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Abstract

Financial engineering and electrical engineering are seemingly differ-
ent areas that share strong underlying connections. Both areas rely
on statistical analysis and modeling of systems; either modeling the
financial markets or modeling, say, wireless communication channels.
Having a model of reality allows us to make predictions and to optimize
the strategies. It is as important to optimize our investment strategies
in a financial market as it is to optimize the signal transmitted by an
antenna in a wireless link.

This monograph provides a survey of financial engineering from a
signal processing perspective, that is, it reviews financial modeling, the
design of quantitative investment strategies, and order execution with
comparison to seemingly different problems in signal processing and
communication systems, such as signal modeling, filter/beamforming
design, network scheduling, and power allocation.

Y. Feng and D. P. Palomar. A Signal Processing Perspective on Financial
Engineering. Foundations and TrendsR© in Signal Processing, vol. 9, no. 1-2,
pp. 1–231, 2015.
DOI: 10.1561/2000000072.



1
Introduction

Despite the different natures of financial engineering and electrical engi-
neering, both areas are intimately connected on a mathematical level.
The foundations of financial engineering lie on the statistical analy-
sis of numerical time series and the modeling of the behavior of the
financial markets in order to perform predictions and systematically
optimize investment strategies. Similarly, the foundations of electrical
engineering, for instance, wireless communication systems, lie on statis-
tical signal processing and the modeling of communication channels in
order to perform predictions and systematically optimize transmission
strategies. Both foundations are the same in disguise.

This observation immediately prompts the question of whether both
areas can benefit from each other. It is often the case in science that the
same or very similar methodologies are developed and applied indepen-
dently in different areas. The purpose of this monograph is to explore
such connections and to capitalize on the existing mathematical tools
developed in wireless communications and signal processing to solve
real-life problems arising in the financial markets in an unprecedented
way.
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Thus, this monograph is about investment in financial assets treated
as a signal processing and optimization problem. An investment is the
current commitment of resources in the expectation of reaping future
benefits. In financial markets, such resources usually take the form of
money and thus the investment is the present commitment of money
in order to reap (hopefully more) money later [27]. The carriers of
money in financial markets are usually referred to as financial assets.
There are various classes of financial assets, namely, equity securities
(e.g., common stocks), exchange-traded funds (ETFs), market indexes,
commodities, exchanges rates, fixed-income securities, derivatives (e.g.,
options and futures), etc. A detailed description of each kind of asset
is well documented, e.g., [27, 103]. For different kinds of assets, the key
quantities of interest are not the same; for example, for equity securities
the quantities of interest are the compounded returns or log-returns;
for fixed-income securities they are the changes in yield to maturity;
and for options they are changes in the rolling at-the-money forward
implied volatility [143].

Roughly speaking, there are three families of investment philoso-
phies: fundamental analysis, technical analysis, and quantitative analy-
sis. Fundamental analysis uses financial and economical measures, such
as earnings, dividend yields, expectations of future interest rates, and
management, to determine the value of each share of the company’s
stocks and then recommends purchasing the stocks if the estimated
value exceeds the current stock price [88, 89]. Warren Buffett of Berk-
shire Hathaway is probably the most famous practitioner of fundamen-
tal analysis [91]. Technical analysis, also known as “charting,” is essen-
tially the search for patterns in one dimensional charts of the prices of a
stock. In a way, it pretends to be a scientific analysis of patterns (similar
to machine learning) but generally implemented in an unscientific and
anecdotal way with a low predictive power, as detailed in [132]. Quanti-
tative analysis applies quantitative (namely scientific or mathematical)
tools to discover the predictive patterns from financial data [128]. To
put this in perspective with the previous approach, technical analysis
is to quantitative analysis what astrology is to astronomy. The pioneer
of the quantitative investment approach is Edward O. Thorp, who used
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his knowledge of probability and statistics in the stock markets and has
made a significant fortune since the late 1960s [193]. Quantitative anal-
ysis has become more and more widely used since advanced computer
science technology has enabled practitioners to apply complex quan-
titative techniques to reap many more rewards more efficiently and
more frequently in practice [4]. In fact, one could even go further to
say that algorithmic trading has been one of the main driving forces in
the technological advancement of computers. Some institutional hedge
fund firms that rely on quantitative analysis include Renaissance Tech-
nologies, AQR Capital, Winton Capital Management, and D. E. Shaw
& Co., to name a few.

In this monograph, we will focus on the quantitative analysis of eq-
uity securities since they are the simplest and easiest accessible assets.
As we will discover, many quantitative techniques employed in signal
processing methods may be applicable in quantitative investment. Nev-
ertheless, the discussion in this monograph can be easily extended to
some other tradeable assets such as commodities, ETFs, and futures.

Thus, to explore the multiple connections between quantitative in-
vestment in financial engineering and areas in signal processing and
communications, we will show how to capitalize on existing mathemat-
ical tools and methodologies that have been developed and are widely
applied in the context of signal processing applications to solve prob-
lems in the field of portfolio optimization and investment management
in quantitative finance. In particular, we will explore financial engineer-
ing in several respects: i) we will provide the fundamentals of market
data modeling and asset return predictability, as well as outline state-
of-the-art methodologies for the estimation and forecasting of portfolio
design parameters in realistic, non-frictionless financial markets; ii) we
will present the problem of optimal portfolio construction, elaborate
on advanced optimization issues, and make the connections between
portfolio optimization and filter/beamforming design in signal process-
ing; iii) we will reveal the theoretical mechanisms underlying the design
and evaluation of statistical arbitrage trading strategies from a signal
processing perspective based on multivariate data analysis and time
series modeling; and iv) we will discuss the optimal order execution
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and compare it with network scheduling in sensor networks and power
allocation in communication systems.

We hope this monograph can provide more straightforward and sys-
tematic access to financial engineering for researchers in signal process-
ing and communication societies1 so that they can understand prob-
lems in financial engineering more easily and may even apply signal
processing techniques to handle financial problems.

In the following content of this introduction, we first introduce fi-
nancial engineering from a signal processing perspective and then make
connections between problems arising in financial engineering and those
arising in different areas of signal processing and communication sys-
tems. At the end, the outline of the monograph is detailed.

1.1 A Signal Processing Perspective on Financial Engineer-
ing

Figure 1.1 summarizes the procedure of quantitative investment.
Roughly speaking and oversimplifying, there are three main steps
(shown in Figure 1.1):

• financial modeling: modeling a very noisy financial time series to
decompose it into trend and noise components;

• portfolio design: designing quantitative investment strategies
based on the estimated financial models to optimize some pre-
ferred criterion; and

• order execution: properly executing the orders to establish or un-
wind positions of the designed portfolio in an optimal way.

In the following, we will further elaborate the above three steps from
a signal processing perspective.

1There have been some initiatives in Signal Processing journals on the financial
engineering topic, namely, the 2011 IEEE Signal Processing Magazine - Special Issue
on Signal Processing for Financial Applications, the 2012 IEEE Journal of Selected
Topics in Sginal Processing - Special Issue on Signal Processing Methods in Finance
and Electronic Trading, and the 2016 IEEE Journal of Selected Topics in Signal
Processing - Special Issue on Financial Signal Processing and Machine Learning for
Electronic Trading.
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Financial Modeling

Portfolio Optimization

(Risk-Return Trade-Off)

Order Execution

Statistical Arbitrage

(Mean-Reversion)

Investment Strategies

Figure 1.1: Block diagram of quantitative investment in financial engineering.

1.1.1 Financial Modeling

For equity securities, the log-prices (i.e., the logarithm of the prices)
and the compounded returns or log-returns (i.e., the differences of the
log-prices) are the quantities of interest. From a signal processing per-
spective, a log-price sequence can be decomposed into two parts: trend
and noise components, which are also referred to as market and idiosyn-
cratic components, respectively. The purpose of financial modeling or
signal modeling is to decompose the trend components from the noisy
financial series. Then based on the constructed financial models, one
can properly design some quantitative investment strategies for future
benefits [196, 129, 143].

For instance, a simple and popular financial model of the log-price
series is the following random walk with drift:

yt = µ+ yt−1 + wt, (1.1)

where yt is the log-price at discrete-time t, {wt} is a zero-mean white
noise series, and the constant term µ represents the time trend of the
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Figure 1.2: The decomposition of the log-price sequence of the S&P 500 Index into
time trend component, and the component without time trend (i.e., the accumulative
noise).

log-price yt since E [yt − yt−1] = µ, which is usually referred to as drift.
Based on model (1.1), we can see the trend signal and noise com-

ponents in the log-prices more clearly by rewriting yt as follows:

yt = µt+ y0 +
t∑
i=1

wi, (1.2)

where the term µt denotes the trend (e.g., uptrend if µ > 0, downtrend
if µ < 0, or no trend if µ = 0), and the term

∑t
i=1wi denotes the

accumulative noise as time evolves.
Figure 1.2 shows the weekly log-prices of the S&P 500 index from

04-Jan-2010 to 04-Feb-2015 (the log-prices are shifted down so that
the initial log-price is zero, i.e., y0 = 0), where the estimated drift is
µ = 0.0022. Obviously, we observe two patterns: first, there exists a
significant uptrend since 2010 in the US market (see the dashed red



8 Introduction

line µt); and second, the accumulative noise in the log-prices is not
steady and looks like a random walk (see the solid gray line for the
accumulative noise

∑t
i=1wi = yt − µt).

1.1.2 Quantitative Investment

Once the specific financial model is calibrated from the financial time
series, the next question is how to utilize such a calibrated financial
model to invest. As mentioned before, one widely employed approach
is to apply quantitative techniques to design the investment strategies,
i.e., the quantitative investment [65, 128, 64, 143].

Figure 1.2 shows that there are two main components in a finan-
cial series: trend and noise. Correspondingly, there are two main types
of quantitative investment strategies based on the two components: a
trend-based approach, termed risk-return trade-off investment; and a
noise-based approach, termed mean-reversion investment.

The trend-based risk-return trade-off investment tends to maximize
the expected portfolio return while keeping the risk low; however, this
is easier said than done because of the sensitivity to the imperfect
estimation of the drift component and the covariance matrix of the
noise component of multiple assets. In practice, one needs to consider
the parameter estimation errors in the problem formulation to design
the portfolio in a robust way. Traditionally, the variance of the portfolio
return is taken as a measure of risk, and the method is thus referred
to as “mean-variance portfolio optimization” in the financial literature
[135, 137, 138]. From the signal processing perspective, interestingly,
the design of a mean-variance portfolio is mathematically identical to
the design of a filter in signal processing or the design of beamforming
in wireless multi-antenna communication systems [123, 149, 213].

The noise-based mean-reversion investment aims at seeking prof-
itability based on the noise component. For clarity of presentation, let
us use a simple example of only two stocks to illustrate the rough idea.
Suppose the log-price sequences of the two stocks are cointegrated (i.e.,
they share the same stochastic drift), at some point in time if one stock
moves up while the other moves down, then people can short-sell the
first overperforming stock and long/buy the second underperforming
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stock2, betting that the deviation between the two stocks will eventu-
ally diminish. This idea can be generalized from only two stocks to a
larger number of stocks to create more profitable opportunities. This
type of quantitative investment is often referred to as “pairs trading”,
or more generally, “statistical arbitrage” in the literature [160, 203].

1.1.3 Order Execution

Ideally, after one has made a prediction and designed a portfolio, the
execution should be a seamless part of the process. However, in practice,
the process of executing the orders affects the original predictions in
the wrong way, i.e., the achieved prices of the executed orders will
be worse than what they should have been. This detrimental effect
is called market impact. Since it has been shown that smaller orders
have a much smaller market impact, a natural idea to execute a large
order is to partition it into many small pieces and then execute them
sequentially [8, 18, 78, 146].

Interestingly, the order execution problem is close to many other
scheduling and optimization problems in signal processing and com-
munication systems. From a dynamic control point of view, the order
execution problem is quite similar to sensor scheduling in dynamic wire-
less sensor networks [180, 181, 208]. From an optimization point of view,
distributing a large order into many smaller sized orders over a certain
time window [8, 79] corresponds to allocating total power over differ-
ent communication channels in broadcasting networks [198] or wireless
sensor networks [214].

1.2 Connections between Financial Engineering and Areas in
Signal Processing and Communication Systems

We have already briefly introduced the main components of financial
engineering from a signal processing perspective. In the following we
make several specific connections between financial engineering and
areas in signal processing and communication systems.

2In financial engineering, to “long” means simply to buy financial instruments,
to “short-sell” (or simply, to “short”) means to sell financial instruments that are
not currently owned.
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Modeling. One of the most popular models used in financial engineer-
ing is the autoregressive moving average (ARMA) model. It models the
current observation (e.g., today’s return) as the weighted summation
of a linear combination of previous observations (e.g., several previous
days’ returns) and a moving average of the current and several previ-
ous noise components [196]. Actually, this model is also widely used
in signal processing and it is referred to as a rational model because
its z-transform is a rational function, or as a pole-zero model because
the roots of the numerator polynomial of the z-transform are known as
zeros and the roots of the denominator polynomial of the z-transform
are known as poles [133].

Robust Covariance Matrix Estimation. After a specific model has
been selected, the next step is to estimate or calibrate its parameters
from the empirical data. In general, a critical parameter to be esti-
mated is the covariance matrix of the returns of multiple stocks. Usually
the empirical data contains noise and some robust estimation methods
are needed in practice. One popular idea in financial engineering is
to shrink the sample covariance matrix to the identity matrix as the
robust covariance matrix estimator [120]. Interestingly, this is mathe-
matically the same as the diagonal loading matrix (i.e., the addition of a
scaled identity matrix to the sample interference-plus-noise covariance
matrix) derived more than thirty years ago for robust adaptive beam-
forming in signal processing and communication systems [1, 38, 45]. For
large-dimensional data, the asymptotic performance of the covariance
matrix estimators is important. The mathematical tool for the asymp-
totic analysis is referred to as general asymptotics or large-dimensional
general asymptotics in financial engineering [121, 122], or as random
matrix theory (RMT) in information theory and communications [199].

Portfolio Optimization vs Filter/Beamforming Design. One popular
portfolio optimization problem is the minimum variance problem:

minimize
w

wTΣw

subject to wT1 = 1,
(1.3)
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where w ∈ RN is the portfolio vector variable representing the nor-
malized dollars invested in N stocks, wT1 = 1 is the capital budget
constraint, and Σ ∈ RN×N is the (estimated in advance) positive defi-
nite covariance matrix of the stock returns.

The above problem (1.3) is really mathematically identical to the
filter/beamforming design problem in signal processing [149]:

minimize
w

wHRw

subject to wHa = 1,
(1.4)

where w ∈ CN is the complex beamforming vector variable denoting
the weights of N array observations and a ∈ CN and R ∈ CN×N (es-
timated in advance) are the signal steering vector (also known as the
transmission channel) and the positive definite interference-plus-noise
covariance matrix, respectively. The similarity between problems (1.3)
and (1.4) shows some potential connections between portfolio optimiza-
tion and filter/beamforming design, and we will explore more related
formulations in detail later in the monograph.

Index Tracking vs Sparse Signal Recovery. Index tracing is a widely
used quantitative investment that aims at mimicking the market index
but with much fewer stocks. That is, suppose that a benchmark index
is composed of N stocks and let rb = [rb1, . . . , rbT ]T ∈ RT and X =
[r1, . . . , rT ]T ∈ RT×N denote the returns of the benchmark index and
the N stocks in the past T days, respectively, index tracking intends
to find a sparse portfolio w to minimize the tracking error between the
tracking portfolio and benchmark index [106]:

minimize
w

1
T
‖Xw− rb‖22 + λ‖w‖0

subject to 1Tw = 1, w ≥ 0,
(1.5)

where λ ≥ 0 is a predefined trade-off parameter.
Mathematically speaking, the above problem (1.5) is identical to

the sparse signal recovery problem [37] and compressive sensing [51] in
signal processing:

minimize
w

1
T
‖Φw− y‖22 + λ‖w‖0 (1.6)
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Table 1.1: Connections between financial engineering and signal processing.

Financial Engineer-
ing Signal Processing

Modeling ARMA model [196] rational or pole-zero
model [133]

Covariance
Matrix
Estimation

shrinkage sample co-
variance matrix estima-
tor [120]

diagonal loading in
beamforming [1, 38, 45]

Asymptotic
Analysis

(large-dimensional)
general asymptotics
[121, 122]

random matrix theory
[199]

Optimization portfolio optimization
[135, 137, 179, 213]

filter/beamforming de-
sign [149, 213]

Sparsity index tracking [106] sparse signal recovery
[37, 51]

where λ ≥ 0 is a predefined trade-off parameter, Φ ∈ RT×N is a dic-
tionary matrix with T � N , y ∈ RT is a measurement vector, and
w ∈ RN is a sparse signal to be recovered. Again, the similarity be-
tween the two problems (1.5) and (1.6) shows that the quantitative
techniques dealing with sparsity may be useful for both index tracking
and sparse signal recovery.

Table 1.1 summarizes the above comparisons in a more compact
way and it is interesting to see so many similarities and connections
between financial engineering and signal processing.

1.3 Outline

The abbreviations and notations used throughout the monograph are
provided on pages 211 and 213, respectively.

Figure 1.3 shows the outline of the monograph and provides the
recommended reading order for the reader’s convenience. The detailed
organization is as follows.
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Part I mainly focuses on financial modeling (Chapters 2 and 3) and
order execution (Chapter 4).

Chapter 2 starts with some basic financial concepts and then in-
troduces several models, such as the i.i.d. model, factor model, ARMA
model, autoregressive conditional heteroskedasticity (ARCH) model,
generalized ARCH (GARCH) model, and vector error correction model
(VECM), which will be used in the later chapters. Thus, this chapter
provides a foundation for the following chapters in the monograph.

Chapter 3 deals with the model parameter estimation issues. In
particular, it focuses on the estimation of the mean vector and the co-
variance matrix of the returns of multiple stocks. Usually, these two
parameters are not easy to estimate in practice, especially under two
scenarios: when the number of samples is small, and when there exists
outliers. This chapter reviews the start-of-the-art robust estimation of
the mean vector and the covariance matrix from both financial engi-
neering and signal processing.

Chapter 4 formulates the order execution as optimization problems
and presents the efficient solving approaches.

Once financial modeling and order execution have been introduced
in Part I, we move to the design of quantitative investment strate-
gies. As shown in Figure 1.1 there are two main types of investment
strategies, namely risk-return trade-off investment strategies and mean-
reversion investment strategies, which are documented in Parts II and
III, respectively.

Part II entitled “Portfolio Optimization” focuses on the risk-return
trade-off investment. It contains Chapters 5-9 and is organized as fol-
lows.

Chapter 5 reviews the most basic Markowitz mean-variance portfo-
lio framework, that is, the objective is to optimize a trade-off between
the mean and the variance of the portfolio return. However, this frame-
work is not practical due to two reasons: first, the optimized strategy
is extremely sensitive to the estimated mean vector and covariance
matrix of the stock returns; and second, the variance is not an ap-
propriate risk measurement in financial engineering. To overcome the
second drawback, some more practical single side risk measurements,
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e.g., Value-at-Risk (VaR) and Conditional VaR (CVaR), are introduced
as the alternatives to the variance.

Chapter 6 presents the robust portfolio optimization to deal with
parameter estimation errors. The idea is to employ different uncer-
tainty sets to characterize different estimation errors and then derive
the corresponding worst-case robust formulations.

Chapter 7, different from previous Chapters 5 and 6 that consider
each portfolio individually, designs multiple portfolios corresponding to
different clients jointly via a game theoretic approach by modeling a
financial market as a game and each portfolio as a player in the game.
This approach is important in practice because multiple investment
decisions may affect each other.

Chapter 8 considers a passive quantitative investment method
named index tracking. It aims at designing a portfolio that mimics a
preferred benchmark index as closely as possible but with much fewer
instruments.

Chapter 9 considers a newly developed approach to the portfolio
design aiming at diversifying the risk, instead of diversifying the capital
as usually done, among the available assets, which is called a “risk
parity portfolio” in the literature.

Part III, containing Chapter 10, explores the mean-reversion in-
vestment that utilizes the noise component in the log-price sequences
of multiple assets.

Chapter 10 introduces the idea of constructing a pair of two stocks
via cointegration and optimizes the threshold for trading to achieve a
preferred criterion. Then it extends further from pairs trading based
on only two stocks to statistical arbitrage for multiple stocks.

After covering the main content of the three parts, Chapter 11
concludes the monograph.
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2
Modeling of Financial Time Series

Modeling of financial time series provides the quantitative tools to ex-
tract useful (or predictable) information for future investments. There
are two main philosophies of modeling like then are in signal process-
ing and control theory [98]: continuous-time and discrete-time systems.
Continuous-time modeling, using the Black-Scholes model, for exam-
ple, involves stochastic calculus and concepts like the Brownian motion
that are at the core of many fundamental results. For computational
purposes, however, discrete-time modeling is more convenient. In addi-
tion, practical investment strategies are usually naturally discretized,
i.e., daily or monthly investments.

Therefore, this chapter focuses on discrete-time modeling of finan-
cial time series, i.e., the interested time series quantities (mainly the
log-returns) of some interested assets (say N assets) given the past
information (i.e., the past log-returns of the N assets).

