarize the above iterative procedure.

We will refer to it as JOCE.
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TABLE II
UPDATES AND OPTIMAL SOLUTION OF THE ITERATIVE PROCEDURE THAT SOLVES THE OPTIMIZATION PROBLEM (46)

Algorithm 3: JOCE - Joint Optimization for Covariance
Estimation for the Problem (36).

1: Set k = 0, choose U (0) ∈ {U |UT U = Iq}
2: repeat:
3: Compute φ(k+1) from Proposition 7
4: Compute H

(k)
jnt with (41)

5: Compute V L , V R , the left and right singular
vectors of −H

(k)
jnt , respectively

6: U (k+1) = V LV T
R

7: k ← k + 1
8: until convergence
9: Set ξ = 1

φ(k )

10: return U (k) , ξ

V. CONVERGENCE ANALYSIS

In this section we establish the convergence of the pro-
posed algorithms. Our proof hinges on the proofs of SUM and
BSUM in [36]. Denote the unitary constraint set U � {U ∈
Rm×q |UT U = Iq}, then it can be expressed as

U =

{

U

∣
∣
∣
∣
∣

hi (U) = 0, ∀i = 1, . . . , q

hij (U) = 0, ∀i < j ≤ q

}

, (50)

where hi(U) � uT
i ui , and hij (U) � uT

i uj .
Lemma 3: Linear independence constraint qualification

(LICQ) holds everywhere on set U .
Proof: Observe that vec (∇hi(U)) = [0; 2ui ;0] and

vec (∇gij (U)) = [0;uj ;0,ui ;0]. Partition the gradient
vectors into blocks of length m, we can see that ui appears
at the i-th block only in vector vec (∇hi(U)). Consequently,
vec (∇hi(U)) cannot be expressed as a linear combination
of the rest gradient vectors, since {u1 , . . . ,uq} are linearly
independent on set U . �

Proposition 9: The iterates generated by IMRP converge to
the set of KKT points of Problem (6).

Proof: Let Ū be a convergent point of the sequence
(U (k))k∈N , following the proof of Theorem 1 in [36] it is not

hard to arrive at

g
(
Ū |Ū

)
≥ g

(
U |Ū

)
, ∀U ∈ U , (51)

meaning Ū is a global mimimizer of the problem

maximize
U

g
(
U |Ū

)

subject to UT U = Iq .
(52)

Since LICQ holds on U (cf. Lemma 3), Ū satisfies the KKT
conditions of Problem (52), i.e.,

UT U = Iq , (53)

∇g
(
Ū |Ū

)
− 2Tr

(
ŪΨT

)
= 0, (54)

where Ψ is the Lagrange multiplier.
Replacing ∇g(Ū , Ū) in (54) by ∇fjnt(Ū) we conclude that

Ū is a KKT point of Problem (6). Since U is a compact set, the
rest of the proof follows from Corollary 1 in [36]. �

Note that LICQ also holds on set

S =

{

ξ

∣
∣
∣
∣
∣

ξ ≥ 0,
ξi ≥ ξi+1 , i = 1, . . . , q − 1,
ξq ≥ ξq+i , i = 1, . . . , m − q.

}

(55)

By the same reasoning, it can be proved that the iterates gener-
ated by Algorithm JOCE converges to the set of KKT points of
Problem (36).

Next, we show the convergence of AOCE for solving (11),
where U and λ are updated alternately.

Proposition 10: The iterates generated by Algorithm AOCE
converge to the set of KKT points of Problem (11).

Proof: First, it can be verified that the level set
{(Λ,U)|falt(Λ,U) ≤ falt(Λ(0) ,U (0))} is compact. Similar as
before, it can be shown that LICQ holds on the constraint set.
Furthermore, Problem (26) has a unique solution since the ob-
jective function is strictly convex.