The detailed organization is as follows. Section 2.1 starts with some
basic financial concepts, i.e., prices and returns. Then Section 2.2 in-
troduces the general structure of modeling and Sections 2.3-2.7 explain
several specific models, such as the i.i.d. model, factor model, vector au-
toregressive moving average (VARMA) model, vector error correction

17
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model (VECM), autoregressive conditional heteroskedasticity (ARCH)
model, generalized ARCH (GARCH) model, and multivariate ARCH
and GARCH models, which will be used in the later chapters. At the
end, Section 2.8 summarizes all the models briefly.

This chapter focuses on the models themselves but leaves the fitting
of the models with real data or parameter estimation to Chapter 3. All
the models are introduced in their vector/multivariate cases.

2.1 Asset Returns

For simplicity, let us focus on a single asset. Let pt be the price of an
asset at (discrete) time index t.

2.1.1 Returns Based on Prices

Suppose the asset pays no dividends1, the simple return (a.k.a. linear
return or net return) over one interval from time t− 1 to t is

Rt ,
pt − pt−1
pt−1

= pt
pt−1

− 1. (2.1)

The numerator pt − pt−1 is the profit (or the loss in case of a negative
profit) during the holding period and the denominator pt−1 is the initial
investment at time t − 1. Thus the simple return can be regarded as
the profit rate.

Then the quantity
Rt + 1 = pt

pt−1
(2.2)

denotes the ratio between the end capital and the initial investment,
thus it is referred to as total return or gross return.

Based on the above definitions for only one investment period, the
gross return on the most recent k periods is the product of the past k
single period gross returns

1 +Rt(k) = pt
pt−k

= pt
pt−1

× pt−1
pt−2

× · · · × pt−k+1
pt−k

= (1 +Rt)× · · · × (1 +Rt−k+1),
(2.3)

1If there exists dividend dt at time t, then the simple return in (2.1) can be
adjusted as Rt = pt−pt−1+dt

pt−1
.
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and the corresponding net return is

Rt(k) = pt
pt−k

− 1. (2.4)

2.1.2 Returns Based on Log-prices

The log-return (a.k.a. continuously compounded return) at time t is
defined as follows:

rt , log(1 +Rt) = log pt
pt−1

= yt − yt−1, (2.5)

where yt , log pt is the log-price and log denotes the natural logarithm.
Since the function f(x) = log(1 + x) has the first order Taylor

approximation f(x) = log(1 + x) ≈ x at point 0, we can see rt =
log(1 + Rt) is approximately equal to the net return Rt in (2.1), i.e.,
rt ≈ Rt, especially when Rt is small around zero (which is the case for
the usual intervals).

The log-return on the most recent k periods is

rt(k) , log(1 +Rt(k)) = log[(1 +Rt)× · · · × (1 +Rt−k+1)]
= log(1 +Rt) + log(1 +Rt−1) + · · ·+ log(1 +Rt−k+1)
= rt + rt−1 + · · ·+ rt−k+1,

(2.6)

which has a nice additive property over periods (recall that the linear
multi-period net return Rt(k) in (2.4) does not have such a property).

2.1.3 Portfolio Returns

For a portfolio composing of N assets, let w ∈ RN be a vector with wi
denoting normalized capital invested into the i-th asset. Then the net
return of the portfolio over a single period t is Rpt =

∑N
i=1wiRit where

Rit is the net return of the i-th asset.
The log-return of a portfolio, however, does not have the above ad-

ditivity property. If the simple returns Rit are all small in magnitude,
they can be approximated by the log-returns rit and the portfolio net re-
turn can be approximated as Rpt =

∑N
i=1wiRit ≈

∑N
i=1wirit. However,

when some Rit are significantly different from zero, using
∑N
i=1wirit to

approximate
∑N
i=1wiRit may introduce some serious errors [144].
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Models for Financial 
Time Series

Additivity Over PeriodsLog-Returns

Portfolio Optimization

Additivity Over AssetsSimple Returns

Figure 2.1: Simple returns versus log-returns.

2.1.4 Comparisons: Simple Returns versus Log-returns

Figure 2.1 provides a summary of the comparisons between simple re-
turns and log-returns.

First, the simple returns have the advantage of additivity over as-
sets. Because of that, it is the simple returns that will be used in port-
folio optimization later in Part II.

Second, the log-returns have the advantage of additivity over assets
periods. This makes the distribution of the log-returns in the future
easier to compute and predict.

Third, the statistical properties of the log-returns are relatively
more tractable. For example, from (2.1) we can see that simple returns
are highly asymmetric because they are bounded below by −1 and un-
bounded above. Instead, the log-returns are relatively more symmetric
and this makes the corresponding distributions easier to model.

It is the additivity over periods and statistical simplicity that are
needed for modeling purposes and thus we focus on the log-returns in
this chapter. However, as shown in Figure 2.1, either simple returns or
log-returns should be used depending on the investor’s specific goal.



2.2. General Structure of a Model 21

2.2 General Structure of a Model

Most of the existing financial time series models aim at modeling the
log-returns of N assets jointly denoted by rt ∈ RN . In particular, they
model the log-returns at time t based on the previous historical data
denoted by Ft−1. However, modeling an N -dimensional random vari-
able may be a daunting task not just because of the estimation aspect
but also the storage issue. For this reason, most models simplify the
task by modeling only the mean and covariance matrix.

Conditional on Ft−1, we can decompose rt ∈ RN as follows:

rt = µt + wt, (2.7)

where µt is the conditional mean

µt = E[rt|Ft−1] (2.8)

and wt is a white noise with zero mean and conditional covariance

Σt = E[(rt − µt)(rt − µt)T |Ft−1]. (2.9)

Here, µt and Σt (or equivalently Σ1/2
t ) are the two main components

to be modeled, and they are usually referred to as conditional mean
and conditional covariance matrix (or more often conditional volatility
for Σ1/2

t ), respectively, in the literature.
In the literature, the underlying distribution wt is always assumed

to be Gaussian (or sometimes a more general elliptical distribution) for
mathematical simplicity even though reality does not fit the thin tails
of the Gaussian distribution [143].

In the following, we first provide general models for both µt and
Σt and then explore several different types of specific models. Sections
2.3 and 2.4 model both conditional mean and covariance as constants,
Sections 2.5 and 2.6 explore various models of the conditional mean
but leave the conditional covariance matrix as a constant, and Section
2.7 focuses on modeling the conditional covariance matrix only. All the
specific models can be regarded as special cases of the general models,
and we summarize them in Section 2.8.
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2.2.1 General Model for Conditional Mean µt
For most log-return series, the following model is enough to model the
conditional mean µt:

µt = φ0 + Πxt +
p∑
i=1

Φirt−i −
q∑
j=1

Θjwt−j , (2.10)

where φ0 ∈ RN denotes a constant vector, xt ∈ RK denotes a vector
of exogenous variables, Π ∈ RN×K is a loading matrix, p and q are
nonnegative integers, Φi,Θj ∈ RN×N are matrix parameters, and rt−i
and wt−j are past log-returns and temporally white noise.

2.2.2 General Model for Conditional Covariance Matrix Σt

For a multivariate case, there exist many different models of the con-
ditional covariance matrix Σt, and, in general, there does not exist a
general model formulation that captures all the existing ones as special
cases, e.g., see [16, 182, 196, 129]. Nevertheless, for the consistency of
presentation, let us introduce the following model [62]:

Σt = A0AT
0 +

m∑
i=1

Ai(wt−iwT
t−i)AT

i +
s∑
j=1

BjΣt−jBT
j , (2.11)

where m and s are nonnegative integers and Ai,Bj ∈ RN×N are pa-
rameters. This model ensures a positive definite matrix provided that
A0AT

0 is positive definite. The above model is referred to as the Baba-
Engle-Kraft-Kroner (BEKK) model in the literature.

In practice, most models simply assume a constant covariance ma-
trix Σt = Σw, i.e., a special case of (2.11) with m = 0 and s = 0.

2.3 I.I.D. Model

Perhaps the simplest model for rt is that it follows an i.i.d. distribution
with fixed mean and covariance matrix, i.e.,

rt = µ+ wt, (2.12)

where wt ∈ RN is a white noise series with zero mean and constant
covariance matrix Σw.
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Comparing the i.i.d. model (2.12) with the general model (2.7)-
(2.11), obviously we can see it is the simplest special case with µ = φ0,
Π = 0, p = 0, q = 0, Σw = A0AT

0 , m = 0, and s = 0. And the
conditional mean and covariance matrix are both constant:

µt = µ, (2.13)
Σt = Σw. (2.14)

This i.i.d. model assumption may look simple, however, it is one
of the most fundamental assumptions for many important works. One
example is the Nobel prize-winning Markowitz portfolio theory [135,
136, 137, 138, 179] that will be covered in Chapter 5.

2.4 Factor Model

If we look at (2.12) carefully, we may think that the dimension of the
market always equals the number of assets N . However, this may not be
true in practice. In general, the market is composed of a large number
of assets (i.e.,N is large), but it is usually observed that its dimension is
relatively small, that is, the market is only driven by a limited number
of factors, say K factors with K � N .

The general factor model is

rt = φ0 + h(ft) + wt, (2.15)

where φ0 denotes a constant vector; ft ∈ RK with K � N is a vector
of a few factors that are responsible for most of the randomness in
the market, the vector function h : RK 7→ RN denotes how the low
dimensional factors affect the higher dimensional market; and a resid-
ual vector wt of (possibly independent) perturbations that has only a
marginal effect. In general, the function h is assumed to be linear.

This approach of modeling enjoys a wide popularity; refer to [42,
66, 67, 68, 69, 70, 118] for some typical references.

In the following, we consider two specific models of (2.15) with
either explicit or hidden factors.
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2.4.1 Explicit Factors

The explicit factor model is

rt = φ0 + Πft + wt, (2.16)

which is a specific case of (2.15) with h(ft) = Πft, ft ∈ RK being
explicitly observable market variables, and Π ∈ RN×K being the factor
loading matrix.

Some popular explicit factors include returns on the market port-
folio2, growth rate of the GDP, interest rate on short term Treasury
bills, inflation rate, unemployment, etc. [171].

Obviously, the factor model with explicit factors (2.16) is a special
case of the general model (2.7)-(2.11) with exogenous input being the
factors xt = ft, p = 0, and q = 0.

In general, it is assumed that ft follows an i.i.d. distribution with
constant mean µf and constant covariance matrix Σf , wt follows an
i.i.d. distribution with zero mean and (possibly diagonal) constant co-
variance matrix Σw, and ft and wt are uncorrelated. Then the con-
ditional mean and covariance matrix are both constant and can be
computed as follows:

µt = E[rt|Ft−1] = E[rt] = φ0 + Πµf (2.17)
Σt = E[(rt − µt)(rt − µt)T |Ft−1],

= ΠΣfΠT + Σw. (2.18)

Capital Asset Pricing Model (CAPM)

One of the most popular factor models is the CAPM with the returns
on the market portfolio being the only factor [70]. The i-th stock return
at time t is

ri,t − rf = βi(rM,t − rf ) + wi,t, (2.19)

where rf is the risk-free rate, rM,t is the return of the market portfolio,
and wi,t is a stock-specific white noise with zero mean and constant
variance.

2The market portfolio is a portfolio consisting of all equities with the normalized
portfolio weights being proportional to the market values of the equities.
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Taking the expectation on both sides of (2.19) results in the so-
called CAPM:

E [ri,t]− rf = βi(E [rM,t]− rf ). (2.20)

Based on (2.20)

• E [rM,t]−rf measures the difference between the expected market
return and risk-free rate, which is known as the market premium;

• E [ri,t] − rf measures the difference between the expected stock
return and risk-free rate, which is known as the risk premium;
and

• βi in general is given by

βi = Cov(ri,t, rM,t)
Var(rM,t)

(2.21)

which measures how sensitive the risk premium is to the market
premium, that is, the risk premium equals the market premium
times βi.

Note that the conditional mean E [ri,t|Ft−1] is the same as the un-
conditional mean E [ri,t] = rf + βi(E [rM,t]− rf ).

Taking the variance on both sides of (2.19) gives us the following
relationship:

Var [ri,t] = β2
i Var [rM,t] + Var [wi,t] , (2.22)

which is decomposed into two parts:

• β2
i Var [rM,t] measures the risk associated with the market and it

is referred to as systematic risk, and

• Var [wi,t] is specific to each stock and it is called nonsystematic
risk.

Also, the conditional variance Var [ri,t|Ft−1] equals the unconditional
variance Var [ri,t].
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2.4.2 Hidden Factors

The assumption of a linear model of (2.15) with hidden factors is that
the factors are not explicit market variables but are functions of rt that
summarize as much information as possible.

One method is to define the hidden factors as affine transformations
of rt as follows:

ft = d + ΥT rt, (2.23)
where d ∈ RK and Υ ∈ RN×K are parameters to be estimated.

Then the hidden factor model can be expressed as follows:

rt = φ0 + Π(d + ΥT rt) + wt, (2.24)

which is a specific case of (2.15) with h(ft) = Πft, ft ∈ RK being
the hidden variables defined in (2.23); Π ∈ RN×K being the factor
loading matrix; and wt follows an i.i.d. distribution with zero mean
and a (possibly diagonal) constant covariance matrix Σw.

The model (2.24) can be further simplified as follows:

rt = m + ΠΥT rt + wt, (2.25)

where m = φ0 + Πd is an newly defined parameter.
The parameters m, Π, and Υ can be estimated by the following

nonlinear least-square (LS) regression:

minimize
m, Π, Υ

E
∥∥∥rt −m−ΠΥT rt

∥∥∥2

2
. (2.26)

Recall that Π,Υ ∈ RN×K , then ΠΥT ∈ RN×N with rank(ΠΥT ) ≤
K � N , then intuitively problem (2.26) is projecting rt onto a lower
K-dimensional subspace with variations being captured as much as
possible. Indeed, this technique is usually referred to as principal com-
ponent analysis (PCA) [109] in the literature, the optimal solution of
which can be stated in closed-form as follows [143]:

Π = Υ = EK , (2.27)

m =
(
I−EKET

K

)
E[rt], (2.28)

where EK ∈ RN×K with the k-th column vector being the k-th largest
eigenvector of the covariance matrix Cov[rt], k = 1, . . . ,K., and it can
be shown that the white noise wt is uncorrelated of the hidden factors.
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Then combining (2.25), (2.27) and (2.28) together, we can find the
conditional mean and covariance matrix as follows:

µt = E[rt|Ft−1] = E[rt], (2.29)
Σt = E[(rt − µt)(rt − µt)T |Ft−1]

= EKΛKET
K + Σw, (2.30)

where ΛK = Diag([λ1, . . . , λK ]) is a K-by-K diagonal matrix with λk
being the k-th largest eigenvalue of Cov[rt], and we can see both the
conditional mean and covariance matrix are constant and independent
of time.

2.4.3 Comparisons: Explicit Factors versus Hidden Factors

Based on (2.17)-(2.18) or (2.29)-(2.30), we can see that the factor mod-
els, i.e., (2.16) and (2.25), decompose the conditional covariance Σt into
two parts: low dimensional factors and marginal noise. The key is the
way to choose or construct the factors, and the comparisons between
the explicit and hidden factor models are as follows:

• The explicit factor model tends to explain the log-returns with a
smaller number of fundamental or macroeconomic variables and
thus it is easier to interpret. However, in general there is no sys-
tematic method to choose the right factors.

• The hidden factor model employs PCA to explore the structure
of the covariance matrix and locate a low-dimensional subspace
that captures most of the variation in the log-returns. It is a more
systematical approach and thus it may provide a better explana-
tory power. One drawback of the hidden factors compared with
the explicit factors is that they do not have explicit econometric
interpretations.

2.5 VARMA Model

The previous i.i.d. and factor models, while commonly employed, do
not incorporate any time-dependency in the model for rt. In other
words, the conditional mean and covariance matrix are constant and
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past information is not explicitly used (it can still be used implicitly
via the estimation of the parameters).

The VARMA model can incorporate the past information into the
model of conditional mean, although still not in the conditional covari-
ance matrix.

Stationarity is an important characteristic for time series analysis
which describes the time-invariant behavior of a time series. A mul-
tivariate time series rt is said to be weakly stationary if its first and
second moments are time-invariant. In general, a stationary time series
is much easier to model, estimate, and analyze.

2.5.1 VAR(1) Model

Let us start with the vector autoregressive (VAR) model of order 1,
denoted as VAR(1), as follows:

rt = φ0 + Φ1rt−1 + wt, (2.31)

where φ0 ∈ RN is a constant vector, Φ1 ∈ RN×N is a matrix parameter,
and wt denotes a serially uncorrelated noise series with zero mean
and constant covariance matrix Σw. We can see that the term Φ1rt−1
models the serial correlation of the time series rt.

Also, compared with the general model (2.7)-(2.11), the VAR(1)
model (2.31) is a special case with Π = 0, p = 1, q = m = s = 0, and
Σt = Σw, and it is straightforward to obtain the conditional mean and
covariance matrix based on (2.31) as follows:

µt = φ0 + Φ1rt−1, (2.32)
Σt = Σw. (2.33)

Obviously, the conditional covariance matrix Σt is constant.

2.5.2 VAR(p) Model

The p-th order autoregressive process, denoted as VAR(p), extends the
VAR(1) model by including more previous observations into the model
as follows:

rt = φ0 +
p∑
i=1

Φirt−i + wt, (2.34)
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where p is a nonnegative integer, φ0 ∈ RN is a constant vector, Φi ∈
RN×N are matrix parameters, and wt denotes a serially uncorrelated
white noise series with zero mean and constant covariance matrix Σw.

Clearly we can see that the time series rt is serially correlated via
the term

∑p
i=1 Φirt−i which contains more previous observations than

the AR(1) model (2.31). Similar to (2.32) and (2.33), the conditional
mean and covariance matrix based on (2.34) are

µt = φ0 +
p∑
i=1

Φirt−i, (2.35)

Σt = Σw, (2.36)

where the conditional covariance matrix is constant.

2.5.3 VMA(q) Model

Even though the VAR model models the serial correlations, it imposes
such correlations with all the past observations. We can observe this
easily by substituting the VAR(1) model (2.31) recursively and we have
that rt is serially correlated to all the past observations r0, . . . , rt−1,
especially when the eigenvalues of Ψ1 are close to 1.

For some realistic cases, the time series rt should only have serial
correlation up to a small lag q such that rt is serially uncorrelated to
rt−` for all ` > q. Unfortunately, the VAR model does not have this
property.

A useful alternative to the VAR model is a vector moving average
(VMA) model. The VMA model of order q, denoted as VMA(q), is

rt = µ+ wt −
q∑
j=1

Θjwt−j , (2.37)

where q is a nonnegative integer, µ ∈ RN is a constant vector, Θj ∈
RN×N are matrix parameters, and wt denotes a serially uncorrelated
white noise series with zero mean and constant covariance matrix Σw.

Based on (2.37), it is easy to check that rt is serially uncorrelated
to rt−` for all ` > q. Also, the VMA(q) model (2.37) is a special case
of the general model (2.7)-(2.11) with Π = 0 and p = m = s = 0, and
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we have the conditional mean and covariance matrix as follows:

µt = µ−
q∑
j=1

Θjwt−j , (2.38)

Σt = Σw, (2.39)

where the conditional covariance matrix is constant.

2.5.4 VARMA Model

Sometimes, using simply a VAR model or a VMA model only is not
enough to fit the data and it is helpful to combine them together. The
combination of VAR(p) and VMA(q), referred to as VARMA(p, q), is
given by

rt = φ0 +
p∑
i=1

Φirt−i + wt −
q∑
j=1

Θjwt−j , (2.40)

where p and q are nonnegative integers, φ0 ∈ RN is a constant vector,
the matrices Φi,Θj ∈ RN×N are parameters, and wt is a white noise
series with zero mean and constant covariance matrix Σw. Directly, the
conditional mean and covariance matrix based on (2.40) are

µt = φ0 +
p∑
i=1

Φirt−i −
q∑
j=1

Θjwt−j , (2.41)

Σt = Σw, (2.42)

where the conditional covariance matrix is still constant.

Remark 2.1. The VARMA model is a powerful model of conditional
mean, however, it also has some drawbacks that need to be dealt with
carefully.

The identifiability issue, i.e., two VARMA(p, q) models with differ-
ent coefficient matrices can be rewritten as the same VMA(∞) model,
is one of the most important ones. This issue is important because the
likelihood function of the VARMA(p, q) model may not be uniquely
defined and thus the parameters cannot be estimated. To overcome
this drawback, some model structural specifications are needed. There
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are two main approaches namely the Kronecker index, and the scalar
component model in the literature [197].

Another issue is that, for a causal and invertible VARMA model,
the conditional maximum likelihood estimation may not result in a
causal and invertible estimated VARMA model, especially when the
number of samples is small [129, 197]. The solving approach is to either
add more constraints in the conditional maximum likelihood estimation
[169] or switch to the unconditional maximum likelihood estimation
[197]. However, both of them require more intensive computation. �

2.6 VECM

Until now we have focused on modeling directly the log-return series
rt instead of the log-price series yt (recall that rt = ∆yt = yt − yt−1).
This is because in general the log-price series yt is not weakly stationary
(think for example of Apple stock whose log-prices keep increasing) and
thus is not easy to model, while its difference series, i.e., the log-return
series rt, is weakly stationary and is easier to model and analyze.

However, it turns out that differencing may destroy part of the
relationship among the log-prices which may be invaluable for a proper
modeling with forecast power. It is therefore also important to analyze
the original (probably non-stationary) time series directly [129].

Interestingly, it turns out that in fact a (probably non-stationary)
VAR model may be enough. For example, one can always fit the log-
price series yt with a VAR model, say, the following VAR(p):

yt = φ0 + Φ1yt−1 + · · ·+ Φt−pyt−p + wt, (2.43)

where p is a nonnegative integer, φ0 ∈ RN is a constant vector, Φi ∈
RN×N are matrix parameters, and wt denotes a serially uncorrelated
white noise series with zero mean and constant covariance matrix Σw.

Here (2.43) models the log-price series and yt is not necessarily
stationary. The standard results for a stationary VAR model may not
be useful.

In the literature, a time series is called integrated of order p, denoted
as I(p), if the time series obtained by differencing the time series p times
is weakly stationary, while by differencing the time series p−1 times is
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not weakly stationary [196, 129]. A multivariate time series is said to be
cointegrated if it has at least one linear combination being integrated of
a lower order. To illustrate the concepts visually, we consider a slightly
modified example from [196] with only two dimensions as follows.

Example 2.1. Suppose the log-price series yt follows

yt = Φ1yt−1 + wt, (2.44)

where Φ1 =
[

0.5 −1
−0.25 0.5

]
, and wt follows an i.i.d. distribution with

zero mean and constant covariance matrix Σw. The model (2.44) (or
yt) is not stationary because the eigenvalues of Φ1 are 0 and 1 (recall
for stationarity the modulus of the eigenvalues need to be less than
one).

To check the integration order of yt, rewriting (2.44) as[
1− 0.5B B

0.25B 1− 0.5B

]
yt = wt, (2.45)

where B is the backshift operator, and premultiplying both sides of

(2.45) by
[
1− 0.5B −B
−0.25B 1− 0.5B

]
yields

[
1−B 0

0 1−B

]
yt =

[
1− 0.5B −B
−0.25B 1− 0.5B

]
wt. (2.46)

Since the right hand side of (2.46) is stationary, so is the first order
difference of yt on the left hand side of (2.46). This implies that yt is
integrated of order one, i.e., it is I(1).

To check whether yt is cointegrated or not, we define L ,
[

1 −2
0.5 1

]
and premultiply (2.44) by L, then we have

Lyt = LΦ1L−1Lyt−1 + Lwt, (2.47)

which can be rewritten more explicitly as[
y1t − 2y2t

0.5y1t + y2t

]
=
[
1 0
0 0

] [
y1,t−1 − 2y2,t−1

0.5y1,t−1 + y2,t−1

]
+ Lwt. (2.48)
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Since Lwt is always stationary, so is the linear combination 0.5y1t +
y2t, and thus yt is cointegrated. This derived cointegration result in
fact is very important and can be utilized to design very profitable
quantitative trading strategies (which will be shown later in Part III).

Now we can observe that if we difference the log-price series directly
and reach the model (2.46), we cannot obtain the cointegration result
that 0.5y1t + y2t is stationary any more. Therefore, it is important to
study the log-price series yt directly as mentioned before. �

The above Example 2.1 shows a specific example of cointegration.
In practice, a systematic way to find the cointegrated components (if
they exist) is via a vector error correction model (VECM) [61].

Let us assume the log-price series yt is at most I(1), that is, at
least its difference series rt or the log-return series is always weakly
stationary. Using the relation yt = yt−1 + rt, the VAR(p) model (2.43)
can always be rewritten as

rt = φ0 + Πyt−1 + Φ̃1rt−1 + · · ·+ Φ̃p−1rt−p+1 + wt, (2.49)

where

Π = −(I−Φ1 − · · · −Φp) = −Φ(1) (2.50)

Φ̃j = −
p∑

i=j+1
Φi, j = 1, . . . , p− 1. (2.51)

Interestingly, the above model (2.49) can also be regarded as a
special case of the general model (2.10) with the exogenous variables
being the previous log-prices, i.e., xt = yt−1. And the conditional mean
and covariance matrix are

µt = φ0 + Πyt−1 +
p−1∑
i=1

Φ̃irt−i, (2.52)

Σt = Σw, (2.53)

where the conditional covariance matrix is constant.
Under the assumption that yt is at most I(1), it is straightforward

to conclude that the term Πyt−1 in the above model (2.49) is stationary,
therefore, some linear combinations of yt may be stationary. The term
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Πyt−1 is usually referred to as an error correction term and thus the
model is called a VECM. There are three interesting cases of Πyt−1:

1. rank(Π) = 0. This implies Π = 0 and yt is not cointegrated since
there is no linear combination of yt being stationary. Then the
VECM (2.49) reduces to a VAR(p − 1) for the log-return time
series rt.

2. rank(Π) = N . This implies Π is invertible. Then yt must be
stationary already since rt and wt are both stationary and yt
can be rewritten as a linear combination of rt and wt by left
multiplying both sides of (2.49) by Π inverse. Thus, one can
study yt directly.

3. 0 < rank(Π) = r < N . This is the interesting case and Π can be
decomposed as

Π = αβT , (2.54)

where α,β ∈ RN×r with full column rank, i.e., rank(α) =
rank(β) = r. Then the VECM (2.49) becomes

rt = φ0 +αβTyt−1 + Φ̃1rt−1 + · · ·+ Φ̃p−1rt−p+1 + wt. (2.55)

This means that the log-price time series yt has r linearly in-
dependent cointegrated components, i.e., βTyt. This interesting
property can be used to design mean-reversion statistical arbi-
trage investment strategies, e.g., pairs trading strategies, as we
will cover later in Part III.

2.7 Conditional Volatility Models

The previous models only model the conditional mean while always
keeping the conditional volatility as a constant, e.g., see (2.14), (2.18),
(2.30), (2.33), (2.36), (2.42), and (2.53). In the real market, usually
time-varying rather than constant volatility is observed. For example,
a well-known phenomenon is that high volatility is more likely followed
by high volatility rather than low volatility and it is hence referred to as
“volatility clustering”. Let us illustrate the concept with the following
Example 2.2.



2.7. Conditional Volatility Models 35

Jun−10 Jun−11 Jun−12 Jun−13 Jun−14 Jun−15

−0.1

−0.05

0

0.05

0.1
Synthetic Normal White Noise

 

 

White noise
Conditional sample volatility

Jun−10 Jun−11 Jun−12 Jun−13 Jun−14 Jun−15

−0.1

−0.05

0

0.05

0.1
APPLE

 

 

Log−returns
Conditional sample volatility

Figure 2.2: White noise versus APPLE log-returns. The conditional sample volatil-
ity is the sample standard deviation of the most recent 22 days observations (i.e.,
white noise observations or log-returns).

Example 2.2. We study the daily log-returns of Apple Inc. from 01-
Jan-2010 to 08-Jul-2015. The sample volatility is σ = 1.659 × 10−2.
We then synthetically simulate a Gaussian white noise series with zero
mean and variance σ2.

The top panel of Figure 2.2 shows a simulated realization of the
Gaussian white noise series and the conditional sample volatility, and
the bottom panel shows that of the log-returns series of Apple Inc.
Here the conditional sample volatility is the sample standard deviation
of the most recent 22 days observations (i.e., white noise observations
or log-returns). Clearly, we can see that the synthetic Gaussian white
noise series has quite stable conditional sample volatility while the log-
return series of Apple Inc. has volatile conditional sample volatility and
there exist some volatility clusters. �

In this subsection, we mainly focus on reviewing the models of con-
ditional volatility. Since there are many different multivariate models
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of conditional volatility extending from the same univariate models, we
will start with the univariate models first and then discuss the multi-
variate models.

2.7.1 Univariate ARCH Model

Recall that previously the white noise wt in the general model (2.7)
has always been modeled as a zero mean noise with constant variance.
Since the conditional mean µt in (2.7) has been well explored in the
previous parts of this chapter, without loss of generality, we focus now
on models for conditional volatility. The autoregressive conditional het-
eroskedasticity (ARCH) model is the first one that focuses on modeling
the conditional volatility [59]. The ARCH(m) model is

wt = σtzt, (2.56)

where {zt} is a white noise series with zero mean and unit variance and
the conditional variance σ2

t is modeled by

σ2
t = α+

m∑
i=1

αiw
2
t−i. (2.57)

Here, m is a nonnegative integer, α > 0, and αi ≥ 0 for all i > 0.
The coefficients αi must satisfy some regularity conditions so that the
unconditional variance of wt is finite. Also, the white noise with zero
mean and constant variance in model (2.7) can be regarded as a special
case of (2.57) with αi = 0 for all i > 0. We can see that the past
information is incorporated into the model by using

∑m
i=1 αiw

2
t−i to

model the variance (or equivalently, the square of the volatility).
Even though the ARCH model can model the conditional het-

eroskedasticity, it has several disadvantages [196]:

• positive and negative noise have the same effects on volatility
because volatility modeled by (2.57) depends on the square of the
previous noise; however, it is well known that they have different
impacts on the financial assets;

• the ARCH model is too restrictive to capture some patterns, e.g.,
excess kurtosis;



2.7. Conditional Volatility Models 37

• the ARCH model does not provide any new insight for under-
standing the source of variations and only provides a mechanical
way to describe the behavior of the conditional variance; and

• ARCH models tend to overpredict the volatility because they
respond slowly to large isolated noise to the return series.

2.7.2 Univariate GARCH Model

A limitation of the ARCH model is that the high volatility is not per-
sistent enough and it often requires many parameters to describe the
volatility process. An extension called Generalized ARCH (GARCH)
was proposed to overcome this drawback [28]. The GARCH(m, s)
model is

wt = σtzt, (2.58)

where {zt} is a white noigse series with zero mean and constant unit
variance, and the conditional variance σ2

t is modeled by

σ2
t = α+

m∑
i=1

αiw
2
t−i +

s∑
j=1

βjσ
2
t−j . (2.59)

Here, m and s are nonnegative integers, α > 0, αi ≥ 0, βj ≥ 0 for all
i > 0 and j > 0 and

∑m
i=1 αi +

∑s
j=1 βj ≤ 1.

We can see the GARCH model (2.59) in fact is obtained by adding
the term

∑s
j=1 βjσ

2
t−j to the previous ARCH model (2.59), there-

fore, the volatility is more persistent and the volatility clustering phe-
nomenon can be modeled better. For illustrative purposes, a numerical
example is provided as follows.

Example 2.3. We consider an ARCH(1) model with α = 0.01 and α1 =
0.2, an ARCH(9) model with α = 0.01 and α1 = 0.2/2i−1, i = 1, . . . , 9
and a GARCH(1,1) model with α = 0.01, α1 = 0.2, and β1 = 0.7.

Figure 2.3 shows the realization path and conditional volatilities of
each model. The volatility clusters of the ARCH(1) are quite sharp and
thus not persistent enough. The higher order ARCH(9) model over-
comes the drawback to some degree however, it requires many more
parameters (i.e., ten parameters compared to two of the ARCH(1)).
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Comparatively, the GARCH(1,1) model captures the volatility cluster-
ing relatively more persistently and requires much less (i.e., only three)
parameters. �
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Figure 2.3: The conditional volatility of GARCH is more persistent.

2.7.3 Multivariate GARCH Model

The multivariate noise vector is modeled as

wt = Σ1/2
t zt, (2.60)
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where zt ∈ RN is an i.i.d. white noise series with zero mean and con-
stant covariance matrix I. Then the key part is to model Σt conditional
on the past information Ft−1.

Since the ARCH model is a special case of the GARCH model, we
focus on the GARCH model only. There are many different multivariate
extensions of the univariate GARCH model, e.g., see [16, 182]. Here we
focus on introducing several popular models.

VEC Model

One of the first extensions is the vector (VEC) GARCH model where
the conditional covariance matrix linearly depends on some past con-
ditional covariance matrices and the cross-products of some past noise
as follows [30]:

vech(Σt) = a0 +
m∑
i=1

Ãivech(wt−iwT
t−i) +

s∑
j=1

B̃jvech(Σt−j), (2.61)

wherem and s are nonnegative integers, the half-vectorization operator
vech(·) denotes an N(N + 1)/2 dimensional vector by vectorizing only
the lower triangular part of its argument N -by-N square matrix, a0 is
an N(N +1)/2 dimensional vector, and Ãi and B̃i are N(N +1)/2-by-
N(N + 1)/2 parameter matrices. This model is very flexible; however,
in general it does not guarantee a positive definite covariance matrix
Σt at each time and the number of parameters is very large unless N
is small.

Diagonal VEC Model

A more parameter parsimonious model is to assume that Ãi and B̃i

are diagonal, and the model is referred to as a diagonal VEC (DVEC)
model [30], which can be simplified as

Σt = A0 +
m∑
i=1

Ai � (wt−iwT
t−i) +

s∑
j=1

Bj �Σt−j , (2.62)

where Ai,Bj ∈ RN×N are symmetric matrix parameters. Here, the op-
erator � denotes the Hadamard product, i.e., the element-wise product,
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and Ai and Bj can be interpreted as moving weight matrices. However,
the DVEC model still may not guarantee a positive definite covariance
matrix Σt at each time.

BEKK Model

Later, the BEKK model is proposed to guarantee the conditional co-
variance matrix Σt to be positive definite [62]:

Σt = A0AT
0 +

m∑
i=1

Ai(wt−iwT
t−i)AT

i +
s∑
j=1

BjΣt−jBT
j , (2.63)

where m and s are nonnegative integers, Ai,Bj ∈ RN×N are matrix
parameters, and A0 is lower triangular. Clearly, this model ensures a
positive definite matrix Σt provided that A0AT

0 is positive definite;
however, now the parameters Ai and Bj do not have direct interpre-
tations.

CCC Model

Another model that restricts the number of model parameters and
guarantees the positive definite conditional variance estimate is the con-
stant conditional correlation (CCC) model [29]. The underlying idea is
to assume that the conditional heteroskedasticity only exists in each as-
set and their correlations are constant. Mathematically, the conditional
covariance matrix Σt is decomposed as follows:

Σt = DtCDt (2.64)

where Dt = Diag([σ1,t, . . . , σN,t]) is the time-varying conditional
volatilities of each stock and C is the CCC matrix of the standard-
ized noise vector.

Then the conditional volatilities and correlations are modeled sep-
arately. For example, the conditional volatilities are modeled by N

univariate GARCH models. Regarding the CCC matrix C, it simply
equals the conditional covariance of the following defined standardized
noise vector:

ηt , D−1
t wt, (2.65)



2.7. Conditional Volatility Models 41

that is,

E
[
ηtη

T
t |Ft−1

]
= D−1

t ΣtD−1
t = C. (2.66)

In practice, the CCC matrix C is modeled as the covariance matrix
of the estimated standardized noise η̂t , D̂−1

t wt where D̂t is the esti-
mated conditional volatilities of each asset [29].

DCC Model

The main limit of the CCC model is that the correlation is constant
and there are no spillover and feedback effects across the conditional
volatilities. To overcome this drawback, a dynamic conditional correla-
tion (DCC) model is proposed [60]:

Σt = DtCtDt. (2.67)

Compared with the CCC model (2.64), the only difference is that now
the conditional correlation matrix Ct is time-dependent.

To ensure that the estimate of the DCC matrix Ct is a matrix
containing correlation coefficients, e.g., diagonal elements equal to 1,
Engle [60] modeled it as follows. The ij-th element of DCC matrix is
modeled as

ρij,t = qij,t√
qii,tqjj,t

(2.68)

and then each qij,t is modeled by a simple GARCH(1, 1) model:

qij,t = α(ηi,t−1η
T
j,t−1) + (1− α)qij,t−1. (2.69)

Model (2.69) admits a compact matrix notation as follows:

Qt = α(ηt−1η
T
t−1) + (1− α)Qt−1 (2.70)

and thus

Ct = Diag−1/2(Qt)QtDiag−1/2(Qt). (2.71)
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2.8 Summary of Different Models and Their Limitations

2.8.1 Summary

Until now we have briefly reviewed most of the basic models for the time
series of financial markets, i.e., I.I.D. model, VARMA model, VECM,
and multivariate ARCH/GARCH model.

Table 2.1 provides a compact summary of all the models. In prac-
tice, the models of conditional mean and covariance matrix can always
be combined together, for example, VARMA and GARCH can be used
to model the conditional mean and volatility jointly to fit the real fi-
nancial data better.

2.8.2 Limitations

The previous covered models mainly work for daily, weekly, monthly,
or yearly investments and they also have some limitations.

Not Valid for High-Frequency Trading

When the investment interval becomes very small, say several minutes,
several seconds or even shorter, the previous models become invalid
and one reaches like a “quantum regime” where things are not fluid
anymore but quantized into a limit order book. The limit order book
contains the list of all kinds of orders with the information of order sign
(buy or sell), price, quantity, and timestamp at any given time point,
and the records of the dynamics of the limit order book in general are
referred to as high-frequency data or tick data. For investments based
on high-frequency data, not only do the models (for high-frequency
data) matter [97] but also the practical computer and internet commu-
nication technologies [4].

Fact 2.1. For high-frequency trading, the computer and internet com-
munication technologies are extremely important. For example, high-
frequency trading strategies require the execution of the orders with
extremely low latency because high latency may push the price in
the adverse direction and reduce the profitability significantly. To re-
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Table 2.1: Summary of different financial models.

Model
Structure rt = µt + wt

General
Cond.
Mean

µt = φ0 + Πxt +
∑p
i=1 Φirt−i −

∑q
j=1 Θjwt−j

General
Cond.
Volatility

Σt = A0AT
0 +

m∑
i=1

Ai(wt−iwT
t−i)AT

i

+
s∑
j=1

BjΣt−jBT
j

Models Cond. Mean
Model

Cond. Volatility
Model

I.I.D.
Model

const.: Π = 0, p =
q = 0 const.: m = s = 0

Factor
Models xt = ft, p = q = 0 const.: m = s = 0

VAR Model Π = 0, q = 0 const.: m = s = 0
VMA
Model Π = 0, p = 0 const.: m = s = 0

VARMA
Model Π = 0 const.: m = s = 0

VECM xt = yt−1 const.: m = s = 0
ARCH
Model

const.: Π = 0, p =
q = 0 s = 0

GARCH
Model

const.: Π = 0, p =
q = 0

General Cond.
Volatility Model
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duce such latency, nowadays many stock exchanges, e.g., NASDAQ3,
HKEx4, etc., provide a “co-location” service that offers all customers
the opportunity to co-locate their servers and equipment within the
data centers of the stock exchanges. �

Heavy Tails Issue

Another limitation is that most models implicitly assume a Gaussian
distribution for mathematical simplicity [143]. However, for financial
data it is known that the financial distributions have heavy tails in
practice and the Gaussian assumption may totally fail simply because
it predicts the large price changes much less likely than the actual case;
see the following Fact 2.2 and the illustrative Example 2.4.

Fact 2.2. The Black-Scholes model [25] is a simple mathematical model
and is famous for describing the option prices. However, it completely
failed in practice because it assumed a Brownian model which trans-
lated into a Gaussian assumption, and underestimated the very possi-
bility of a global crisis. In fact, the abuse of this model led to the crash
in October 1987 during which the US market dropped 23% in a single
day [31]. �

Example 2.4. We study the daily log-returns of the S&P500 index
from 04-Jan-2010 to 04-Feb-2015. The sample mean and variance are
4.5966× 10−4 and 1.0199× 10−4, respectively.

Figure 2.4 shows the empirical quantiles the log-returns of the
S&P500 index versus the theoretical quantiles of the Gaussian distri-
bution N (4.5966×10−4, 1.0199×10−4). The figure is plotted using the
MATLAB function qqplot which uses symbol ’+’ to denote the sam-
ple data and superimposes a line joining the first and third quartiles
of each distribution (this is a robust linear fit of the order statistics of
the two samples). We can see that the empirical data has much heavier
tails than the Gaussian distribution since the values of the small em-
pirical quantiles are much smaller than the theoretical Gaussian ones

3http://www.nasdaqomx.com/transactions/technicalinformation/connectivity
4http://www.hkex.com.hk/eng/prod/hosting/hostingservices.htm
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Figure 2.4: Quantile-Quantile plot of the daily log-returns of the S&P500 index
versus the Gaussian distribution with the same mean and standard deviation.

and the values of the large empirical quantiles are much larger than the
theoretical Gaussian ones. This practical issue is very important as it
is very different from signal processing and communications where the
noise is typically assumed to be Gaussian. �

Part of this issue can be overcome by changing the Gaussian as-
sumption to some other distribution with heavier tails, see parameter
estimation in Chapter 3.

Lack of Stationarity of Real Data

The lack of stationarity of real data is also a critical limitation. Even if
the models were accurate, the parameters defining them would change
over time at a pace faster than one can properly estimate. Thus the
calibrated models would always be prone to many estimation errors or,
even worse, the regime of the market may change and the previously
fitted models may be totally wrong [11].
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Small Sample Regime

Another limitation, which arises in part from the lack of stationarity
of data, is the lack of enough supply of historical data for fitting and
estimation purposes, especially when the model dimension is large. This
fits into the realm of a small sample regime for high-dimensional data
that appears in some big data problems. Some methods to overcome
this limitation will be discussed in parameter estimation in Chapter 3.

Other Practical Limitations

Apart from the above limitations, there are many other limitations due
to small practical details. For example, some stocks may have a longer
history than others, some stocks may not trade exactly the same days
as others, and for the daily period it is not clear whether one should
use the open price, close price, maximum price, or minimum price of
each day. Some sophisticated methods involving different prices have
been proposed [80, 84, 209].