Let (Λ̄, Ū) be a limit point of the sequence (Λ̄(k)
, Ū

(k))k∈N ,
following the proof of Theorem 2(b) in [36], it can be shown
that

g
(
Λ̄|Λ̄Ū

)
≤ g

(
Λ|Λ̄, Ū

)
, ∀Λ ∈ X , (56)

g
(
Ū |Λ̄, Ū

)
≤ g

(
U |Λ̄, Ū

)
, ∀U ∈ U , (57)
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where

X =

{

Λ

∣
∣
∣
∣
∣

Λ � 0,
λi ≤ λi+1 , i = 1, . . . , q − 1,
λq ≤ λq+i , i = 1, . . . ,m − q.

}

(58)

Similar to (50), we express the setX asX = {Λ|�i(Λ) ≤ 0, i =
1, . . . , 2m}. Then, (56) implies that Λ̄ satisfies

0 ≤ μi ⊥ �i (Λ) ≤ 0, ∀i = 1, . . . , 2m,

∇g
(
Λ̄|Λ̄, Ū

)
+

2m∑

i=1

μi∇�i

(
Λ̄

)
= 0,

(59)

where μi is the Lagrange multiplier which corresponds to the
constraint �i(Λ) ≤ 0. Eq. (57) implies

UT U = Iq ,

∇g
(
Ū |Ū

)
+ 2Tr

(
ŪΨT

)
= 0, (60)

where Ψ is the Lagrange multiplier.
Since ∇g(Λ̄|Λ̄, Ū) = ∇Λfalt(Λ̄, Ū) and ∇g(Ū |Λ̄, Ū) =

∇Ufalt(Λ̄, Ū), putting together (59) and (60) reveals that
(Λ̄, Ū) is a KKT point of the original problem (11). �

VI. ACCELERATION AND PARAMETER SELECTION

A. Acceleration

The derivation of all the proposed algorithms is based on the
minorization-majorization framework. In order to obtain surro-
gate functions that can be easily solved in closed-form we need
to minorize twice many terms of the original functions. This
can possibly lead to loose bounds which is associated with slow
convergence. Thus, in this section we describe an acceleration
scheme, called SQUAREM, that can improve significantly the
convergence speed of the proposed algorithms.

SQUAREM was originally proposed in [37] to accelerate EM
algorithms. Since MM is a generalization of EM and the update
rule of MM is just a fixed-point iteration like EM, we can easily
apply the SQUAREM acceleration method to MM algorithms
with minor modifications.

We denote by FIMRP(·) the fixed-point iteration map of
the IMRP algorithm, i.e., U (k+1) = FIMRP(U (k)), and by
IMRP(U (k)) the value of the objective function of (6) at the
k-th iteration. The general SQUAREM method can cause two
possible problems to the MM algorithms. First, the updated point
may violate the constraints. To solve this issue we can project
to the feasible set which in our case is the Stiefel manifold. The
projection is just a Procrustes problem with a closed form so-
lution. The second problem is that the acceleration may violate
the ascend property of the MM algorithm. For this reason, a
backtracking step is adopted halving the distance of the step-
length γ and −1. As γ → −1, IMRP(U (k+1)) ≥ IMRP(U (k))
is guaranteed to hold. The accelerated IMRP is summarized in
Algorithm 4.

We have presented the accelerated version only for the IMRP
algorithm. A similar technique may also be used for the AOCE
and JOCE algorithms. In particular, we can replace the part
that correspond to the eigenvector estimation with acceleration
steps similar to the ones in Algorithm 4. This procedure is
straightforward and therefore the details are omitted. In the rest
of the paper, when we refer to an algorithm we will mean the
accelerated version.

Algorithm 4: Accelerated IMRP.

1: Set k = 0, choose U (0) ∈ {U |UT U = Iq}
2: repeat:
3: U 1 = FIMRP(U (k))
4: U 2 = FIMRP(U 1)
5: R = U 1 − U (k)

6: V = U 2 − U 1 − R

7: Compute the step-length γ = −‖R‖F

‖V ‖F

8: U = U (k) − 2γR + γ2V
9: U = U lU

T
r , where U l ,U r are the left and right

singular vectors of U , respectively (projection)
10: while IMRP(U) < IMRP(U (k))
11: γ ← (γ − 1)/2
12: U = U (k) − 2γR + γ2V
13: U = U lU

T
r (projection)

14: end while
15: U (k+1) = U
16: k ← k + 1
17: until convergence
18: return U (k)

Fig. 2. Approximation of the �0 norm via the gε
p (·) function for different

values of p, ε.