Another practical issue the above models do not consider is the
liquidity of the asset. This is important for exactly when to execute
an order in the market and this will be covered in Chapter 4 order
execution.

2.8.3 Concluding Remarks

Practical implementations are more complicated than the nice and
clean mathematical models covered in this chapter; however, it is still
meaningful to understand them because in principal “all models are
false but some models are useful” [171]. It is always necessary to inves-
tigate various models with their limitations and thus one can pick up
the most useful model for his/her own purposes of investment.



3
Modeling Fitting: Mean and Covariance Matrix

Estimators

Models need to be fitted to real data before being used in practice.
The previous chapter introduced various time series market models.
This chapter focuses on the estimation of the model parameters, more
specifically, the mean vector and covariance matrix.

Section 3.1 briefly introduces the practical fitting process and dif-
ferent types of estimation methods. Section 3.2 considers some specific
examples for the large sample regime as a warm up, and it is followed
by several practical challenges, i.e., the small sample regime in Section
3.3, the heavy tail issue in Section 3.4, and their combination in Sec-
tion 3.5. At the end, Section 3.6 briefly summarizes all the estimation
methods.

3.1 Fitting Process, Types of Estimators, and Main Focus

3.1.1 Fitting Process

Figure 3.1 shows the practical fitting process, roughly speaking, it can
be decomposed into two parts: in-sample training and out-of-sample
testing [95].

47
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Figure 3.1: Fitting process.

A naive example of portfolio optimization is that, at the end of each
month, one can always use the sample covariance matrix of the past one
year daily returns of multiple stocks as the covariance matrix estimate
and then compute the minimum-variance portfolio and hold it in the
upcoming month to investigate the out-of-sample performance. The
data of the past one year daily returns is the in-sample data and the
data of the daily returns in the upcoming month is the out-of-sample
data.

The above example is only an oversimplified example; in practice, to
improve the out-of-sample testing results, there may exist some tuning
parameters (e.g., see the shrinkage trade-off parameters in the shrink-
age estimators in Section 3.3 later) in the estimators and the in-sample
training can be further decomposed into two steps: i) split the in-sample
data into training data and cross-validation data and fit the training
data to the model with different (discretely sampled) tuning parame-
ters, and ii) find out the parameter that gives the best cross-validation
criterion of interest and then fit the in-sample data as a whole (i.e., the
training and validation data together) to the model with the selected
tuning parameter. Step i) of choosing the optimal tuning parameter
is usually referred to as the cross-validation method in the literature
[95]. After the in-sample training, one can conduct the out-of-sample
testing.
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3.1.2 Different Types of Estimators

In statistics, an estimator is simply a function of the current informa-
tion (i.e., the observations) that computes a quantity of interest (e.g.,
the mean, the covariance matrix, or the other model parameters). The
computed (or estimated) value is referred to as the estimate. Roughly
speaking, there are three main types of estimators [143].

Non-parametric Estimators. Non-parametric estimators do not as-
sume the observations follow any specific distribution but estimate the
quantity of interest from the observations based on the law of large
numbers. For example, the sample mean and the sample covariance
matrix are two typical non-parametric estimators. In general, a large
number of samples is required to ensure a low estimation error.

Maximum Likelihood Estimators (MLEs). In practice, the number
of samples may not be large enough, and non-parametric methods may
not provide satisfactory estimates. An alternative method is the para-
metric approach, that is, we first assume that the observations follow an
underlying distribution with some unknown parameters and then de-
fine the estimates as the maximizer of the likelihood of the observations
over the unknown parameters. For obvious reasons, these estimators are
referred to as maximum likelihood estimators.

Shrinkage-Bayesian Estimators. For some applications, the number
of samples may be too small compared to the data dimension and both
the non-parametric and maximum likelihood (ML) estimators may not
provide reliable estimates. In the literature, there are two (related)
ways to improve the estimates. The first approach is to shrink the es-
timate to a given fixed target to get a new estimate. Some examples
are the shrinkage covariance matrix in financial engineering and the
diagonally loaded interference-plus-noise covariance matrix in signal
processing. The second approach is to incorporate some Bayesian prior
information into an estimator by adding a proper regularization term
to the selected likelihood function (since combining the likelihood with
the prior information simply results in a posterior distribution, this
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method is also referred to as the maximum a posterior (MAP) estima-
tion method). These two methods are closely related in the sense that
a shrinkage estimator can usually be alternatively derived by adding a
proper regularization term to a specific likelihood function.

Comparison on Different Types of Estimators

In general, when the number of samples is large enough, the non-
parametric estimators already perform well due to the law of large
numbers, the MLEs also work fine assuming the distribution of the
observations is not far away from the underlying true one, and the
Shrinkage-Bayesian may underperform if the observed data does not
quite fit the assumed prior or shrinkage target. When the number
of samples is medium, then the non-parametric estimators degener-
ate too much and MLEs are still relatively reliable. When the number
of samples becomes too small, neither of the estimators are reliable and
shrinking to some target or incorporating some prior information into
the estimator usually improves the estimation quality to some degree.

3.2 Warm Up: Large Sample Regime

In this section we start with the large sample regime for the I.I.D.
model under different distribution assumptions as a warm up and then
we point out the real challenges faced in practice.

3.2.1 I.I.D. Model

Let us start with the simplest I.I.D. model, i.e.,

rt = µ+ wt, (3.1)

where µ ∈ RN is the mean and wt ∈ RN is a white noise series with
zero mean and constant covariance matrix Σ.

Suppose we have T observations of the log-returns rt, t = 1, . . . , T
and they are drawn according to (3.1). Then estimating the model
simply means estimating µ and Σ.
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Sample Mean and Sample Covariance Matrix

Intuitively, the most straightforward estimators are the sample aver-
ages. The sample mean is

µ̂ = 1
T

T∑
t=1

rt, (3.2)

and the sample covariance is

Σ̂ = 1
T

T∑
t=1

(rt − µ̂)(rt − µ̂)T . (3.3)

The popularity of such estimators comes from the law of large num-
bers (LLN) that under fairly general conditions the sample average
estimates approximate the true expectations and the approximation
accuracy increases as the number of samples increases, e.g., µ̂ → µ

and Σ̂→ Σ as T → +∞ [101, 140].

Least-Square (LS) Estimation

We can first estimate the mean via minimizing the least-square error
in the T observed i.i.d. samples, that is,

minimize
µ

1
T

T∑
t=1
‖rt − µ‖22 . (3.4)

Setting the derivative of the objective w.r.t. µ yields as the optimal
solution the same as the sample mean stated in (3.2). Then, the sample
covariance matrix of the residuals coincides with the sample covariance
matrix stated in (3.3).

Note that both the sample average and LS estimation methods do
not assume the specific distribution of rt, thus they belong to the non-
parametric approach.

ML Estimation

If we assume the underlying distribution is known, then the MLE can
be employed. Here, we assume rt are i.i.d. and follow an elliptical dis-
tribution [141, 140, 101]:

rt ∼ EL(µ,Σ, g), (3.5)
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where µ ∈ RN is a mean vector, Σ ∈ RN×N is a positive definite
dispersion (or scatter) matrix and g is a probability density generator
that mainly determines the thickness of the tails. The corresponding
pdf function is given as follows:

f(r) = 1√
|Σ|

g
(
(r− µ)TΣ−1(r− µ)

)
. (3.6)

The problem of model estimation consists of estimating the param-
eters µ and Σ from the observations by maximizing the likelihood (3.6)
as a function of the parameters µ and Σ for given observations.

Given the T i.i.d. samples rt, t = 1, . . . , T , the negative log-
likelihood of such T samples is

`(µ,Σ) = − log
T∏
t=1

f(rt) (3.7)

= T

2 log |Σ| −
T∑
t=1

log
(
g
(
(rt − µ)TΣ−1(rt − µ)

))
(3.8)

and then the estimates are the minimizer of `(µ,Σ), i.e.,

(µ,Σ) ∈ arg min
µ,Σ�0

`(µ,Σ). (3.9)

For clarity of presentation, first denote

dt , (rt − µ)TΣ−1(rt − µ). (3.10)

Then finding the derivative of `(µ,Σ) w.r.t. µ and Σ−1 yields

∂`

∂µ
= −

T∑
t=1

∂ log (g(dt))
∂µ

= −
T∑
t=1

g′(dt)
g(dt)

∂dt
∂µ

(3.11)

= −
T∑
t=1

2g
′(dt)
g(dt)

Σ−1 (rt − µ) (3.12)

∂`

∂Σ−1 = −T2 Σ−
T∑
t=1

g′(dt)
g(dt)

(rt − µ) (rt − µ)T (3.13)
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and setting both (3.12) and (3.13) to zero yields1

µ =
T∑
t=1

w(dt)∑T
i=1w(di)

rt (3.15)

Σ = 1
T

T∑
t=1

w(dt) (rt − µ) (rt − µ)T (3.16)

where

w(x) , −2g
′(x)
g(x) = (−2 log g(x))′ . (3.17)

Note that Σ satisfying (3.16) must be positive definite (with proba-
bility one) when T is large enough (i.e., T ≥ N + 1), thus the solutions
of (3.15) and (3.16) are the minimizers of `(µ,Σ).

Gaussian Distribution. Note that the Gaussian distribution is a spe-
cial case of the elliptical distribution with

gG(x) , e−x/2

(2π)N/2
, (3.18)

and from (3.17) we have

wG(x) = 1. (3.19)

Interestingly, we can see that the relationships (3.15) and (3.16) re-
duce to the sample averages (3.2) and (3.3), respectively. Thus, when
estimating mean and covariance, both the non-parametric least-square
estimation and the parametric MLE under Gaussian assumption coin-
cide with the sample average estimations.

Student-t Distribution. As mentioned before, the financial noise usu-
ally have heavier tails than the Gaussian assumption. In practice,

1An implicit expression of (3.15) is

0 =
T∑

t=1

w(dt) (rt − µ) . (3.14)
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this characteristic can be captured by an elliptical distribution called
Student-t distribution and the density generator function reads

gS(x) ,
Γ
(
ν+N

2

)
Γ
(
ν
2
)

(νπ)N/2
(1 + x/ν)−

1+N
2 , (3.20)

and from (3.17) we have

wS(x) = ν +N

ν + x
. (3.21)

Here, the parameter ν > 0 is the degree of freedom: the smaller ν is,
the heavier the tails are. It can be shown that the Student-t converges
to the Gaussian distribution, i.e., gS(x)→ gG(x) as ν → +∞ [141].

Cauchy Distribution. A special case of the Student-t distribution is
ν = 1 and the density generator function is

gC(x) ,
Γ
(

1+N
2

)
Γ
(

1
2

)
(π)N/2

(1 + x)−
1+N

2 , (3.22)

and from (3.17) we have

wC(x) = 1 +N

1 + x
. (3.23)

Since ν = 1 < +∞, the Cauchy distribution usually has much heavier
tails than the Gaussian distribution.

Gaussian versus Cauchy Distributions. Now we compare the MLE
of Gaussian and Cauchy distributions. Figure 3.2 shows the one-
dimensional pdfs of the standard Gaussian and the standard Cauchy
distributions. We can see that the standard Gaussian distribution is
thin-tailed and the standard Cauchy distribution is heavy-tailed. Then
we can interpret their weights in (3.19) and (3.23) as follows.

The Gaussian weights wG(dt) are constant from (3.19), this is be-
cause the Gaussian distribution is very thin-tailed and the observations
with large dt (recall that dt = (rt−µ)TΣ−1(rt−µ) given in (3.10)) are
relatively rare. So if an observation is far away from the mean position
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Figure 3.2: Comparison of one-dimensional Gaussian and Cauchy distributions.

(i.e., dt is large), the only reason is that the dispersion is large and thus
the Gaussian MLE assigns all the samples the same weights.

Compared with the Gaussian weights wG(dt), the Cauchy weights
wC(dt) are smaller for the extreme events (i.e., the observations with
large dt) from (3.23). This is because the Cauchy distribution is heavy-
tailed and the observations with large dt are relatively more frequent
and then the Cauchy MLE tends to give the extreme events smaller
weights to diminish their negative effect that would otherwise distort
the estimates.

From the above comparison, we can see that the MLE of the Gaus-
sian distribution is more easily affected by extreme observations or out-
liers (because the outliers usually have large dt as well) and the MLE
of the Cauchy distribution is more robust to the extreme observations
and outliers. This is an important property and will be explored in
Sections 3.4 and 3.5 later. Nevertheless, here we still use an illustrative
example to show the importance of the robust estimation.
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Example 3.1. Suppose the dimension is N = 2 and we draw T = 40
i.i.d. samples rt ∼ N (0,Σ) where

Σ =
[

1 0.8
0.8 1

]
, (3.24)

and four i.i.d. outliers from N
([
−2
2

]
,Σ
)
. We assume we know the

underlying distribution is Gaussian with the mean known and we aim
to estimate the covariance only.

Figure 3.3 shows the result of a specific realization. We can see that
the Gaussian MLE is too sensitive to the outliers while the Cauchy
MLE is more robust and provides much better estimation.

Gaussian MLE: The Gaussian MLE is computed from the sample
covariance (3.3) with given mean µ = 0:

Σ̂G =
[
1.4407 0.4552
0.4552 1.1807

]
. (3.25)

Cauchy MLE: First we can find the solution of (3.16) with given
mean µ = 0 and weight functions defined as (3.23), and we denote
it as Σ̂Shape. Then the estimated covariance matrix of the underlying
Gaussian distribution is Σ̂C = Σ̂Shape

/c where c is the size parameter
defined as the solution of (3.55)2. We will see this procedure more
clearly in Section 3.4.1. Here, we have

Σ̂C =
[
1.0351 0.7584
0.7584 1.0127

]
. (3.26)

Numerically, the Cauchy MLE Σ̂C is much closer to the true covariance
Σ than the Gaussian MLE Σ̂G. It verifies the result in Figure 3.3.

The MATLAB code of this example is included in Appendix A. �

3.2.2 Other Models and Main Focus

The estimations of the other models more or less follow a similar pro-
cedure: first always rewrite the noise in terms of observations and pa-

2For this example, given N = 2, w2(x) = wC(x) = N+1
1+x

, solving (3.55), i.e.,∫ +∞
0 wC (x

c

)
x
c
χ2

N (x)dx = N , yields c = 0.4944.
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Figure 3.3: Comparison of Gaussian and Cauchy MLEs.

rameters, then if the pdf of the noise is known employ MLE, otherwise
use a simple LS estimation. For example, the LS estimation method
is used to estimate the parameters of an i.i.d. model, i.e., the condi-
tional mean vector and covariance matrix. It is also widely used to
estimate the linear coefficients of a VAR model and is based on which
the conditional mean vector and covariance matrix can be computed
directly [129, 197]. And interestingly, as shown before, the LS estima-
tion methods coincides with the maximum likelihood estimation under
the Gaussian noise assumption. For the estimation of different multi-
variate time series models, i.e., VAR, VARMA, VECM, and GARCH,
the book [129] provides a good and comprehensive summary where the
LS estimation and/or MLE of each model are explained in detail.

Also, to overcome the possible over-fitting or over-parameterization
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issues due to outliers or lack of samples, the same idea of shrinkage-
Bayesian is employed for the parameter estimation of different models,
e.g., the i.i.d. model [53, 105, 187, 120, 121, 122], the factor model [40,
71], the VAR/VMA/VARMA model [15, 116, 126, 47, 186, 152, 129],
the ARCH/GARCH model [72], etc.

Therefore, for clarity of presentation, the scope of this chapter is
not to restate the existing well-developed estimation procedures for all
the models but is to focus on the state-of-the-art estimation of the
mean and covariance matrix that lies at the heart of all fitting meth-
ods. In fact, the estimation of the covariance matrix is of paramount
importance in the financial engineering industry, as illustrated by the
following fact.

Fact 3.1. Estimating the covariance or correlation between different
assets is very important in practice. Accurate covariance enables one
to make optimal portfolio optimization decisions and to control the risk
better. In industry there are even some financial firms consulting on
estimating the covariance. For example, see Studdridge International3
which “is a high-end consulting firm specialized in estimating large-
dimensional covariance matrices, and in exploiting the information they
contain to make optimal decisions”. �

3.2.3 Real Challenges

So far we have introduced the sample average estimators and the MLE.
Unfortunately, those two estimation methods are not reliable in prac-
tice due to the following real challenges.

• Small sample regime: when the number of samples is not enough
compared to the dimension of the log-return vector (i.e., the num-
ber of stocks considered), the sample covariance may not even
be invertible. Even if it is invertible, it may still not be well-
conditioned and taking matrix inversion will amplify any tiny
errors in the estimated covariance matrix. This becomes a prac-
tical challenge because of the rise of big data analysis in various
applications, including financial engineering, signal processing,

3http://studdridge.com/what-we-do/
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bioinformatics, etc. In our context, one manifestation of big data
refers to the high dimensionality or large size of the universe of
stocks.

• Heavy tails issue: another critical issue in financial engineering is
that the distributions of the log-returns are always heavy-tailed
(cf. Section 3.4). Thus, the widely used Gaussian assumption does
not hold in practice and it does not lead to a proper fitting of real
data. The traditional estimators based on the Gaussian assump-
tion are too sensitive to extreme events and outliers, and as a
consequence the estimates are distorted too much to be reliable.

In the following, we will explore and connect the recent different
methods developed in both financial engineering and signal processing
that deal with the above two issues.

3.3 Small Sample Regime: Shrinkage Estimators

When the number of samples is small compared with the data dimen-
sion, the total mean squared errors (MSEs) of the sample average es-
timators are mainly from the variances rather than the biases of the
estimators [143]. It is well-known that lower MSEs can be achieved by
allowing for some biases [56]. This can be implemented by shrinking
the sample estimators to some known target values.

Generally speaking, the shrinkage estimator has the following form:

θ̃ = ρT + (1− ρ)θ̂, (3.27)

where θ̂ is the sample average estimator (i.e., it can be either sample
mean or sample covariance matrix), T is a target which can either be
given or have a specific structure (e.g., it can be an identity matrix
up to a scalar for the covariance matrix estimation), ρ is the shrinkage
trade-off parameter, and θ̃ is the shrinkage estimator.

Now the critical problem is how to choose the shrinkage trade-off
parameter ρ (and sometimes the target T as well) so that the MSE or
some other criteria of interest is minimized. In general, there are two
different approaches of finding the optimal shrinkage trade-off param-
eter: random matrix theory (RMT) and cross-validation.
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RMT. This is a theoretical approach and the idea is to first assume
the true parameter (to be estimated) is known and formulate a problem
that minimizes the ideal criterion of interest. However, in practice the
true parameter is never known and then under some technical assump-
tions and conditions the RMT is employed to either get the asymptot-
ically optimal trade-off parameter in closed-form expression or derive
an easy to solve numerical optimization problem. The advantage of this
approach is that the (in-sample) asymptotically optimal trade-off pa-
rameter can be computed directly and efficiently. However, we need to
point out that the (in-sample) asymptotically optimal trade-off param-
eter does not guarantee the best out-of-sample test result. Due to the
mathematical simplicity the RMT has also found various applications
in signal processing and wireless communication fields, e.g., see [199].

Cross-Validation. This is the numerical method introduced in Section
3.1.1. This approach tends to provide better out-of-sample results since
the cross-validation is used to exhaustively search for the best trade-off
parameter. However, it is also computationally more intensive since it
requires to compute the estimates with many different shrinkage trade-
off parameter values in the cross-validation step.

3.3.1 Shrinkage Mean

It is well-known from the central limit theorem that

µ̂ ∼ N
(
µ,

Σ
T

)
(3.28)

and thus the MSE of µ̂ is

E ‖µ̂− µ‖22 = 1
T

Tr(Σ). (3.29)

Sharing the same form as (3.27), the James-Stein shrinkage estima-
tor [53, 105, 187] for the mean aims at shrinking the sample mean to a
target b:

µ̃ = ρb + (1− ρ)µ̂. (3.30)
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It is shown that a choice of ρ so that E ‖µ̃− µ‖22 ≤ E ‖µ̂− µ‖22 is [143]

ρ̃ = 1
T

Nλ̃− 2λ1

‖µ̂− b‖22
(3.31)

if it is positive, otherwise it is zero. Here, λ̃ and λ1 are the average
and the largest value of the eigenvalues of Σ, respectively. Intuitively,
ρ̃ vanishes as T increases, and the shrinkage estimator gets closer to
the sample mean.

Apart from any fixed b independent of the observations, some other
examples of b are 1T µ̂

N 1, which is the scenario-dependent grand mean
[143]; and 1T Σ̂−1

µ̂

1T Σ̂−11
1, which is a volatility-weighted grand mean where

Σ̂ is an estimator of the covariance matrix [110].

Example 3.2. We set N = 40 and draw T = 10, 20, . . . , 80 i.i.d. sam-
ples from N (0,Σ) where Σij = 0.8|i−j|. Suppose Σ is known exactly,
we compare the sample mean with three shrinkage estimators: i) the
constant target b = 0.2 × 1, ii) the scenario-dependent (SD) target
b = 1T µ̂

N 1, and iii) the volatility-weighted (VW) target b = 1T Σ−1µ̂
1T Σ−11 1.

Figure 3.4 shows the numerical results where the MSE is averaged
over 200 realizations. We can see that the sample mean has a numer-
ical MSE close to the theoretical one 1

T Tr(Σ), and all the shrinkage
estimators outperform the sample mean. Among them, the shrinkage
estimator with the scenario-dependent and volatility-weighted targets
outperforms the one with the constant target. �

3.3.2 Shrinkage Scatter Matrix Based on RMT

Now we assume the mean is known exactly and the goal is to estimate
the scatter (or dispersion, or covariance if it exists) matrix. For the
shrinkage scatter matrix, the identity matrix in general is selected as
the target, and there exist many works aiming at selecting the shrinkage
trade-off parameter according to different criteria.

MSE

For example, Ledoit and Wolf [121] aimed at finding the linear com-
bination of the sample covariance matrix Σ̂ and the identity matrix
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Figure 3.4: Shrinkage mean estimations.

such that the expected quadratic loss between the estimation and the
(unknown) true covariance Σ was minimized:

minimize
ρ1, ρ2

E
∥∥∥Σ̃−Σ

∥∥∥2

F

subject to Σ̃ = ρ1I + ρ2Σ̂.
(3.32)

Suppose the true covariance matrix Σ is known, problem (3.32) is a
quadratic programming and the variables are two scalars. The optimal
solution admits a closed-form as follows.

Theorem 3.1 ([121, Theorem 2.1]). Problem (3.32) admits the optimal
solution

Σ̃? = ρ̃λ̃I + (1− ρ̃)Σ̂, (3.33)

where

λ̃ = Tr(Σ)
N

and ρ̃ =
E
∥∥∥Σ̂−Σ

∥∥∥2

F

E
∥∥∥Σ̂− λ̃I

∥∥∥2

F

. (3.34)
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Unfortunately, the true covariance Σ is not known in practice,
hence, λ̃ and ρ̃ are not directly computable. Ledoit and Wolf further
proposed the consistent estimators of λ̃ and ρ̃ as follows:

ˆ̃λ = Tr(Σ̂)
N

, (3.35)

ˆ̃ρ = min

 1
T

1
T

∑T
t=1 Tr(rtrTt − Σ̂)2

Tr(Σ̂− ˆ̃λI)2
, 1

 . (3.36)

Then simply replacing λ̃ and ρ̃ in (3.33) with ˆ̃λ and ˆ̃ρ yields a consistent
estimator of Σ̃?. Intuitively, ˆ̃ρ vanishes as T increases, and the shrink-
age estimator becomes closer to the sample covariance estimator. The
results of (3.35) and (3.36) were derived based on the RMT, which
is also a popular quantitative tool in signal processing and wireless
communication, e.g., see [199].

Interestingly, the idea of shrinking the sample covariance matrix to
the identity matrix has also been widely used in array signal processing
and is referred to as diagonal loading, e.g., see [1, 45, 38]. However, the
trade-off parameter is usually chosen in an ad hoc way, e.g., the diagonal
loading matrix may be chosen as Σ̂+10σ2I where σ2 is the noise power
in a single sensor [204]. Here, (3.33) provides a more sensible way to
select the trade-off parameter.

Example 3.3. We use the same parameter settings as Example 3.2,
but now we assume the mean is known and we want to estimate the
covariance matrix. For the Gaussian case, it can be shown that [143,
121]

E
∥∥∥Σ̂−Σ

∥∥∥2

F
= 1
T

(
Tr(Σ2) +

(
1− 1

T

)
(Tr(Σ))2

)
, (3.37)

E
∥∥∥Σ̂− λ̃I

∥∥∥2

F
= E

∥∥∥Σ̂−Σ
∥∥∥2

F
+
∥∥∥Σ− λ̃I

∥∥∥2

F
. (3.38)

If we knew Σ, we could obtain Σ̃? in (3.33) directly. It is referred
to as the “oracle” estimator since Σ is never known in practice. The
practical estimator obtained by replacing λ̃ and ρ̃ in (3.33) with ˆ̃λ and
ˆ̃ρ is referred to as the Ledoit-Wolf (LW) estimator.
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Figure 3.5: Shrinkage covariance estimation.

Figure 3.5 shows the numerical results where the MSEs are aver-
aged over 200 realizations. We can see that the sample covariance has a
numerical MSE close to the theoretical one, i.e., (3.37) and the shrink-
age LW estimator outperforms the sample covariance. Interestingly, the
LW estimator performs closely to the oracle estimator. �

Quadratic Loss of Precision Matrix

For many cases, it is the precision matrix (i.e., the inverse of the dis-
persion or covariance matrix) that is used in practice, e.g., see the
minimum variance (MV) portfolio

wMV = Σ−11
1TΣ−11

, (3.39)

which is the optimal solution of (1.3) introduced before.
Since the inversion operation can dramatically amplify the estima-

tion error, for applications similar to the minimum variance portfolio,
it is more sensible to minimize the estimation error in the precision
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matrix directly instead of minimizing the estimation error in the co-
variance matrix.

Based on the shrinkage structure, Zhang et al. [212] considered
the problem of minimizing the quadratic loss of the precision matrix
directly as follows:

minimize
ρ≥0,T∈D+

1
N

∥∥∥Σ̃−1 −Σ−1
∥∥∥2

F

subject to Σ̃ = ρI + 1
T

RTRT ,

(3.40)

where R = [r1, . . . , rT ] ∈ RN×T is the data matrix of T observations,
and T ∈ D+ is a T -by-T nonnegative and diagonal weight matrix.

Even if the true covariance matrix Σ is known, problem (3.40) is
much harder than problem (3.32) because the objective of problem
(3.40) cannot be explicitly computed anymore.

Under some technical conditions, Zhang et al. [212] showed that
asymptotically there exists a global optimal solution of the form (ρ,T =
αI) and derived the following asymptotic problem:

minimize
ρ≥0, α≥0

1
N

∥∥∥Σ̃−1 − Σ̂−1∥∥∥2

F

+ 2
N

Tr
(
ρ−1

(ˆ̃δΣ̃−1 − (1− cN )Σ̂−1)+ Σ̂−1Σ̃−1)
− (2cN − c2

N ) 1
N

Tr
(
Σ̂−2)

− (cN − c2
N )
( 1
N

Tr
(
Σ̂−1))2

subject to Σ̃ = ρI + αΣ̂,
ˆ̃δ = α

(
1− 1

T
Tr
(
αΣ̂Σ̃−1))

,

(3.41)

where cN , N
T and ˆ̃δ are intermediate parameters.

We can understand (3.41) as thus, it replaces the unknown true
covariance matrix Σ with the explicitly computable sample covariance
matrix Σ̂ and then adds some correction terms to increase the approx-
imation accuracy.

Problem (3.41) is nonconvex but it can be solved via exhaustive
search since there are only two scalar variables ρ ≥ 0 and α ≥ 0.
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Figure 3.6: Shrinkage precision matrix estimations.

Example 3.4. Suppose N = 40 and the i.i.d. samples are drawn from
N (0,Σ) where Σij = 0.9|i−j|. The number of samples T varies as
60, 70, . . . , 120. We compare the following four estimators: i) the inverse
of the sample covariance matrix, ii) the inverse of the LW covariance
estimator, iii) the exhaustive search solution of problem (3.41) over
(ρ, α) ≥ 0, which is referred to as the ZRP estimator, and iv) the ex-
haustive search solution of problem (3.40) with the structure (ρ, αI)
over (ρ, α) ≥ 0 assuming that Σ is known, is referred to as the “oracle”
estimator since Σ is never known in practice.

Figure 3.6 shows the numerical results where the quadratic loss is
averaged over 200 realizations. We can see that estimating the precision
matrix directly provides lower quadratic losses. �

Remark 3.1. Note that problem (3.41) requires the sample covariance
matrix to be invertible. For the singular case, Zhang et al. [212] studied
an alternative loss function called Stein’s loss. For simplicity, we have
only included the results of quadratic loss here. �
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Sharpe Ratio

All the previous works focus on selecting the shrinkage trade-off pa-
rameter to improve the covariance (or precision) estimation accuracy,
and recall that the target of an investor is always to achieve better
out-of-sample result (e.g., higher realized Sharpe ratio). Even though
an accurate covariance (or precision) estimator necessarily leads to a
better out-of-sample result, a more sensible approach is to select the
shrinkage trade-off parameter so that the out-of-sample criterion of
interest is optimized directly.

Here we take the Sharpe ratio (with risk-free return being zero)

SR = wTµ√
wTΣw

(3.42)

as the criterion of interest and an optimal solution is given by [65] (also
see (5.15) later)

w?
SR ∝ Σ−1µ. (3.43)

In practice the true values of µ and Σ are never known and the esti-
mates from the training samples are used instead. In [213], the sample
mean µ̂ and the shrinkage covariance matrix

Σ̃ = ρ1I + ρ2Σ̂, (3.44)

where Σ̂ is the sample covariance matrix, are used and the resulted
portfolio is

ŵSR ∝ Σ̃−1
µ̂. (3.45)

Note that the Sharpe ratio (3.42) is scale invariant in w, thus ρ2
can be arbitrarily set to 1 and the more sensible approach proposed
in [213] is to find the shrinkage trade-off parameter ρ1 such that the
realized out-of-sample Sharpe ratio of the portfolio ŵSR is maximized:

maximize
ρ1≥0

µT Σ̃−1
µ̂√

µ̂T Σ̃−1ΣΣ̃−1
µ̂

subject to Σ̃ = ρ1I + Σ̂.

(3.46)
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However, the objective of (3.46) is not computable since the true values
of µ and Σ are unknown. Under some technical conditions, the authors
of [213] derived an asymptotically equivalent problem based on RMT
as follows:

maximize
ρ1≥0

µ̂T Σ̃−1
µ̂− δ̂√

bµ̂T Σ̃−1Σ̂Σ̃−1
µ̂

subject to Σ̃ = ρ1I + Σ̂

D = 1
T

Tr
(
Σ̂Σ̃−1)

δ̂ = D/(1−D)

b = T

Tr
(
W(I + δ̂W)−2

)

(3.47)

where W , I − 1
T 11T ∈ RT×T is a predefined parameter, and D, δ̂,

and b are intermediate parameters.
The problem (3.41) can be understood as follows: the unknown true

mean µ and covariance matrix Σ are replaced by the explicitly com-
putable sample mean µ̂ and sample covariance matrix Σ̂ and then some
correction terms, i.e., δ̂ in the numerator and b in the denominator, are
incorporated to increase the approximation accuracy. This problem is
still nonconvex but it can be solved via exhaustive search since there
is only one scalar variable ρ1 ≥ 0.

To investigate the performance of (3.47), let us now consider a real
experiment conducted in [213] as follows.

Example 3.5. Let us consider the daily returns of the 45 stocks under
Hang Seng Index from 03-Jun-2009 to 31-Jul-2011. The portfolio is up-
dated at each 10 days and the past T = 75, 76, . . . , 95 observations are
used to design the portfolios at each update period. The compared port-
folios are: i) the method (3.47) based on RMT (referred to as RMT), ii)
the portfolio (3.42) based on the Ledoit-Wolf (LW) estimator (referred
to as LW), iii) the portfolio (3.42) based on the SCM (referred to as
SCM), and iv) the uniform portfolio (referred to as Uniform).

Figure 3.7 shows the out-of-sample Sharpe ratio of the four com-
pared methods. It can be observed that when T changes from 75 to 81,
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Figure 3.7: Out-of-sample Sharpe ratio of RMT, LW, SCM and Uniform portfolios.
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the RMT method outperforms the others, but when T > 81, its perfor-
mance becomes unstable. This is mainly because the mean return and
covariance matrix cannot be stationary in a long period (e.g., T > 81)
[213]. Later an improved RMT portfolio was proposed by setting the
weights whose absolute values are less than 5% of the summed absolute
values of all the weights to zeros, and this portfolio is referred to as a
sparse RMT portfolio. Figure 3.8 shows the out-of-sample Sharpe ratio
of the different methods, and it can be seen that the sparse RMT port-
folio outperforms all the other methods significantly when T changes
from 75 to 90. �

Remark 3.2. For simplicity we have only considered the Sharpe ratio
here. Some other criteria are also studied in the literature in the content
of both beamforming design and portfolio optimization, e.g., variance,
MSE and SNR for beamforming design [213], and portfolio variance for
portfolio optimization [170, 213]. �

Remark 3.3. There now exist some recent works on including spar-
sity in the estimates, e.g., the covariance [20, 21, 117] or the precision
matrix [82, 99, 211]. In general, some regularization terms are added
to propose sparsity (or group sparsity). For example, one widely used
regularization is `1-norm and the technique is usually referred to as
LASSO (least absolute shrinkage and selection operator). The book
[96] serves as a good summary reference on various topics related to
sparsity. Apart from adding the sparsity in the estimation parameters,
including sparsity in portfolio optimization is also of interest in some
financial problems. Chapter 8 in the later part will demonstrate some
widely used techniques to impose sparsity in portfolio optimization. �

3.4 Heavy Tail Issue: Robust Estimators

From the previous Example 3.1 (see also Figure 3.3) we have already
seen that the traditional sample average estimators (or equivalently,
the MLE under Gaussian distribution assumption) are very sensitive
to the extreme events and outliers; instead, the MLE under heavy-tail
assumption (e.g., the Cauchy distribution) provides more robust esti-
mations. In this part, we will explore more general robust estimators.
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3.4.1 M -Estimators

Multivariate M -estimators can be defined as a generalization of the
MLEs of elliptical distributions [140, 101]. Given the i.i.d. samples rt,
t = 1, . . . , T , the M -estimates µ and Σ are defined as the solutions to
the fixed-point equations

0 =
T∑
t=1

w1(dt) (rt − µ) (3.48)

Σ = 1
T

T∑
t=1

w2(dt) (rt − µ) (rt − µ)T , (3.49)

where dt = (rt − µ)TΣ−1(rt − µ) and the weight functions w1(x) and
w2(x) are both nonnegative, nonincreasing, and continuous functions
in x ∈ (0,+∞), and they are not necessarily equal. The existence and
uniqueness of solutions can be guaranteed under some technical condi-
tions, and the uniqueness requires that xw2(x) is a strictly increasing
function of x ∈ (0,+∞) [139, 192]. Suppose the solution to (3.48) and
(3.49) exists and is unique, and let us denote it as (µ̂, Σ̂).

Observe that the elliptical MLE given by (3.15) and (3.16) can be
regarded as a special case with w1(x) = w2(x) = −2g

′(x)
g(x) , where g is a

density generating function.

Asymptotics

Assume the i.i.d. samples rt ∼ EL(µo,Σo, g) where the superscript “o”
stands for “oracle”. Then as T →∞, the solution to (3.48) and (3.49),
i.e., (µ̂, Σ̂), will converge with probability one to the unique solution,
denoted as (µ̂∞, Σ̂∞), to the fixed-point equations

0 = E [w1(d) (r− µ)] (3.50)

Σ = E
[
w2(d) (r− µ) (r− µ)T

]
, (3.51)

where d = (r− µ)T Σ−1 (r− µ), and the following relationships hold

µ̂∞ = µo (3.52)
Σ̂∞ = cΣo (3.53)
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regardless of w1(d) and w2(d) as long as they satisfy some technical
assumptions such that the solution to (3.48) and (3.49) exists and is
unique [140].

Here, the size parameter c > 0 is given by

E
[
w2

(
‖x‖22
c

)
‖x‖22
c

]
= N (3.54)

with x ∼ EL(0, I, g) sharing the same density generating function as r.
For the Gaussian case, since x ∼ N (0, I) implies ‖x‖22 ∼ χ2

N , then the
relationship (3.54) can be simplified as∫ +∞

0
w2

(
x

c

)
x

c
χ2
N (x)dx =N. (3.55)

Numerical Algorithm

Algorithm 1 is a numerical iterative method that converges to the
unique solution (if it exists and is unique) and the initial values only
affect the number of iterations [12].

Algorithm 1 M-Estimator
Input: any µ, Σ0 � 0.
Output: the solution to (3.48) and (3.49).
1: repeat
2: dkt = 1 + (rt − µk) Σ−1

k (rt − µk)
T

3: µk+1 =
∑T

t=1 w1(dkt)rt∑T

t=1 w1(dkt)

4: Σk+1 = 1
T

∑T
t=1w2(dkt)

(
rt − µk+1

) (
rt − µk+1

)T
5: k ← k + 1
6: until convergence

3.4.2 Tyler’s Estimator

Tyler’s estimator was proposed to find the right balance between ef-
ficiency and robustness [201]. It assumes zero mean and focuses on
estimating the scatter matrix only. Tyler’s estimate is defined as the
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solution to the-fixed point equation

Σ = N

T

T∑
t=1

rtrTt
rTt Σ−1rt

. (3.56)

Note that here xw2(x) = K is not strictly increasing and the results of
the M -estimator do not apply. Tyler established the conditions (e.g.,
one condition is T ≥ N + 1) for existence and uniqueness (up to a
positive scalar) of a solution to the fixed-point equation (3.56), and
proposed the following iterative Algorithm 2 to achieve the unique trace
normalized solution.

Algorithm 2 Tyler’s Estimator
Input: Σ0 � 0
Output: solution to (3.56)
1: repeat
2: Σ̃k+1 = N

T

∑T
t=1

rtrT
t

rT
t Σ−1

k
rt

3: Σk+1 = Σ̃k+1
Tr(Σ̃k+1)

4: k ← k + 1
5: until convergence

We have previously seen that M -estimators can be regarded as
generalized MLEs. Interestingly, Tyler’s estimator can be derived from
an MLE perspective as well.

It is known that if r ∼ El(0,Σ, g), then the normalized samples
s = r

‖r‖2
follow [202, 113, 81]

f(s) =
Γ
(
N
2

)
2πN/2

1√
|Σ|

(
sTΣ−1s

)−N/2
, (3.57)

which is independent of the density generating function g. Then the
MLE of Σ can be obtained by minimizing the scale-invariant negative
log-likelihood function

L(Σ) = T

2 log |Σ|+
T∑
t=1

N

2 log
(
sTt Σ−1st

)
(3.58)
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or, equivalently,

LTyler(Σ) = T

2 log |Σ|+
T∑
t=1

N

2 log
(
rTt Σ−1rt

)
. (3.59)

Finally, setting the derivative of LTyler(Σ) w.r.t. to Σ−1 to zero yields
the fixed-point equation (3.56).

3.5 Small Sample Regime & Heavy Tail Issue: Regularized
Robust Estimators

One regularity condition for the previous mentioned robust estimators
is that the number of samples is at least T ≥ N + 1. In practice, the
universe of stocks may be large and the number available samples for
the fitting may be scarce in comparison (e.g., N = 500 stocks of the
S&P500 and less than two years of daily data, say, T ≈ 400). Thus
when T ≥ N + 1 is violated and the ordinary robust estimators cannot
be applied anymore, or even when it is satisfied, regularization still
helps if T is not sufficiently large.

In this part, we mainly study the recent advances on robust esti-
mators with regularizations so that the reliable statistical inference can
still be conducted even when the data contains extreme events and/or
outliers and the number of samples is limited compared to the data
dimension.

3.5.1 Regularized Robust Estimation of Scatter Estimator

This subsection contains the most recent advances on the regularized
Tyler’s estimator.

Diagonally Loaded Estimator

Similar to the idea of shrinkage covariance or diagonal loading, the
authors of [2, 39] proposed to shrink the Tyler update covariance matrix
(i.e., step 2 of Algorithm 2) to the identity matrix.

Algorithm 3 summarizes the iterative computing procedure where
α ≥ 0 is a scalar parameter.
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Algorithm 3 Tyler’s Estimator with shrinkage
Input: Σ0 � 0
Output: A unique positive definite matrix
1: repeat
2: Σ̃k+1 = 1

1+α
N
T

∑T
t=1

rtrT
t

rT
t Σ−1

k
rt

+ α
1+αI

3: Σk+1 = Σ̃k+1
Tr(Σ̃k+1)

4: k ← k + 1
5: until convergence

Chen et al. [39] proved that for any α > 0 Algorithm 3 converges
to a unique point and they proposed a systematic way to select α.

Even though this estimator is widely used and performs well in
practice, it is still considered to be heuristic and does not have an
interpretation based on minimizing a cost function.

Kullback-Leibler Divergence Regularized Estimator

Interestingly, the heuristic regularization in Algorithm 3 can be for-
mally interpreted as the solution to a Kullback-Leibler (KL) regularized
Tyler’s loss function (3.59) [190].

For two multivariate Gaussian distributions, e.g., NΣ(0,Σ) and
NT (0,T), the KL divergence is defined as [44]

DKL(NT ||NΣ) = 1
2

(
Tr(Σ−1T)−K − log

( |T|
|Σ|

))
, (3.60)

where the positive definite matrix T can be interpreted as the target
that represents some prior information.

Recall LTyler(Σ) in (3.59), then ignoring the constant terms results
in the following KL divergence regularized LTyler(Σ):

LKL(Σ) = log |Σ|+ N

T

T∑
t=1

log(rTt Σrt)

+ α
(
Tr(Σ−1T) + log |Σ|

)
, (3.61)

where α ≥ 0 is the regularize parameter.
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Minimizing (3.61) leads to the following fixed-point equation:

Σ = 1
1 + α

N

T

T∑
t=1

rtrTt
rTt Σ−1rt

+ α

1 + α
T. (3.62)

Note that T = I recovers the regularization in Algorithm 3.
Interestingly, almost at the same time, three independent works,

i.e., [190], [158], and [157], achieved the same result as follows.

Theorem 3.2. Suppose rt are drawn i.i.d. from a zero mean ellipti-
cal distribution, then the fixed-point equation (3.62) admits a unique
solution if and only if T > N

1+α . �

The following Algorithm 4 computes the unique solution.