B. �0 Approximation Parameters

In all proposed algorithms we have used the function gε
p(·)

given in (5) as a smooth proxy of the �0 norm. The smaller
the parameters p, ε are, the better the approximation of the �0
norm is. This can be seen in Fig. 2, where we have depicted the
function gε

p(·) for decreasing values of p, ε.
In practice, as p, ε → 0, it is likely that the algorithm will

get stuck in an undesirable local minimum [15], [29]. A good
strategy (that we adopt) is a sequentially decreasing scheme,
i.e., first solve the problem for large (and fixed) values of p, ε
and then decrease their values and solve the problem again using
the previous solution as an initial point.

C. Sparsity Inducing Parameters

Every eigenvector is associated with a different sparsity in-
ducing parameter ρi . Following [11], we set the range of these
parameters to [0, ρi

w‖C‖2
2,1 ]. Here, ‖C‖2

2,1 is the operator norm
induced by ‖ · ‖2 and ‖ · ‖1 that is equivalent to the maximum �2
norm of the columns of the data matrix C. The specific weight
of each ρi is defined as ρi

w = (λidi)/(λ1d1), where λi is the
i-th largest eigenvalue of the sample covariance matrix S and
di is the i-th diagonal element of matrix D.
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Fig. 3. Minimum angle vs normalized regularization parameter.

VII. NUMERICAL EXPERIMENTS

All the experiments were performed on a PC with a 3.20 GHz
i5-4570 CPU and 8 GB RAM.

A. Random Data Drawn from a Sparse PCA Model

In the first experiment we compare the performance of
the proposed IMRP algorithm with the benchmark algorithms
GPower�0 proposed in [11] and ITSPCA proposed in [14]. Note
that all four GPower algorithms that are proposed in [11] have
very similar performance in terms of chance of recovery and per-
centage of explained variance. Thus, it is sufficient to consider
only one of them.

We first examine the orthogonality of the estimated sparse
eigenvectors. We define the angle between eigenvectors i, j as:

θij = min
(
|arccos

(
vT

i vj

)
|, 180o − |arccos

(
vT

i vj

)
|
)
. (61)

We consider a setup with dimension m = 500 and n = 50 sam-
ples. We construct 100 covariance matrices Σ through their
eigenvalue decomposition Σ = V diag(λ)V T , where the first
k = 5 columns of V ∈ Rm×m are of the following form:

{
vij �= 0, for i = 1, . . . , 10, j = 1, . . . , 5,
vij = 0, otherwise, (62)

where the non-zero values are such that the eigenvectors are or-
thonormal. The remaining eigenvectors are generated randomly,
satisfying the orthogonality property. The eigenvalues are set to
be λi = 100(k − i + 1) for i = 1, . . . , 5, and the rest are set to
one.

For each of the covariance matrix Σ, we randomly gener-
ate 50 data matrices A ∈ Rm×n by drawing n samples from a
zero-mean normal distribution with covariance matrix Σ, i.e.,
i.e., ai ∼ N (0,Σ), for i = 1, . . . , n. Then we employ the two
algorithms to compute the first two and the first five sparse
eigenvectors. In Fig. 3, the minimum angle between any two
eigenvectors, i.e., mini,j (θi,j ) for a wide range of the regulariza-
tion parameter ρ is depicted. It is clear that the proposed IMRP
algorithm (after thresholding) and ITSPCA are orthogonal1 for
any choice of ρ, while for the GPower�0 algorithm the are cases
that the estimated eigenvectors have angle less than 55o . For
large values of ρ, GPower�0 gives orthogonal results since the

1Orthogonality in the sense that |uT
i uj | ≤ ε, with i �= j , where in the worst

case ε is in the order of the selected threshold t. For example, for t = 10−12 ,
the inner product |uT

i uj | is effectively zero for all practical purposes.

Fig. 4. Chance of exact recovery vs normalized regularization parameter.

sparsity level is high and the estimated eigenvectors do not have
overlapping support.

Now, to illustrate the sparse recovering performance of our al-
gorithm we generate synthetic data as in [11], [13], [15]. To this
end, we construct a covariance matrix Σ through the eigenvalue
decomposition Σ = V diag(λ)V T , where the first q columns of
V ∈ Rm×m have a pre-specified sparse structure. We consider
a setup with m = 500, n = 50 and q = 2. We set the first two
orthonormal eigenvectors to be

{
vi1 = 1√

10
, for i = 1, . . . , 10,

vi1 = 0, otherwise,
{

vi2 = 1√
10

, for i = 11, . . . , 20,

vi2 = 0, otherwise.

(63)

The remaining eigenvectors are generated randomly, satisfying
the orthogonality property. We set the eigenvalues to be λ1 =
400, λ2 = 300 and λi = 1 for i = 3, . . . , 500. The parameters
of the IMRP algorithm are chosen according to Section VI with
d = [1, 0.5].

We randomly generate 500 data matrices A ∈ Rm×n by
drawing n samples from a zero-mean normal distribution with
covariance matrix Σ, i.e., ai ∼ N (0,Σ), for i = 1, . . . , n.
Then, we employ the two algorithms to compute the two leading
sparse eigenvectors u1 ,u2 ∈ R500 . We consider a successful re-
covery when both quantities |uT

1 v1 | and |uT
2 v2 | are greater than

0.99.
The chance of successful recovery over a wide range of the

regularization parameters ρi is plotted in Fig. 4. It is clear that
the proposed IMRP algorithm achieves a significantly higher
chance of exact recovery for a wide range of the parameters,
while the ITSPCA algorithm that also preserves orthogonality
exhibits a degraded performance.

B. Gene Expression Data

In this subsection we compare the performance of the two al-
gorithms on the gene expression dataset collected in the breast
cancer study by Bild et al. [38]. The dataset contains 158 sam-
ples over 12,625 genes. We consider the 2,000 genes with the
largest variances and we estimate the first 5 eigenvectors.

Notice that due to the orthogonality constraints, increasing
the cardinality does not necessarily mean that the CPEV will
increase. To this end, for a fixed cardinality, we depict the max-
imum variance being explained from the sparse eigenvectors up
to this cardinality. Thus, the CPEV for cardinality i, denoted as
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Fig. 5. CPEV vs cardinality.

Fig. 6. Average running time of IMRP, GPower�0 and ITSPCA with increas-
ing dimension m. We estimate q = 5 and q = 10 eigenvectors.

CPEVi , is being post-processed as follows:

CPEVi = max(CPEVi , CPEVi−1). (64)

In Fig. 5 we illustrate the cumulative percentage of explained
variance, computed by Eq. (25) and post-processed by (64),
versus the total cardinality of the estimated eigenvectors for
the IMRP, ITSPCA and GPower�0 algorithms. For maximum
cardinality the percentage of explained variance becomes 1 for
all algorithms. For small cardinalities, IMRP dominates all the
other algorithms, while ITSPCA performs worse than IMRP and
GPrower�0 in most of the range of cardinalities. For comparison
we have also included the simple thresholding scheme which
first computes the regular principal component and then keeps
a required number of entries with the largest absolute values.

C. Computational Complexity

In this experiment we compare the computational complex-
ity of IMRP, GPower�0 and ITSPCA algorithms. We consider
the setup of Section VII-A where we create a covariance ma-
trix through its eigenvalue decomposition. We predefine the first
k = 10 eigenvectors in a similar manner as in (63), while we
set the eigenvalues to be λi = 100(k − i + 1) for i = 1, . . . , 10,
and we fix the rest to one. For a given dimension m we randomly
generate 100 data matrices A ∈ Rm×n , where n = 0.1m. The
sparsity inducing parameters of each algorithm are chosen
such that the solutions of all the algorithms exhibit similar
cardinalities.

The average running time over the 100 independent trials for
each dimension m is shown in Fig. 6. We considered the esti-
mation of the first q = 5 and q = 10 eigenvectors of the above
model. We observe that although the GPower�0 is faster than

Fig. 7. Average running time of AOCEλ, JOCEφ , MSKλ and MSKφ with
increasing dimension m.