Algorithm 4 Tyler’s Estimator with KL divergence penalty
Input: Σ0 � 0
Output: the unique solution to (3.62)
1: repeat
2: Σk+1 = 1

1+α
N
T

∑T
t=1

rtrT
t

rT
t Σ−1

k
rt

+ α
1+αT

3: k ← k + 1
4: until convergence

Wiesel’s Penalty. There also exist some other regularizations. One
example is the Wiesel’s penalty [207]:

h(Σ) = K log(Tr(Σ−1T)) + log |Σ|, (3.63)

and minimizing the Wiesel’s penalty regularized Tyler’s loss function
results in solving the following fixed-point equation:

Σ = 1
1 + α

N

T

T∑
t=1

rtrTt
rTt Σ−1rt

+ α

1 + α

NT
Tr(Σ−1T)

, (3.64)

where α > 0 is the regularization parameter.

Example 3.6. Now we set N = 39 and draw i.i.d. samples from a
Student-t distribution tν(µo,Σo) with ν = 3, µo = 0, and Σo

ij =
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0.8|i−j|. We assume the mean is known and focus on estimating the
normalized scatter matrix only. Note that now the distribution is heavy-
tailed. The number of samples T = 20, 30, . . . , 100. The performance
metric is the normalized MSE (NMSE) [207]:

NMSE =
E
[∥∥∥Σ̂−Σo

∥∥∥2

F

]
‖Σo‖2F

, (3.65)

where all matrices are normalized by their traces.
We simulate the following five estimators: i) the sample covariance

matrix, ii) the LW covariance estimator, iii) the Tyler’s estimator (i.e.,
Algorithm 2), and iv) two KL divergence regularized Tyler’s estimators
(i.e., Algorithm 4) with noninformative identity target T = I and infor-
mative target T where Tij = 0.7|i−j|. For tuning the parameter α of the
KL regularized Tyler’s estimators, a standard cross-validation method
is in [207] and a method based on random matrix theory is in [43]. For
simulation simplicity, we simulate α such that ρ(α) = α

1+α is each of
the ten uniform grid points of the interval (max(0, 1− T/N) + 0.01, 1)
and we report the best result. Nevertheless, this experiment aims at
providing an illustrative example to reveal the ideas behind different
estimators and for more intensive numerical experiments, please refer
to [39, 207, 190, 157, 158].

Figure 3.9 shows the numerical results where the NMSEs are av-
eraged over 200 realizations. We have several interesting observations:
i) the sample covariance matrix and the LW estimator (recall that the
LW estimator also relies on the sample covariance matrix) both per-
form badly since the underlying distribution is heavy-tailed and the
extreme events distort the estimation, ii) Tyler’s estimator is robust
since it uses the weights N

rT
t Σ−1rt

to eliminate the effect of the extreme
events, however it only works when the number of samples is larger
than the data dimension since Σ needs to be invertible, iv) the regu-
larized Tyler’s estimator with noninformative identity target improves
the estimation quality, and v) the informative prior target furthermore
improves the estimation quality. All these observations coincide with
the ideas behind the different estimators. �



78 Modeling Fitting: Mean and Covariance Matrix Estimators

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Number of samples

N
M

S
E

 

 
SCM
LW
Tyler
KL: identity target
KL: info target

Figure 3.9: Regularized robust covariance estimations.

3.5.2 Regularized Robust Estimation of Mean and Covariance

Previously we reviewed the robust estimation of covariance matrix only
assuming the mean was known. Now we consider the joint estimation
of the mean and covariance matrix.

Suppose the samples rt, t = 1, . . . , T are drawn i.i.d. from an ellip-
tical distribution El(µo,Σo, g) where the density generating function
g is assumed unknown. Since the specific elliptical distribution is as-
sumed unknown, we will do the fitting under a conservative heavy-tail
distribution (note that the estimation will work for any elliptical distri-
bution). In particular, it is convenient to use the Cauchy distribution
since it has very heavy tails and still the scatter matrix exists (the
covariance matrix does not exist).
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Consider the Cauchy MLE, that is, the estimates of the mean and
the scatter are the minimizers of the following negative log-likelihood:

L(µ,Σ) = T

2 log |Σ|+ N + 1
2

T∑
t=1

log
(
1 + (rt − µ)TΣ−1(rt − µ)

)
,

(3.66)

or, equivalently, the solutions of the following fixed-point equations:

0 = N + 1
T

T∑
t=1

rt − µ
1 + (rt − µ)TΣ−1(rt − µ)

, (3.67)

Σ = N + 1
T

T∑
t=1

(rt − µ)(rt − µ)T

1 + (rt − µ)TΣ−1(rt − µ)
. (3.68)

Asymptotics

Recall the M -estimators in Section 3.4.1. Note that (3.67) and (3.68)
are the same as (3.15) and (3.16) with weights given by wC(x) = N+1

1+x
in (3.23), and they are a special case of the M -estimators (3.48) and
(3.49) with w1(x) = w2(x) = wC(x).

This implies the asymptotics of the M -estimators applies. That is,
under some technical conditions, as T →∞ the asymptotic solution of
(3.67) and (3.68) converges to a unique point, denoted as (µ̂∞, Σ̂∞).
Similar to (3.52) and (3.53), we have (µ̂∞, Σ̂∞) = (µo, cΣo) where the
size parameter c is unknown since now the density generating function
g is unknown.

In other words, asymptotically the Cauchy MLE can estimate the
mean and the shape well. Therefore, it is more sensible to regularize
only the shape but not the size if a regularization is necessary.

Small Sample Regime

When the number of samples is limited, say less than the data dimen-
sion, the regularized Cauchy MLE is more reliable. Sun et al. [191]
proposed the following penalty function:
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h(µ,Σ) = α
(
N log(Tr(Σ−1T)) + log |Σ|

)
+ γ log

(
1 + (t− µ)TΣ−1(t− µ)

)
, (3.69)

where α ≥ 0 and γ ≥ 0 are regularization parameters. It is easy to
verify that the minimizer of (3.69) is (t, cT) for any c > 0 [191]. That
is, (3.69) shrinks the mean to t and scatter to the shape of T only.
This justifies that h(µ,Σ) is a proper penalty function since it only
penalizes the shape but not the size of the scatter matrix.

Then the regularized Cauchy MLE problem is

minimize
µ, Σ�0

N + 1
2

T∑
t=1

log
(
1 + (rt − µ)TΣ−1(rt − µ)

)
+ T

2 log |Σ|+ α
(
N log(Tr(Σ−1T)) + log |Σ|

)
+ γ log

(
1 + (t− µ)TΣ−1(t− µ)

)
.

(3.70)

Setting the derivatives of the objective w.r.t µ and Σ−1 to zeros yields
the following fixed-point equations:

µ =(N + 1)
∑T
t=1wt(µ,Σ)rt + 2γwt(µ,Σ)t

(N + 1)
∑T
t=1wt(µ,Σ) + 2γwt(µ,Σ)

(3.71)

Σ = N + 1
T + 2α

T∑
t=1

wt(µ,Σ)(rt − µ)(rt − µ)T

+ 2γ
T + 2αwt(µ,Σ)(t− µ)(t− µ)T

+ 2αN
T + 2α

T
Tr(Σ−1T)

, (3.72)

where

wt(µ,Σ) = 1
1 + (rt − µ)TΣ−1(rt − µ)

, (3.73)

wt(µ,Σ) = 1
1 + (t− µ)TΣ−1(t− µ)

. (3.74)

The properties of the problem (3.70) are as follows.
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Figure 3.10: Values that the regularization parameters α and γ can take for the
existence and uniqueness of the regularized Cauchy MLE.

Theorem 3.3. Assume the underlying distribution of the samples is
continuous, T � 0, T > 1, α ≥ 0 and γ ≥ 0, then we have
Existence: Problem (3.70) has a minimizer if either of the following
conditions are satisfied:
(i) γ > γ1 and α > α1
(ii) γ2 < γ ≤ γ1 and α > α2(γ)
where γ1 = N/2, γ2 = (N + 1− T )/2, α1 = (N − T )/2, and

α2(γ) = 1
2

(
N + 1− T − 2γ + T −N − 1

T − 1

)
.

Uniqueness: The solution is unique if γ ≥ α. �

Proof. See [191, Theorem 2, Corollary 3, and Theorem 4].

Figure 3.10 shows the regions of regularization parameter values for
the existences and uniqueness of the regularized Cauchy MLE (3.70).

To compute the unique solution, Sun et al. [191] also proposed
several iterative algorithms, including the following Algorithm 5, with
convergence guaranteed based on the majorization-minimization (MM)
theory.
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Algorithm 5 Iterative Regularized Cauchy MLE
Input: µ0, Σ0 � 0
Output: The unique solution of (3.70)
1: repeat

2: µk+1 =(N + 1)
∑T
t=1wt(µk,Σk)rt + 2γwt(µk,Σk)t

(N + 1)
∑T
t=1wt(µk,Σk) + 2γwt(µk,Σk)

3:

Σ = N + 1
T + 2α

T∑
t=1

wt(µk,Σk)(rt − µk+1)(rt − µk+1)T

+ 2γ
T + 2αwt(µk,Σk)(t− µk+1)(t− µk+1)T

+ 2αN
T + 2α

T
Tr(Σ−1

k T)
4: k ← k + 1
5: until convergence

Example 3.7. In this example, we study the robustness of different
outliers. We fix N = 100 and draw i.i.d. samples from N (µo,Σo) with
µo = 1, and Σo

ij = 0.8|i−j|. Then we draw outliers as routlier ∼ µ + rs
where s is uniformly distributed on a sphere such that ‖s‖2 = 1 and r ∼
Uniform[2l, 2l+1] where l , max

t
{‖rt‖2}. The total number of samples

is T = 120 and the fraction of outliers varies as 0.02, 0.05, . . . , 0.2. Since
we are now estimating both the mean and the covariance matrix we
need a combined measure of performance. We use the symmetric KL
divergence distance [191]:

KL distance = E
[
DKL(N (µ̂, Σ̂)||N (µo,Σo))
+DKL(N (µo,Σo)||N (µ̂, Σ̂))

]
, (3.75)

where all matrices are normalized by their traces.
We simulate the following six estimators: i) the sample covariance

matrix, ii) the LW covariance estimator, iii) the Cauchy MLE estima-
tor, and iv) three regularized Cauchy MLE estimators (i.e., Algorithm
5) with: iv-a) t being the sample mean and noninformative identity co-
variance target T = I, iv-b) t being the sample mean and informative
covariance target T where Tij = 0.7|i−j|, and iv-c) informative mean
target t = 0.9µo and informative covariance target with Tij = 0.7|i−j|.
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Figure 3.11: Regularized robust mean and covariance estimations.

For the regularized Cauchy MLEs, for simulation simplicity we set
α = γ and simulate α such that ρ(α) = T

T+2α ∈ {0.1, 0.2, . . . , 1} and
report the best result. A more practical but complicated way is cross-
validation [207].

Figure 3.11 shows the numerical results where the KL distances are
averaged over 200 realizations. We can see similar observations to that
of Example 3.6. Briefly speaking, the regularized Cauchy MLE (even
with a noninformative target) does improve the estimation quality in
a small sample regime and the improvement becomes more significant
when the percentage of outliers increases. For more intensive numerical
experiments, the interested reader can refer to [191]. �

3.6 Summary of Different Estimators

In this chapter we have reviewed different types of estimators: non-
parametric estimators (e.g., sample mean/covariance, LS estimator),
ML estimators, and shrinkage/regularized estimators mainly based on
the I.I.D. model. Table 3.1 provides a brief and compact summary.
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Table 3.1: Summary of different estimators.

Type Name
Fixed-Point Eqs.
or Expression or
Problem

Scenario

Non-
parametric

Sample
averages (3.2) and (3.3)

Large sample;
Same as
Gaussian MLELeast

square

MLE

Elliptical (3.15) and (3.16)
with weight (3.17)

Large or medium
sample

Gaussian (3.15) and (3.16)
with weight (3.19)

Cauchy (3.15) and (3.16)
with weight (3.23)

Regularized
or
Shrinkage

Mean (3.30)-(3.31) Small sample
without extreme
events or outliers

Covariance (3.33), (3.35)-(3.36)
Precision Problem (3.41)

Robust

M -
estimator (3.48)-(3.49)

Generalized
MLE for large or
medium sample
with extreme
events or outliers

Tyler (3.56)

Regularized
Robust

KL reg-
ularized
Tyler

Minimizing (3.61) or
solving (3.62)

A combination
of shrinkage idea
and robust
estimators;
Small sample
with extreme
events and/or
outliers

Wiesel
regu-
larized
Tyler

Solving (3.64)

Regularized
Cauchy

Minimizing (3.70) or
solving (3.71)-(3.72)



4
Order Execution

Order execution bridges a desired ideal target and the real world: once a
portfolio has been designed, it needs to be executed in the real markets.
This chapter studies the order execution problem and how to optimally
execute such orders.

Section 4.1 briefly reviews the limit order book system and intro-
duces the concept of market impact. Section 4.2 further presents the
price model and execution cost. Section 4.3 focuses on minimizing the
expected execution cost, and Section 4.4 considers an extension of min-
imizing the mean-variance trade-off of execution cost. Finally, Section
4.5 considers minimizing a more practical criterion, i.e., the Conditional
Value-at-Risk (CVaR), of the execution cost.

4.1 Limit Order Book and Market Impact

4.1.1 Limit Order Book

Once a buy (respectively, sell) order has been submitted, it will not
be executed immediately. Instead, it will be checked for whether it can
be matched by the previously submitted sell (respectively, buy) orders.
A limit order book at a specific time is the snapshot of all the active
outstanding orders at that time [87].

85
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Figure 4.1: Limit order book and two limit orders.

Orders that do not cause an immediate matching upon submission
but become active orders in a limit order book are known as limit
orders. Figure 4.1 shows an illustrative example of a limit order book
and two new limit orders. The limit orders that ask for sell are called
sell limit orders. They may have different ask prices and the lowest ask
price is referred to as ask-price. Respectively, the limit orders that bid
for buy are called buy limit orders. They have different bid prices and
the highest bid price is referred to as bid-price. The average of the bid-
price and the ask-price is referred to as mid-price and the difference
between the ask-price and the bid-price is called a bid-ask spread.

Orders that cross the bid-ask spread cause an immediate matching
upon submission. This can happen, for example, when a small buy
order is submitted with a bid price equal to the current ask-price (and
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Figure 4.2: A new market sell order and matched trades.

the amount of that order can be absorbed). Also, there is a type of
execution order, called a market order, that does not have an associated
price, instead it will be matched to the best existing price in the order
book and executed immediately. However, the execution of large orders
follows a different pattern.

Figure 4.2 shows a submission of a large market sell order that
its owner simply wants to sell at whatever price the limit order book
can provide immediately. Once the large market sell order has been
submitted, it matches some limit buy orders in the limit order book
(in order from high to low price). Figure 4.2 also shows the matched
trades with different quantities at different prices.

Right after the trades have been executed, they are eliminated from
the limit order book. Figure 4.3 shows the updated limit order book.
Clearly, we can see that the overall average trade price is lower than
the initial bid-price and the new bid-price also becomes much lower.
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Figure 4.3: Market impact: the large market sell order moves prices in the opposite
direction.

That is, a large market sell order moves the prices in the opposite
direction, i.e., when one wants to sell, he/she actually sells lower. Sim-
ilarly, when one wants to buy, he/she actually buys higher. Such an
effect is known as market impact and will be explained next.

4.1.2 Market Impact

In the practice of quantitative investment, portfolio allocation decisions
and trading strategies are realized through the execution of buy and
sell orders in organized exchanges via brokers through the limit order
book systems. Due to practical limitations concerning market liquidity,
i.e., availability of required volume levels matching the size of an out-
standing order for a specific asset, executing transactions in the market
has an effect on the prices of assets: buying pushes the prices upward
and selling pushes the prices downward, as shown in the previous illus-
trative Figures 4.2 and 4.3. This market impact is reflected on the cost
incurred when implementing trades [94, 156].

Figure 4.41 illustratively shows how the price evolves versus time
when a large market sell order, say s shares, is executed directly.
This market order must be matched immediately and represents a de-
mand for liquidity. Similar to Figure 4.2, selling this large amount of s

1Figures 4.4 and 4.5 are reproduced based on [65, Figures 12.1 and 12.2].
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Figure 4.4: Market impact of a single large order.

shares incurs significant market impact and the executed price is much
lower than the pre-trade equilibrium price. As time goes by, liquidity
providers replenish the bid side and the limit order book reaches a
post-trade equilibrium; however, the price is still lower than the pre-
trade equilibrium. The difference between the pre-trade and post-trade
equilibrium is due to the information that an investor has decided to
sell s shares and it is referred to as permanent impact. The remaining
impact is called temporary and it is because the investor wants to sell
the order immediately regardless of price. In practice, the temporary
market impact is more significant than the permanent one [115]. An-
other observation is that the permanent impact propagates with time
while the temporary impact diminishes after some time period.

Small orders in general have much smaller market impacts. Intu-
itively, a large order can be partitioned into many small orders to be
executed sequentially to reduce the overall market impact. Figure 4.5
shows the example of partitioning a large order of s shares into two
equal small orders executed sequentially. We can observe several things:
1) the market impact of selling s/2 shares is much smaller than that
of selling s directly and 2) executing them sequentially helps to reduce
the overall market impact since the price may be recovered from the
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Figure 4.5: Market impact of two sequential small orders.

temporary impact caused by the first trade before the second trade
happens. Obviously, the average of the two trade prices of selling s/2
is much higher than that of selling s shares at once directly. That is,
overall, the average trade price of the total s shares achieved by exe-
cuting small orders sequentially is much higher than that of executing
the large order once.

Naturally, the idea of optimal order execution is to partition a large
order into many small pieces and execute them sequentially. The min-
imization of the execution cost through optimal order execution al-
gorithms is crucial for preserving in practice the profit structure of
theoretically sound investment processes [65]. Otherwise, one may ex-
pect to make a certain profit with a carefully designed portfolio that
will vanish or even become negative. Interestingly, this order execution
problem is close to many other scheduling and optimization problems
in signal processing. From a dynamic control point of view, the order
execution problem of finding an optimal order execution strategy to
minimize the mean-variance trade-off of the execution cost [18] is quite
similar to the problem of finding an optimal sensor scheduling strategy
to minimize the state estimation error in dynamic wireless sensor net-
works [208, 180, 181]. From an optimization point of view, distributing
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a large order into smaller size orders over a certain time window to
minimize the execution cost [8, 79] is similar to allocating total power
over different channels to achieve the capacity region for parallel Gaus-
sian broadcast channels [198], or to minimize the J-divergence between
the distributions of the detection statistic in wireless sensor networks
[214].

Fact 4.1. One usually focuses on minimizing the market impact and
therefore reducing execution cost. However, every coin has two sides
and in practice it is possible to use the market impact to make money
as well [83]. Perhaps the most famous example is “Black Wednesday”.
In 1992, there was a devaluation trend of pound sterling and Geogre
Soros’ Quantum fund began to massively short-sell pounds on Tuesday,
September 15, 1992 and triggered a more intensive trend of devaluation
of the pound. On Wednesday, September 16, 1992, the Bank of England
was not able to protect the pound anymore and the British Conserva-
tive government was forced to withdraw the pound sterling from the
European Exchange Rate Mechanism. During that period, Soros first
held a total of US$10 billion short positions on GBP and later closed
the position at a lower value so that he made US$1 billion. Because of
that, he has since been known as “The Man Who Broke the Bank of
England”. �

4.2 Price Model and Execution Cost

4.2.1 Price Model

Before introducing a price model, let us define the notation. The buy
and the sell problems are similar to each other and for the sake of
notation we focus on the sell problem. Assume we hold N stocks with
an initial price p0 , [p10, . . . , , pN0]T with the number of shares to
sell denoted by s , [s1, . . . , sN ]T and we want to completely execute
them before time T . Assume there is no short-selling, and denote the
number of shares for the N stocks executed over the t-th period as
nt , [n1t, . . . , nNt]T ≥ 0, t = 1, . . . , T . We write the order execution
sequence {n1, . . . ,nT } as an N -by-T matrix N = [n1, . . . ,nT ], such
that N1 = s, where 1 is a T -dimensional vector having all entries equal
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Figure 4.6: Illustrations of (a) trading trajectory and (b) price model.

to 1. We define such a matrix N as an execution strategy. The number
of remaining shares after the t-th period is `t, with `t = `t−1−nt, initial
condition `0 = s, and end condition `T = 0. Then, L = [`1, . . . , `T ] is
a trading trajectory, and it evolves as shown in Figure 4.6a.