IMRP and ITSPCA, it is significantly affected by the number
of estimated eigenvectors q. On the other hand, IMRP and IT-
SPCA seem to be affected by q only in small dimensions. In
practice, although slightly slower, IMRP can be used for very
high dimensional problems, especially since it increases the
estimation performance. For example, as shown in Fig. 6, for
dimension m = 104 the average running time of IMRP is less
that 5 seconds when simulated on our computing system.

D. Covariance Estimation

The main idea behind the AOCE and JOCE algorithms pre-
sented in Section IV is to estimate a covariance matrix by esti-
mating its eigenvalues and eigenvectors. Consequently, one step
of these algorithms corresponds to the eigenvalue estimation
problem which involves the optimization of a separable convex
objective function with ordering constraints. Although these
problems are convex and can be solved directly with a solver,
we presented two iterative algorithms, AOCEλ and JOCEφ , with
a closed-form update. In this section we examine the benefit of
these algorithms in terms of average running time compared to
the MOSEK solver.

For a given dimension m we randomly generate 500 pa-
rameters of each optimization problem, i.e., z for AOCEλ and
α, λ

(S)
max for JOCEφ . Each parameter zi, αi, for i = 1, . . . ,m, is

generated based on a uniform distribution in the interval (0, 1),
while λ

(S)
max is uniformly distributed in the interval (100, 200).

Fig. 7 illustrates the average running time of the algorithms
AOCEλ, JOCEφ and the corresponding MOSEK implementa-
tions of the problems (26) and (46), denoted as MSKλ and
MSKφ , respectively. It is clear that the proposed algorithms are
more than one order of magnitude faster.

Now, we examine the covariance estimation performance of
the proposed AOCE and JOCE algorithms. In this experiment
we consider again the setting and data generation process of
Section VII-A, with the only difference that we reduce the di-
mension to m = 200. We compute the relative mean square
error (RelMSE) for each algorithm, defined as

RelMSE(Ŝ) = 1 − MSE(Ŝ)
MSE (S)

, (65)

where MSE(X) = ‖X − Σ‖2
F , while Ŝ is the estimated co-

variance matrix from the two algorithms and S is the sample
covariance matrix.

In Fig. 8 we observe that AOCE outperforms JOCE when a
low number of samples is available, while after one point the
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Fig. 8. RelMSE vs number of samples.

two algorithms have the same performance. Both the algorithms
improve significantly the estimation of the covariance matrix.
For example, when n = m, the improvement is approximately
35%. For n ≤ m, instead of S we use Ssh as defined in (12).
The parameter δ is chosen based on a grid search. For this case,
in order to show that the improvement in estimation is not due
to shrinkage, we include the RMSE for Ssh. It is clear from the
plot that the improvement from shrinkage is approximately 5%.
This explains the slight estimation improvement of AOCE and
JOCE for n ≤ m.

VIII. CONCLUSIONS

In this paper, we proposed a new algorithm (IMRP) for the
sparse eigenvector extraction problem. The algorithm is derived
based on the minorization-majorization method that was applied
after a smooth approximation of the sparsity inducing �0-norm.
Unlike the vast majority of the state of the art methods, the sparse
eigenvectors obtained by our proposed method maintain their
orthogonality property. Further, we consider the problem of co-
variance estimation where the underlying structure of its eigen-
vectors is sparse. We formed a covariance estimation problem
using the eigenvalue decomposition and we imposed sparsity
on some of the principal eigenvectors to improve the estima-
tion performance. We have proposed two algorithms (AOCE
and JOCE) based on the MM framework to efficiently solve
the above problem. Numerical experiments have shown that
IMRP outperforms existing algorithms while AOCE and JOCE
improve significantly the estimation of the covariance matrix
when its eigenvectors have a sparse structure.

APPENDIX A
PROOF OF LEMMA 1

Proof: Following the same approach as [15], we can bound
the function

∑q
i=1 ρi

∑m
j=1 gε

p(uij ) with a weighted quadratic
one. Based on the results of [15] and by incorporating the spar-
sity parameters ρi to the corresponding weights, it holds that

q∑

i=1

ρi

m∑

j=1

gε
p (uij ) ≤ vec(U)T diag (w) vec(U),

with the weights w ∈ Rmq
+ given by (16). Now, the idea is

to create a concave term and linearize it since the linear ap-
proximation of a concave function is an upper bound of the
function. We define wmax ∈ Rq

+ , with wmax,i being the maxi-
mum weight that corresponds to the i-th eigenvector. For con-
venience we further define u = vec(U), W d = diag(w) and

W m = diag(wmax ⊗ 1m ). Now, we can bound the weighted
quadratic function as follows:

uT W du = uT (W d − W m ) u + uT W m u

= uT (W d − W m ) u + 1T
m wmax

≤ uT
0 (W d − W m ) u0 + 2uT

0 (W d − W m )

× (u − u0) + 1T
m wmax

= 2uT
0 (W d − W m ) u − uT

0 W du0

+ 2
(
1T

m wmax
)

= 2Tr
(
HT U

)
+ 2

(
1T

m wmax
)
− uT

0 W du0 ,

where H = [(W d − W m )u0 ]m×q . �

APPENDIX B
PROOF OF PROPOSITION 3

Proof: For convenience, in all the proofs we drop the su-
perscript (k) that denotes the current iteration. We denote the
updates of z by z̄, i.e., if z = z(k) then z̄ = z(k+1) . The
Lagrangian of the optimization problem (26) is

L(λ,μ,ν) = −
m∑

i=1

log λi +
m∑

i=1

ziλi +
q−1∑

i=1

μi(λi − λi+1)

+
m−q∑

i=1

νq+i(λq − λq+i), (66)

with λ ∈ Rm
+ , μ ∈ Rq−1

+ and ν ∈ Rm−q
+ . Now, we can derive

the following Karush-Kuhn-Tucker (KKT) conditions [39]:

− 1
λ1

+ z1 + μ1 = 0, (67)

− 1
λi

+ zi + μi − μi−1 = 0, i = 2, . . . , q − 1, (68)

− 1
λq

+ zq − μq−1 +
m−q∑

i=1

νi = 0, (69)

− 1
λq+i

+ zq+i − νq+i = 0, i = 1, . . . , m − q, (70)

λi − λi+1 ≤ 0, i = 1, . . . , q − 1, (71)

λq − λq+i ≤ 0, i = 1, . . . , m − q, (72)

μi ≥ 0, i = 1, . . . , q − 1, (73)

νq+i ≥ 0, i = 1, . . . , m − q, (74)

μi(λi − λi+1) = 0, i = 1, . . . , q − 1, (75)

νq+i(λq − λq+i) = 0, i = 1, . . . , m − q. (76)

As a first result we can state the following lemma:
Lemma 4: The solution of the KKT system (67)-(76) is

λi = 1
zi

, for i = 1, . . . , m, if the following conditions hold:

zi ≥ zi+1 , i = 1, . . . , q − 1, (77)

zq ≥ zq+i , i = 1, . . . ,m − q. (78)

In this case all the Lagrange multipliers are zero.
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Proof: It is straightforward that if inequalities (77) and (78)
hold, then the solutions of the primal and dual variables given
in the above lemma satisfy all equations. Since the problem is
convex, this solution is the optimal. �

We can interpret Lemma 4 as follows: if the unconstrained
problem has an optimal solution that is inside the feasible region
of the constrained problem, then it is also the optimal solution
of the constrained problem. Now, if the conditions of Lemma
4 do not hold, the solution of the unconstrained problem will
violate a set of inequality constraints. We can distinguish two
different types of violations.

(a) Violations in the first q eigenvalues: Here, we consider
the case where the solution of the unconstrained problem vio-
lates the ordering constraints of the first q eigenvalues (Case 2
of Table I). In this case, we need to update the parameters z
according to the following Lemma:

Lemma 5: For any block of r consecutive inequality viola-
tions between the first q eigenvalues, i.e., ∀j, r, with j + r ≤ q,
that the following conditions hold

zj−1 > zj , if j > 1, (79)

zi ≤ zi+1 , i = j, . . . , j + r − 1, (80)

{
zj+r > zj+r+1 , if j + r < q,

zq > zq+i , i = 1, . . . , m − q, if j + r = q,
(81)

where at least one inequality of (80) is strict, the update of the
corresponding block of z is

z̄i =
1

r + 1

r∑

s=0

zj+s , i = j, . . . , j + r. (82)

The new KKT system with the updated parameters has the same
solution as the original one.