We then consider a model for the price dynamics taking into account
the market impact incurred when executing the order. Specifically, the
execution price in the t-th period pt(n1, . . . ,nt) is a random variable
depending on past executions and also the current execution. In order
to characterize how it evolves over time, a number of different price
models have been proposed [102, 8, 18]. Here, we consider the quite
general price model in [8] with both linear permanent and temporary
market impact components. More specifically, prices evolve, for t =
1, . . . , T , as

p̃t = p̃t−1 −Ψ(nt) + Σξt, (4.1)
pt = p̃t−1 −ψ(nt), (4.2)

where p̃t , [p̃1t, . . . , p̃Nt]T is a hidden variable denoting the permanent
impact prices with initial value p̃0 = p0, pt , [p1t, . . . , pNt]T is the
actual execution price, ξt , [ξ1t, . . . , ξrt]T is the random noise with
all the elements being i.i.d. random variables with zero mean and unit
variance, Σ ∈ RN×r is the volatility matrix, and Ψ(·) and ψ(·) are
permanent and temporary, respectively, linear market impact functions
that take the form

Ψ(nt) = Θnt, (4.3)
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ψ(nt) = Ωnt. (4.4)

In the above price model, the parameters Σ, Θ, and Ω represent the
linear coefficient matrices of noise, permanent market impact, and tem-
porary market impact. They are usually fixed and calibrated in advance
by using data on the bid-ask spread, the volatility, and the daily trading
volume. Similar to [8], we assume that Ω ∈ RN×N is positive definite2,
and for simplicity, we assume that the matrices Θ and Ω are both
symmetric. Figure 4.6(b) summarizes price model.

4.2.2 Execution Cost

Let P , [p1, . . . ,pT ] and Ξ , [ξ1, . . . , ξT ]. The ideal value in the ab-
sence of market impact and market noise would be pT0 s but in practice
it becomes

∑T
t=1 nTt pt = Tr

(
PTN

)
, and the gap between them is de-

fined as the execution cost (i.e., the implementation shortfall) as follows
[159]:

X(N) =

pT0 s− Tr
(
PTN

)
, sell program

Tr
(
PTN

)
− pT0 s, buy program.

(4.5)

Based on the above price model for a sell program, plugging (4.1)-(4.4)
into (4.5) and after some mathematical manipulations, we obtain

X(N) = 1
2sTΘs + Tr

(
NT Ω̃N

)
− Tr

(
LTΣΞ

)
, (4.6)

where Ω̃ , Ω− 1
2Θ, and the mean and the variance are

E [X(N)] = 1
2sTΘs + Tr

(
NT Ω̃N

)
(4.7)

Var [X(N)] = Tr
(
LTΣΣTL

)
. (4.8)

Recall that L is a function of N: `t = `t−1 − nt and `0 = s.
In practice, it is also assumed that Ω̃ = Ω − 1

2Θ � 0, as in [145].
This makes sense because usually the temporary market impact is much
higher than the permanent market impact in financial markets. Indeed,

2Because if nT
t Ωnt ≤ 0, it would mean the temporary market impact of executing

nt in fact would benefit the trading or at least would lose nothing, which would go
against the goal of reducing the market impact.
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the amount caused by the permanent impact is a relatively small per-
centage of the pure cost component, and Kissell et. al. estimate it to
be 5% [115, pp. 182]. Then both the mean (4.7) and the variance (4.8)
are quadratic convex in N.

4.3 Minimizing Expected Execution Cost

The first problem formulation was proposed in [18] for the single asset
case, and it aims at minimizing the expected execution cost

minimize
N

E [X(N)]
subject to N1 = s, N ≥ 0.

(4.9)

Since Ω̃ � 0, the problem is already quadratic convex and thus can
be efficiently and numerically solved. When Ω̃ is diagonal, it is not
hard to show that the problem (4.9) of N assets can be decomposed
into N small problems of a single asset, and following the derivation in
[18], the optimal execution strategy is to uniformly distribute the large
order among the T execution periods, that is, N = 1

T s1T .

4.4 Minimizing Mean-Variance Trade-off of Execution Cost

An obvious disadvantage of the problem (4.9) is that it does not con-
sider the risk of the execution cost. By taking the variance as the risk
measurement, Almgren and Chriss [8] extended (4.9) by minimizing a
mean-variance trade-off of the execution cost as follows:

minimize
N

E [X(N)] + λVar [X(N)]
subject to N1 = s, N ≥ 0,

(4.10)

where λ ≥ 0 is a fixed parameter modeling an investor’s risk aversion
level. The larger the value of λ, the more risk averse the investor (λ = 0
means the investor is risk neutral and it corresponds to problem (4.9)).
For obvious reasons, such an approach is commonly referred to in the
literature as the mean-variance optimization approach. Note that since
Ω̃ � 0, the problem is already convex.
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4.5 Minimizing CVaR of Execution Cost

However, it is well known that the variance used in (4.9) is not an ap-
propriate risk measure when dealing with financial returns from non-
normal, negatively skewed, and leptokurtic distributions [141]. In order
to overcome the inadequacy of variance, CVaR (also known in the liter-
ature as Expected Shortfall, Expected Tail Loss, Tail Conditional Ex-
pectation, and Tail VaR) has been proposed as a single side alternative
risk measurement [166] and it has been employed significantly in finan-
cial engineering, see [7, 63, 172, 100], for portfolio or risk management.
Interestingly, such a single side risk measurement technique has also
found some applications in signal processing recently, see [124, 183],
for chance constrained communication systems.

4.5.1 CVaR and Problem Formulation

The CVaR is defined as the conditional mean value of a random variable
exceeding a particular percentile. This precisely measures the risky re-
alizations, as opposed to the variance that simply measures how spread
the distribution is and mixes together both tails.

For illustrative purposes, Figure 4.7 shows the definition of the
CVaR of a random variable. Mathematically, given an random vari-
able Z, the CVaR of the execution cost at the 1 − ε confidence level
can be expressed as

CVaR1−ε (Z) = E
[
Z
∣∣∣Z > VaR1−ε (Z)

]
, (4.11)

where the Value-at-Risk of the execution cost at the 1 − ε confidence
level, denoted as VaR1−ε (Z), is the (1− ε)-quantile of Z:

VaR1−ε (Z) = inf
ζ∈R
{ζ|P (Z > ζ) ≤ ε} . (4.12)

Note that given an execution strategy N, the execution cost X (N)
is a random variable and the problem of minimizing the CVaR of the
execution cost turns out to be [79, 77, 78]:

minimize
N

CVaR1−ε (X (N))
subject to N1 = s, N ≥ 0.

(4.13)
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Figure 4.7: The VaR and CVaR of a random variable.

At first glance, CVaR1−ε (X (N)) is hard to deal with because it
contains a conditional expectation exceeding a threshold that is not
fixed. To proceed, we will make use of the following auxiliary function.

Auxiliary Function. Following the approach in [166], we can define an
auxiliary function of CVaR1−ε(X(N)) as follows:

Fε(N, ζ) = ζ + ε−1E [X(N)− ζ]+ (4.14)

where [x]+ = max (x, 0). Observe that (4.14) is convex w.r.t. both ζ and
N, since X(N) is convex quadratic in N, and additionally, we further
have [166]:

CVaR1−ε(X(N)) = min
ζ
Fε(N, ζ). (4.15)

Then, the original problem (4.13) can be more efficiently optimized by
using the property in (4.15). To that effect, notice that we need to
compute the expectation E [X(N)− ζ]+.
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4.5.2 Sample Average Approximation

The first idea is to use the sample average approximation (SAA) to
approximate E [X(N)− ζ]+, and the CVaR problem (4.13) is approxi-
mated by

minimize
N, z, ζ

ζ + ε−1M−1∑M
i=1 zi

subject to 0 ≤ zi ≥ 1
2sTΘs + Tr

(
NT Ω̃N

)
− Tr

(
LTΣΞi

)
− ζ,

∀i = 1, . . . ,M
N1 = s, N ≥ 0,

(4.16)
where Ξi is the i-th realization of noise sampled from the distribution of
ξit’s, andM is the number of noise realizations. As pointed out in [142]
although the SAA method can provide an accurate execution strategy
for a very large number of realizations, such a method is impaired by
large storage requirements and high computational complexity, espe-
cially when M is large.

4.5.3 Analytical Approach

To overcome the drawback of the SAA method, an analytical approach
to handling CVaR1−ε (X (N)) and solving (4.13) for both Gaussian and
Non-Gaussian noise was proposed in [79, 77, 78]. The idea is to either
find the explicit expression of E [X(N)− ζ]+ for the Gaussian cases or
construct a save convex approximation of E [X(N)− ζ]+ for the general
non-Gaussian noise.

Gaussian Noise

For the Gaussian case, the following analytical equivalent formulation
of the problem (4.13) was derived in [78].

Lemma 4.1. If all the ξit are i.i.d. and ξit ∼ N (0, 1), and Ω̃ � 0 in the
price model (4.1)-(4.2), we have that (4.13) is equivalent to the convex
problem:

minimize
N

1
2sTΘs + Tr

(
NT Ω̃N

)
+ κ (ε)

∥∥∥ΣTL
∥∥∥
F

subject to N1 = s, N ≥ 0,
(4.17)
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where κ (ε) = exp
(
−
(
Q−1 (ε)

)2
/2
)
/
√

2πε and Q−1 (x) is the inverse
Q-function.3. �

Interestingly, the results in Lemma 4.1 can be extended to more
general elliptical distributions [78].

General Non-Gaussian Noise

The elliptical distributions are only appropriate in situations where
returns are symmetric or not strongly asymmetric, but fail to success-
fully model highly asymmetric or, equivalently, skewed returns [141].
For such cases, CVaR1−ε(X(N)) admits no explicit expression, and an
alternative way to approach the CVaR execution problem is to solve a
safe tractable convex approximation of CVaR1−ε(X(N)) instead. The
following technical assumption is needed.

Assumption 4.1. The moment generating function of the random vari-
able ξit, i.e., Mit (z) = E

[
ezξit

]
, is finite-valued for all z ∈ R and can

be computed efficiently. �

Then one can have the following result [78].

Proposition 4.1 (Bernstein’s Approximation). If all the ξit are i.i.d. sat-
isfying Assumption 4.1, and Ω̃ � 0 in the price model (4.1)-(4.2), a
safe tractable convex approximation of (4.13) is

minimize
N, z>0

1
2sTΘs + Tr

(
NT Ω̃N

)
+
∑T
t=1

∑r
i=1 z logMit

(
z−1git (N)

)
− z log ε

subject to N1 = s, N ≥ 0,
(4.19)

where git (N) = −
∑m
j=1 `jtΣji. �

Note that z logMit
(
z−1git (N)

)
with z > 0 is the perspective func-

tion of the convex log-sum-exp function logMit (git (N)) and thus is
jointly convex in (N, z) [32]. Given that Ω̃ � 0, we are able to con-
clude that problem (4.19) is convex.

3The Q-function is defined as

Q(x) = 1√
2π

∫ ∞
x

e−
u2
2 du. (4.18)
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Figure 4.8: Order execution with T = 5: small order = 0.2 × s, medium order
s =

[
106, 106]T , and large order = 5× s. (a) asset 1. (b) asset 2.

Let us consider an illustrative example to understand different
methods of order execution based on the Gaussian noise.

Example 4.1. Suppose there are N = 2 assets, r = 2 noise sources,
and i.i.d. noise ξit ∼ N (0, 1). The parameter matrices are

Ω =
[

5 0
0 1

]
× 10−6, Θ =

[
2.5 0
0 0.5

]
× 10−7, (4.20)

Σ =
[

0.6191 0.1292
0.1292 0.6191

]
. (4.21)

We consider three kinds of sizes of the initial order: the medium initial
order size is s =

[
106, 106]T , small order = 0.2 × s and large order

= 5 × s. We simulate three different methods: i) the problem (4.9) of
minimizing the expected execution cost (or equivalently, the problem
(4.10) with λ = 0), ii) the problem of minimizing the mean-variance
trade-off of the execution cost with λ = 10−6, and iii) the closed-form
CVaR formulation of (4.17) for the Gaussian case with ε = 0.05.

Figure 4.8 shows the normalized order execution strategies of Ex-
ample 4.1 with different initial order sizes. First, we find that minimiz-
ing the expected execution cost always distributes the order uniformly
among the execution periods, which verifies the results in Section 4.3.
Second, the mean-variance approach with fixed λ = 10−6 adjusts the
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execution strategies according to the variance of the execution cost;
however, it always gives the same normalized execution order strategy
no matter what the initial order size is. While the CVaR approach exe-
cutes the small initial order faster to reduce the risk of not completing
the execution, it spreads the large initial order more to avoid the huge
market impact caused by one single large order. Another interesting
observation is that asset 2 is executed faster than asset 1 because it
has a smaller market impact (see (4.20)) and thus is more liquid. The
results show that the CVaR approach can adjust the execution strate-
gies depending on the initial order size but the mean-variance approach
(including the case λ = 0) cannot. Thus, the CVaR approach is more
appropriate for the order execution problem. �

Remark 4.1. Apart from the above reviewed non-robust cases, there
are also some other related works appearing simultaneously and inde-
pendently. For example, for the robust mean-variance order execution
problem see [146, 77, 78], for a numerical Monte Carlo simulation based
CVaR formulation of the order execution see [147], and for the robust
CVaR formulation of the order execution see [77, 78]. �



Part II

Portfolio Optimization
(Risk-Return Trade-off)



5
Portfolio Optimization with Known Parameters

Modeling of time series (overviewed in Part I) is at the core of and is a
preliminary step in quantitative investment. The design of investment
strategies is the natural next step and will be explored in the form
of portfolio optimization (in Part II) and statistical arbitrage (in Part
III).

As a start, Part II, this chapter introduces the most basic frame-
work of Markowitz portfolio optimization under the assumption that
the model parameters, i.e., the expected return µ and the covariance
matrix Σ of the asset net returns, are perfectly known. We need to
point out that in practice µ and Σ need to be estimated from the past
observations as discussed in the previous Chapter 3.

The organization of this chapter is as follows. Section 5.1 reviews
the Markowitz mean-variance portfolio optimization. Section 5.2 points
out two serious drawbacks of the Markowitz framework: variance as a
risk measurement is not appropriate, and the mean-variance framework
is very sensitive to parameter estimation errors. To overcome the first
drawback, Section 5.2.1 covers the works on a single side risk measure-
ment instead of variance. The literature results dealing with the second
drawback are left to the next chapter, robust portfolio optimization.

102



5.1. Markowitz Mean-Variance Portfolio Optimization 103

5.1 Markowitz Mean-Variance Portfolio Optimization

The Markowitz mean-variance framework, introduced by Harry
Markowitz [135] in 1952, provides a first quantitative approach to con-
struct portfolios, which is the foundation of the nowadays Modern Port-
folio Theory (for a comprehensive review, see [58]). Because of this fun-
damental contribution, Harry Markowitz shared the Nobel prize with
another two researchers, Merton Miller and William Sharpe, in 1990.

The idea of the Markowitz framework is to find a trade-off between
the expected return and the risk of the portfolio measured by the vari-
ance. Given that the expected return µ and the positive definite covari-
ance matrix Σ of the assets are perfectly known, the expected return
and variance of a portfolio w are wTµ and wTΣw, respectively.

Remark 5.1. Recall from Section 2.1.4 that it is the mean vector and
covariance matrix for simple returns that are used for portfolio opti-
mization. However, Part I mainly focuses on modeling log-returns since
its statistical properties are more tractable. The good thing is that one
can have the mean vector and covariance matrix for simple returns
based on that for log-returns directly under the Gaussian assumption.
That is, suppose the log-returns of N assets follow a multivariate Gaus-
sian distribution N (µ̄, Σ̄), the mean vector and covariance matrix for
the simple returns are

µ = eµ̄+σ̄/2 − 1 (5.1)

Σ =
(
(µ+ 1) (µ+ 1)T

)
�
(
eΣ̄ − 1N×N

)
, (5.2)

where σ̄ = [Σ11, . . . ,ΣNN ]T is the vector of the variances of the N
stocks, 1 is a N dimensional all one vector, 1N×N is a N -by-N all one
matrix, and eX is an elementwise exponential operator, i.e., [eX]ij =
eXij . �

5.1.1 Mean-Variance Trade-Off Optimization

There are three alternative but equivalent formulations, i.e., the risk
minimization problem, return maximization problem, and risk-adjusted
return maximization problem, and all of them are useful in practical
applications.
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Risk Minimization Problem

The risk minimization formulation aims at minimizing the portfolio
variance with the expected portfolio return being above a given target:

minimize
w

wTΣw

subject to wTµ ≥ µ0,

wT1 = 1,

(5.3)

where µ0 is a expected return target parameter. The constraint wT1 =
1 is the capital budget constraint. Note that the above problem is
convex given that Σ is positive definite and thus it can always be
solved efficiently.

An interesting case of problem (5.3) that achieves the minimum
variance regardless of the expected portfolio return is

minimize
w

wTΣw

subject to wT1 = 1,
(5.4)

which for obvious reasons is referred to as a global minimum variance
portfolio (GMVP). Since the GMVP is a convex QP with only one lin-
ear equality constraint, solving the Karush-Kuhn-Tucker (KKT) opti-
mality conditions [32] directly yields the closed-form solution expressed
as follows:

wGMVP = 1
1TΣ−11

Σ−11. (5.5)

Then the portfolio mean and variance of the GMVP are easily com-
puted by

µGMVP = µTwGMVP = µTΣ−11
1TΣ−11

, (5.6)

σ2
GMVP = wT

GMVPΣwGMVP = 1
1TΣ−11

. (5.7)

Return Maximization Problem

Instead of seeking the minimum variance, an alternative problem is
to search for the maximum expected return with the variance under
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control, say, less than a given target. This problem is referred to as a
return maximization problem and has the following form:

maximize
w

wTµ

subject to wTΣw ≤ σ2
0,

wT1 = 1,

(5.8)

where σ2
0 is the parameter that controls the variance target. Again,

since the covariance matrix Σ is positive definite, the above problem
has a linear objective with linear and convex quadratic constraints, and
thus it is efficiently computable.

Risk-Adjusted Return Maximization Problem

The third problem formulation is to maximize a risk-adjusted return
as follows:

maximize
w

wTµ− λwTΣw

subject to wT1 = 1,
(5.9)

where λ ≥ 0 is a given trade-off parameter between the portfolio ex-
pected return and variance. When λ > 0, it is a convex QP with only
one linear constraint which admits a closed-form solution as follows:

w? = 1
2λΣ−1 (µ+ ν?1) , (5.10)

where ν? is the optimal dual variable

ν? = 2λ− 1TΣ−1µ

1TΣ−11
. (5.11)

Efficient Frontier

Each of the above three problem formulations, i.e., (5.3), (5.8), and
(5.9), has one controlling parameter and they are equivalent in the sense
that when the parameters change (i.e., µ0 changes from µGMVP to +∞,
σ2

0 changes from σ2
GMVP to +∞, and λ changes from 0 to +∞), they

result in the same mean-variance1 trade-off curve (Pareto curve), which
1In the financial literature, it is standard deviation instead of variance that is

used for illustrative purposes.
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Figure 5.1: Illustration of the efficient frontier, capital market line, and global
minimum variance and maximum Sharpe ratio portfolios.

is usually referred to as an efficient frontier in the financial literature,
e.g., see [65, 58]. For example, when λ→ +∞, the portfolio (5.10) goes
to the GMVP (5.5).

Figure 5.1 shows the shape of an efficient frontier (see the black
solid curve) and all the other feasible portfolios fall below the efficient
frontier (see that all the red square points fall below the back solid
curve). The GMVP is the leftmost point that has the minimum variance
among all the feasible portfolios (see the black round dot). A simplified
version code of Figure 5.1 is included in Appendix B.

5.1.2 Sharpe Ratio Optimization

All the portfolios on the efficient frontier are optimal depending on the
investor’s risk profile, that is, the choice of the parameters µ0, σ0, or λ.
However, one may still ask which portfolio may be the most meaningful
in practice. Precisely, Sharpe [179] first proposed the optimization of
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the following problem:

maximize
w

wTµ− rf√
wTΣw

subject to wT1 = 1,
(5.12)

where rf is the return of a risk-free asset2. The objective of (5.12),
is usually referred to as the Sharpe ratio, which measures the excess
return (i.e., wTµ− rf ) normalized by the risk (i.e.,

√
wTΣw), and the

problem is thus called the Sharpe ratio maximization problem.
Since the Sharpe ratio is nonconcave, the Sharpe ratio maximization

problem is not a convex problem. Fortunately, it can be reformulated
in convex form as follows. First, note that wT1 = 1, then the problem
(5.12) can be rewritten as

maximize
w

wT (µ− rf1)√
wTΣw

subject to wT1 = 1.
(5.13)

Observe that the objective of (5.13) now is scale invariant w.r.t. w, thus
the constraint wT1 = 1 can be relaxed to wT1 > 0 and then one can
arbitrarily set wT (µ − rf1) = 1 and minimize wTΣw instead. Thus,
the problem (5.13) can be further reformulated into a convex form:

minimize
w

wTΣw

subject to wT (µ− rf1) = 1,
wT1 > 0.

(5.14)

Any normalized solution of (5.14) so that the summation of all the
portfolio weight values being one is an optimal solution of (5.13).

The problem (5.14) without wT1 > 0 is a convex QP with only one
linear equality constraint and thus admits a closed-form solution:

wSR = 1
(µ− rf1)TΣ−1(µ− rf1)

Σ−1(µ− rf1), (5.15)

2Usually a risk-free asset is assumed to have zero risk or variance. In practice,
for example, the US Treasuries, especially T-bills, are considered as risk-free assets
because they are backed by the U.S. government.
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then wSR is also an optimal solution of the problem (5.14) if wT
SR1 > 0

(which is always observed in practice); otherwise, one can always find
an optimal solution of (5.14) efficiently via a standard optimization
solver since it is a convex QP.