Proof: See Appendix C. �
(b) Violations including a set of the last m − q eigenvalues:

Since we do not impose ordering on the m − q last eigenvalues,
any of them could violate the inequality with λq and not only
the neighboring ones. Thus, we use the indices c1 , . . . , ck , with
ci > q, for i = 1, . . . , l, and ci ∈ C, with C the set of indices of
the eigenvalues that violate the inequality constraints with λq .
We further denote by A ⊆ C the set of indices of the active dual
variables ν, i.e., ai ∈ A if νai

> 0. We assume that card(A) =
p ≤ l. For this type of violations (Case 3 of Table I), the solution
is given from the following lemma:

Lemma 6: For any block of r + l consecutive inequality
violations between the last r + 1 ordered and a set of l un-
ordered eigenvalues, i.e., ∀r, l, that the following conditions
hold

zq−r−1 > zq−r , (83)

zq−i ≤ zq−i+1 , i = 1, . . . , r, (84)

zq ≤ zci
, i = 1, . . . , l, (85)

zq > zi, i ∈ [q + 1 : m] \ C, (86)

where at least one inequality of (85) is strict, the update of the
corresponding block of z is
⎧
⎨

⎩
z̄i = 1

r+p+1

(
r∑

s=0
zq−s +

p∑

s=1
zas

)

, i ∈ [q − r : q]
⋃

A,

z̄i = zi, i ∈ C \ A.
(87)

The set A is given by

A =

{

ci

∣
∣
∣
∣
∣
zci

≥ 1
r + l − i + 1

(
r∑

s=0

zq−s +
l−i−1∑

s=0

zcl−s

)}

.

(88)
The new KKT system with the updated parameters has the same
solution as the original one.

Proof: See Appendix D. �
After applying Lemma 5 and/or 6, the new KKT system, apart

from equivalent to the original, it further has the exact same
form. Thus, we can apply Lemmas 4-6 to the updated system
of equations, until we obtain the optimal solution. Since, the
original KKT system has m primal and m − 1 dual variables
and in every iteration we effectively remove at least one primal
and one dual variable (see Appendix D), we need at most m − 1
iterations. However, it is easy to see that the algorithm finishes
in at most min(2q − 1,m − 1) steps. �

APPENDIX C
PROOF OF LEMMA 5

Proof: First, we will prove that when an inequality is vio-
lated, then the corresponding eigenvalues become equal. As-
sume that zk < zk+1 , with j ≤ k < k + 1 ≤ j + r. The KKT
conditions for this pair are:

− 1
λk

+ zk + μk − μk−1 = 0, (89)

− 1
λk+1

+ zk+1 + μk+1 − μk = 0, (90)

λk − λk+1 ≤ 0, (91)

μk ≥ 0, (92)

μk (λk − λk+1) = 0. (93)

If we subtract the first two equations we get:

2μk = zk+1 − zk +
1
λk

− 1
λk+1

+ μk+1 + μk−1 . (94)

The right hand side of the above equation is strictly posi-
tive since zk+1 − zk > 0, 1

λk
− 1

λk + 1
≥ 0 and μk+1 , μk−1 ≥ 0.

Thus, μk > 0 and from (93) it holds that λk = λk+1 . In a similar
manner, and using that μk > 0, it is easy to prove that μi > 0,
with i = j, . . . , j + r − 1, which means that λj = · · · = λj+r .

Having proved the equality of the eigenvalues and that
μ[j :j+r−1] > 0, it is straightforward that the primal feasibil-
ity, dual feasibility and complementary slackness are trivially
satisfied for this block. Further, the r + 1 equations of the partial
derivative of the Lagrangian reduce to

− 1
λi

+ z̄i +
1

r + 1
(μj+r − μj−1) = 0, i = j, . . . , j + r,

(95)
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with z̄i given by (82). We can treat (95) as only one equation
since it is repeated r + 1 times. Effectively, we have removed r
primal and r dual variables. It is clear that every solution of the
reduced set of KKT conditions, is a solution for the original set
of KKT conditions. �

APPENDIX D
PROOF OF LEMMA 6

Proof: We write the KKT conditions for the corresponding
block in the following form:

− 1
λi

+ zi + μi − μi−1 = 0,

i = q − r, . . . , q − 1, (96)

− 1
λq

+ zq − μq−1 +
m−q∑

i=1

νq+i = 0, (97)

− 1
λai

+ zai
− νai

= 0, ai ∈ A, (98)

− 1
λdi

+ zdi
− νdi

= 0, di ∈ C \ A, (99)

λi − λi+1 ≤ 0,

i = q − r, . . . , q − 1, (100)

λq − λai
≤ 0, ai ∈ A (101)

λq − λdi
≤ 0, di ∈ C \ A, (102)

μi ≥ 0,

i = q − r, . . . , q − 1, (103)

νq+ai
≥ 0, ai ∈ A, (104)

νq+di
≥ 0, di ∈ C \ A, (105)

μi(λi − λi+1) = 0,

i = q − r, . . . , q − 1, (106)

νai
(λq − λai

) = 0, ai ∈ A, (107)

νdi
(λq − λdi

) = 0, ai ∈ C \ A. (108)

As in the proof of Lemma 5, it is easy to show that μi >
0, for i = q − r, . . . , q − 1. This means that λq−r = · · · = λq .
Further, assuming that we know the set A, since νai

> 0, from
complementary slackness we get that λq = λai

, ∀ai ∈ A.
Again, having proved the equality of the eigenvalues, and

that μ[q−r :q−1] > 0, νai
> 0 for ai ∈ A, it is straightforward

that equations (100), (101), (103), (104), (106) and (107) are
trivially satisfied.

The equations (96)-(99) reduce to

− 1
λi

+ z̄i +
1

r + p + 1

⎛

⎝
∑

di ∈C\A
νdi

− μq−r−1

⎞

⎠ = 0, (109)

for i ∈ [q − r : q] ∪ A and

− 1
λdi

+ zdi
− νdi

= 0, (110)

for di ∈ C \ A, where z̄i is given by (87). Assuming that
card(A) = p, we can treat (109) as only one equation since

it is repeated r + p + 1 times. Effectively, we have removed
r + p primal and r + p dual variables. It is clear that every so-
lution of the reduced set of KKT conditions, is a solution for the
original set of KKT conditions.

Now, we will prove that the indices of the active dual variables
ν for this iteration are given by (88).

We consider the case where zq ≤ zc1 ≤ · · · ≤ zcl
, where at

least one inequality is strict. We assume that we know the active
set of this and any further iteration. First, we will prove by
contradiction that cl ∈ A.

Assume that cl /∈ A. Since z̄q will be the average of zi’s that
are less or equal to zcl

, with at least one zi strictly smaller, it
holds that z̄q < zcl

. Now, by adding (97) and (98), and subtract-
ing the partial derivative of the Lagrangian corresponding to cl ,
we get:

− 1
λq

+
1

λcl

+ z̄q − zcl
− μq−r−1 = 0. (111)

The last equation implies that μq−r−1 < 0 should hold which is
not valid. Thus, cl ∈ A holds.

Having proved that cl ∈ A and that μ[q−r :q−1] > 0, if the
average of z[q−r :q−1] and zcl

is less or equal to zcl−1 , following
the same arguments we can show that cl−1 ∈ A. Generalizing
this result, ci ∈ A if the following condition is true:

zci
≥ 1

r + l − i + 1

(
r∑

s=0

zq−s +
l−i−1∑

s=0

zcl−s

)

(112)

Assuming that card(A) = p, the above results states that only
the p largest indices of C will belong in the active set A, i.e.,
ci ∈ A, for i = l − p + 1, . . . , l. Thus, in order to find the active
set, we need to find all the indices that zci

≥ z̄q is true, where
z̄q is the average of z[q−r :q ] and z[ci + 1 :ck ] , as given in (87). �
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