Figure 5.1 shows the Sharpe ratio point on the efficient frontier
(see the blue round point) that has the maximum Sharpe ratio (or
equivalently, the maximum slope between the points on the efficient
frontier and the risk-free point). If one is allowed to borrow or lend the
risk-free asset, then he/she can have a portfolio that falls on the solid
blue line, which is usually referred to as the capital market line in the
financial literature [58].

Another interesting observation is that when rf = 0 and all the
assets have the same expected return, i.e., µ = α1 for some α > 0, the
Sharpe ratio solution (5.15) coincides with the GMVP in (5.5).

5.1.3 Connections between Portfolio and Beamforming

Let us first start with introducing the formulation of beamforming. The
output of a narrowband beamformer is given by

y(t) = wHx(t), (5.16)

where t is the time index, x(t) ∈ CN is the complex vector of array
observations (i.e., measurements at different antennas), w ∈ CN is the
complex vector of beamformer weights, and N is the number of array
sensors.

The observation vector is modeled as

x(t) = s(t)a︸ ︷︷ ︸
, s(t)

+i(t) + n(t), (5.17)

where s(t), i(t), and n(t) are the desired signal, interference, and noise
components, respectively. The signal s(t) is the temporal waveform and
a is the spatial steering vector.

Then the goal of beamforming design is to design a weight vector
or beamvector w that maximizes the SINR [149]:

maximize
w

σ2
s |wHa|2
wHRw

(5.18)
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where σ2
s is the signal power, | · | denotes the magnitude of a complex

number, and

R = E
[
(i(t) + n(t))(i(t) + n(t))H

]
(5.19)

is the N ×N interference-plus-noise covariance matrix.
Note that the objective of (5.18) is invariant to the magnitude and

the phase of w, thus one can arbitrarily set the complex number wHa
to be real and equal to one, i.e., wHa = 1, and then the problem (5.18)
can be reformulated as [149]:

minimize
w

wHRw

subject to wHa = 1,
(5.20)

which is the problem (1.4) mentioned in the introduction of Chapter 1.
The solution is found in closed-form as

w = 1
aHR−1aR−1a, (5.21)

which shares the same mathematical form as the GMVP in (5.5) with
the real-valued net returns covariance matrix Σ being replaced by the
complex-valued interference-plus-noise covariance matrix and the con-
stant vector 1 being replaced by the complex-valued signal steering
vector a.

5.1.4 Practical Constraints

In practice, the optimization problems are not as clean as stated above
and there are always some additional constraints due to market regu-
larizations, capital budgets, investors’ preferences, etc. (some of which
are not even convex) [65, 63].

Long-Only Constraints

This is the most natural constraint and models the fact that one cannot
sell what one does not have:

w ≥ 0. (5.22)
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This is a usual constraint since many funds and institutional investors
are not allowed to short-sell in the market, which means selling what
one does not have, and would translate into a negative weight (since
that value is owed rather than owned).

Turnover Constraints

If we denote the current portfolio as w0, and the target portfolio to
be designed as w, then ∆w , w − w0 denotes the turnover, i.e., the
capital to be traded. Usually, the smaller the turnover is, the lower the
transaction cost is. Thus, we can limit the turnover either on each asset

|∆wi| ≤ Ui (5.23)

or on the whole portfolio:

‖∆w‖1 ≤ U. (5.24)

For example, it is practical to restrict the turnover of an asset to be
less than 5% of the average daily volume of the asset.

Holding Constraints

It is also common in practice to limit the weights in each asset, that is,

Li ≤ wi ≤ Ui, (5.25)

where Li and Ui are lower and upper bounds of the holdings of asset i.
Another issue is that one has to pay a fixed minimum brokerage

fee no matter how small the order is. Thus too small holdings are not
desired in practice and they can be avoided by adding the following
(nonconvex) constraints:

|wi| ≥ Li1{wi 6=0}, (5.26)

where Li is the smallest holding size of asset i.

Cardinality Constraints

It is also suggested to restrict the number of assets in some scenarios,
e.g., it is practical to use only a few stocks to track the market index.
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Mathematically speaking, this constraint reads

‖w‖0 ≤ K. (5.27)

5.2 Drawbacks of Markowitz Framework

Even though the Markowitz framework is quantitatively easy to under-
stand, it has two serious drawbacks that have made the framework not
used in practice for many years.

5.2.1 Variance Is Not Appropriate

As motivated in Section 4.5 for an order execution problem, variance
is not a good risk measurement in practice since it penalizes both the
unwanted high transaction costs and the desired low transaction costs
(for short-selling it is the opposite).

This argument indeed applies to the portfolio optimization since
only the high portfolio losses3 are unwanted and it is thus more
practical to penalize these only but not the low portfolio losses, see
[7, 63, 65, 172, 100].

To overcome this drawback, there are many single side risk mea-
surements, e.g., Roy’s safety-first, semi-variance, lower partial moment,
VaR, CVaR, etc. [65], proposed in the financial literature. Among them,
CVaR enjoys the widest popularity due to its mathematical tractabil-
ity, thus in the next subsection we mainly review the application of
CVaR in portfolio optimization.

CVaR Portfolio Optimization

Actually, one of the first popular single side risk measurements was
Value-at-Risk (VaR) initially proposed by J.P. Morgan.4 Denote r as
a multivariate random variable of the asset returns, and the portfolio
loss is −wT r. Rockafellar and Uryasev [166] first proposed to minimize

3The portfolio loss is the negative portfolio return. Thus high portfolio losses
mean low portfolio returns.

4See http://www.value-at-risk.net/riskmetrics/.
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the CVaR of the portfolio loss as follows:

minimize
w

CVaR1−ε(−wT r)

subject to wT1 = 1,
(5.28)

where the definition of CVaR has been introduced in Section 4.5.1.
Again, the objective of the problem (5.28) contains a conditional

expectation exceeding a threshold that is not fixed, which in general is
not easy to deal with.

Following the technique in [166] (which has been introduced in Sec-
tion 4.5.1) and given the past observations rt, t = 1, . . . , T , of r, one
has the sample average approximation (SAA) of (5.28) as follows:

minimize
w, z, ζ

ζ + 1
εT

T∑
t=1

zt

subject to 0 ≤ zt ≥ −wT rt − ζ, t = 1, . . . , T
wT1 = 1.

(5.29)

Remark 5.2. Similar to the order execution problem in Section 4.4,
one can have either an equivalent convex formulation for a Gaussian
distribution (e.g., see [166]) or a safe approximation convex approxi-
mation for general non-Gaussian distributions satisfying Assumption
4.1. Since it is straightforward, we omit it here. �

Remark 5.3. Now we have seen that CVaR as a single side risk mea-
surement has been applied in both order execution and portfolio design.
Interestingly, researchers in signal processing and wireless communica-
tion communities have become aware of this useful mathematical tech-
nique. Recently, it has been used to design some chance-constrained
wireless communication networks for more reliable communications
even under some extreme events, e.g., see [124, 183, 112]. �

5.2.2 Markowitz Framework Is Too Sensitive (Lack of Robustness)

The second drawback is that the Markowitz framework is very sensitive
to the parameters, i.e., the mean vector µ and the covariance matrix
Σ, but especially the mean vector [63]. For illustrative purposes, here
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Table 5.1: Performance of the maximum Sharpe ratio portfolios under different
parameter perturbations. The optimal portfolio w? is the portfolio of the case of
No. Err.

Param. Err. w ‖w−w?‖2
‖w?‖2

SR

No Err. [ 0.9909, 0.4088,−0.3997]T 0 0.2551
Mean Err. [ 0.1341, 0.5976, 0.2683]T 0.9639 0.2377
Cov. Err. [ 0.1103, 0.6140, 0.2757]T 0.9865 0.2363

Mean&Cov. Err. [−0.2572, 0.6576, 0.5996]T 1.4144 0.2057

we use a simple numerical example to show how a slightly insignificant
error can dramatically distort the optimal portfolio.

Example 5.1. Suppose there are three assets with µ1 = µ2 = 8% and
µ3 = 5% and volatilities of the three assets are σ1 = 20%, σ2 = 22%,
σ3 = 10% and the correlations are ρij = 0.8.

Let us focus on solving the maximum Sharpe ratio problem (5.12)
with rf = 3% under four scenarios: i) all the parameters are known
exactly (referred to as No Err.), ii) there is a slight error in µ1 so that
the estimated value is µ̂1 = 7% (referred to as Mean Err.), iii) there
is an error in σ1 such that the estimated value is σ̂1 = 25% (referred
to as Cov. Err.), and iv) the combination of ii) and iii) (referred to as
Mean&Cov. Err.).

Table 5.1 shows the numerical results of the solved portfolios, the
relative differences, and the Sharpe ratios (SR). For example, if we
compare Mean Err. with No Err., we can see that changing the mean
of the first asset from 8% to 7% dramatically changes the portfolio
weights vector: the relative difference is 0.9639. Similar results can be
obtained if we compare Cov. Err. with No Err., and the difference
becomes even larger if there are both errors in the mean vector and
covariance matrix, see Mean&Cov. Err. versus No Err. �

There are many works, e.g., [55, 200, 86, 63], that focus on over-
coming this drawback fully and we will review them separately from
this chapter in the upcoming Chapter 6.
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5.3 Black-Litterman Model

The Black-Litterman model is an alternative approach dealing with the
sensitivity issue in expected excess returns to some degree. It combines
market equilibrium and investors’ views to result in a more robust
expected return estimate, based on which the optimized portfolio is
relatively more stable [22, 23, 24, 104].

For simplicity, let us suppose for the Black-Litterman model the
true covariance Σ is known and the goal is to produce a stable estimate
of the expected excess returns µ.

Let us first start with the two information sources based on which
the Black-Litterman model can be built, i.e., market equilibrium and
investors’ views.

Market Equilibrium. The first important assumption is that a market
equilibrium can provide an estimate of the expected excess returns,
denoted as π, close to the true unknown expected excess returns µ.
Mathematically, it can be expressed as follows:

π = µ+ wπ, wπ ∼ N (0, τΣ) (5.30)

where the parameter τ > 0, which measures the uncertainty in the
estimate π, and the smaller τ is, the less uncertain the estimate is. A
specific is provided later in Example .

Investors’ View. Suppose there are K views summarized from some
investors, the Black-Litterman model quantifies them via a linear sys-
tem:

q = Pµ+ wq, wq ∼ N (0,Ω), (5.31)

where P ∈ RK×N and q ∈ RK characterize the absolute or relative K
views and Ω ∈ RK×K measures the uncertainty in the views. A specific
example is provided later in Example .

The expected excess returns based on the market equilibrium (5.30)
and the investors’ views (5.31) actually can be written together in a
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more compact form:

y = Xµ+ wBL, (5.32)

where wBL ∼ N (0,V) and

y ,
[
π

q

]
, X ,

[
I
P

]
, V ,

[
τΣ 0
0 Ω

]
. (5.33)

Obviously, (5.32) is a standard linear model for the true expected
excess returns with white Gaussian noise. The Gaussian ML estimator,
i.e., the minimizer of the following problem

minimize
µ

(y−Xµ)TV−1(y−Xµ), (5.34)

is a better estimate since it combines the market equilibrium and in-
vestors views. Easily, setting the derivative of (5.34) to zero yields the
closed-form solution:

µ̂BL = (XTV−1X)−1XTV−1y (5.35)

=
([

I PT
] [(τΣ)−1 0

0 Ω−1

] [
I
P

])−1 [
I PT

] [(τΣ)−1 0
0 Ω−1

] [
π

q

]
(5.36)

=
(
(τΣ)−1 + PTΩ−1P

)−1 (
(τΣ)−1π + PTΩ−1q

)
. (5.37)

We can further understand the above solution (5.37) deeper as fol-
lows. Since the objective of (5.34) can be rewritten as

(y−Xµ)TV−1(y−Xµ) (5.38)

=
([
π

q

]
−
[
µ

Pµ

])T [(τΣ)−1 0
0 Ω−1

]([
π

q

]
−
[
µ

Pµ

])

= 1
τ

(π − µ)TΣ−1(π − µ) + (q −Pµ)TΩ−1(q −Pµ), (5.39)

problem (5.34) actually equals

minimize
µ

(π − µ)TΣ−1(π − µ) + τ(q −Pµ)TΩ−1(q −Pµ).
(5.40)

The objective combines the market equilibrium towards the investors’
views with τ being the trade-off parameter. There are two extreme
cases
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• when τ = 0, the objective does not consider any view and the
optimal solution is only based on the market equilibrium:

µ̂me = π; (5.41)

• when τ → +∞, the objective emphasizes on the investors’ views
only and the optimal solution goes to

µ̂view = (PTΩ−1P)−1PTΩ−1q. (5.42)

Interestingly, the general Black-Litterman estimate (5.37) can be
rewritten as follows:

µ̂BL =
(
(τΣ)−1 + PTΩ−1P

)−1 (
(τΣ)−1π + PTΩ−1q

)
(5.43)

=
(
(τΣ)−1 + PTΩ−1P

)−1 (
(τΣ)−1µ̂me + PTΩ−1Pµ̂view

)
(5.44)

=
(
(τΣ)−1 + PTΩ−1P

)−1
(τΣ)−1︸ ︷︷ ︸

Wme ,

µ̂me

+
(
(τΣ)−1 + PTΩ−1P

)−1
PTΩ−1P︸ ︷︷ ︸

Wview ,

µ̂view, (5.45)

which is simply a linear weighted combination of the two extreme so-
lutions µ̂me and µ̂view and the weight matrices satisfy

Wme + Wview = I. (5.46)

Clearly, the Black-Litterman expected excess returns (5.45) shrinks
the market equilibrium towards the investors’ views. This idea of the
Black-Litterman model indeed is similar to the previous James-Stein
shrinkage estimator (3.30) with three differences:

• the sample mean estimate in (3.30) is replaced by the expected
excess returns estimated based on the market equilibrium µ̂me;

• the specific target in (3.30) is replaced by the estimate of the
expected excess returns investors’ view µ̂view; and
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• the scalar trade-off (or shrinkage) parameter in (3.30) is changed
to a matrix instead.

Thus, we can see that the Black-Litterman model is a more precise
model for producing stable and reliable expected excess returns (or
equivalently expected returns since the risk-free rate is almost always
known).

The above models of market equilibrium (5.30) and investors’ views
(5.31) are quite general. This generality enables the popularity of the
Black-Litterman model. In the following we consider some specific ex-
amples for both of them.

Example 5.2. One of the most popular models for market equilibrium
is the CAPM5 (2.20)

E [ri]− rf = βi(E [rM ]− rf ), (5.47)

where E [ri], E [rM ], and rf are the expected returns on the i-stock,
the expected return on the market portfolio, and the risk-free rate,
respectively. The sensitivity of the expected excess return of the stock
to that of the market is captured by the beta (2.21):

βi = Cov(ri, rM )
Var(rM ) (5.48)

and β , [β1, . . . , βN ]T .
Let wM , [w1M , . . . , wNM ]T ∈ RN denote the market portfolio of

the N stocks, thus the market return is

rM = rTwM , (5.49)

where r , [r1, . . . , rN ]T contains the returns of the N stocks.
Substituting (5.48) and (5.49) into (5.47), the estimated expected

excess returns of the N stocks are as follows:

π ,


E [r1]− rf

...
E [rN ]− rf

 = β(E [rM ]− rf ) (5.50)

5Actually, the CAPM model was used in the initial derivaiton of the Black-
Litterman model [22, 23, 24]. For simplicity, we drop the time index t in this section.
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= E [rM ]− rf
Var(rM )


Cov(r1, rM )

...
Cov(rN , rM )

 = E [rM ]− rf
Var(rM )


Cov(r1, rTwM )

...
Cov(rN , rTwM )


(5.51)

= E [rM ]− rf
Var(rM )︸ ︷︷ ︸

δ,


Cov(r1, r1) . . . Cov(r1, rN )

... . . . ...
Cov(rN , r1) . . . Cov(rN , rN )


︸ ︷︷ ︸

Σ,

wM (5.52)

= δΣwM . (5.53)

That is, π in (5.30) is replaced by the quantity δΣwM . �

Example 5.3. Let us consider an example from [65] to understand how
the model (5.31) expresses the views. Suppose there are N = 5 stocks
and two independent views on them:

• Stock 1 will have excess return of 1.5% with standard deviation
1%;

• Stock 3 will outperform Stock 2 by 4% with a standard deviation
1%.

Mathematically, the above two independent views can be expressed as

[
1.5%
4%

]
=
[
1 0 0 0 0
0 −1 1 0 0

]

µ1
µ2
µ3
µ4
µ5

+ wq, (5.54)

where wq ∼ N (0,Ω) and Ω =
[
1%2 0

0 1%2

]
. �

Once a Black-Litterman expected excess returns µ̂BL has been es-
timated, we can further plug it and the known true covariance matrix6
Σ into the previously mentioned mean-variance portfolio optimization
framework to achieve some desired portfolios.

6Keep in mind that the covariance matrix also needs to be estimated in practice.
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Remark 5.4. The Black-Litterman expected excess returns (5.37) re-
quires the trade-off parameter τ , investors’ view P and q and the
confidence parameter Ω. In general, they are difficult to specify. For
example, different researchers have different views on selecting the pa-
rameter τ : some experience researchers generally set τ ∈ [0.01, 0.05]
[104], some prefers to use τ = 1 directly [174], while some suggest the
value 1 divided by the number of observations [26]. Here we only outline
the idea of Black-Litterman model but do not explore these difficulties.
The interested readers may please refer to [104] and references therein
for more detailed discussions. �



6
Robust Portfolio Optimization

Markowitz portfolio optimization requires knowledge of the mean re-
turn vector and covariance matrix parameters. As it turns out, the
resulting optimized portfolio is so highly sensitive to small estimation
errors in such parameters that it is unusable in practice (indeed practi-
tioners seldom use such a naive design). One step towards the solution
is to make the portfolio design robust to uncertainties in the parame-
ters.

This chapter reviews the robust portfolio optimization that uses
some uncertainty sets to capture the estimation errors and then takes
such uncertainty sets into problem formulations.

The organization of this chapter is as follows. Section 6.1 reviews
the robust mean-variance portfolio optimization and Section 6.2 con-
centrates on the robust Sharpe ratio maximization. At the end, Section
6.3 makes some specific connections between robust portfolio optimiza-
tion in financial engineering and robust beamforming in signal process-
ing.

120
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6.1 Robust Mean-Variance Trade-off Portfolio Optimization

Recall that in Section 5.1.1 there are three alternative mean-variance
trade-off optimization formulations, i.e., (5.4), (5.8), and (5.9). Since
the formulations are equivalent in the sense that they give the same
efficient frontier, for simplicity, we focus on (5.9) which is restated as
follows:

maximize
w

wTµ− λwTΣw

subject to wT1 = 1, w ∈ W,
(6.1)

where λ ≥ 0 is the trade-off parameter, W denotes the set of other
convex constraints, and we further define W , {w|wT1 = 1} ∩W and
assume W is convex and compact.

To design the robust counterpart of (6.1), here we assume that
the uncertainty sets of the mean return µ and covariance matrix Σ
are separable, convex, and compact, and they are denoted as Uµ and
UΣ, respectively. A conservative and practical investment approach is
to optimize the worst-case objective over the uncertainty sets, which
leads to the following robust counterpart of (6.1):

maximize
w

min
µ∈Uµ

wTµ− λmax
Σ∈UΣ

wTΣw

subject to wT1 = 1, w ∈ W.
(6.2)

6.1.1 Minimax or Maximin

It is obvious that the objective of (6.2) is concave in w and is linear
(and thus convex) in both µ and Σ. Under the condition that W, Uµ,
and UΣ are convex and compact sets, one can easily get that

max
w∈W

min
µ∈Uµ, Σ∈UΣ

{wTµ− λwTΣw} = min
µ∈Uµ, Σ∈UΣ

max
w∈W
{wTµ− λwTΣw}

(6.3)

based on the minimax theory [165]. Therefore, one can equivalently
solve either the minimax or maximin formulations, whichever is com-
putationally cheaper in practice. Some specific examples of numerical
iterative algorithms can be found in [127, 200].

However, instead of solving a double-layered minimax or maximin
problem numerically, which in general is computationally costly, one
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may either find the worst-case mean and variance in closed-form di-
rectly or reformulate the worst-case formulation as some simpler max-
imization problem so that (6.2) reduces into a single-layered convex
maximization problem (e.g., QP, QCQP, or SDP). In the following, we
will review different types of uncertainty sets such that (6.2) can be
reformulated to a simple single-layered convex problem.

6.1.2 Worst-Case Mean

Let us start with the worst-case mean first. We consider two types of
the uncertainty set up for the mean vector Uµ, i.e., box and elliptical
sets.

Box Uncertainty Set

The box uncertainty set is given by

Ubµ = {µ| − δ ≤ µ− µ̂ ≤ δ}, (6.4)

where the predefined parameters µ̂ and δ denote the location and size
of the box uncertainty set, respectively.

We can easily derive the worst-case mean as

min
µ∈Ub

µ

wTµ = wT µ̂+ min
−δ≤γ≤δ

wTγ = wT µ̂− |w|Tδ, (6.5)

where |w| denotes elementwise absolute value of w.

Elliptical Uncertainty Set

The elliptical uncertainty set1 is

Ueµ = {µ|(µ− µ̂)TS−1
µ (µ− µ̂) ≤ δ2

µ}, (6.6)

where the predefined parameters µ̂, δµ > 0, and Sµ � 0 denote the
location, size, and the shape of the uncertainty set, respectively. The
worst-case mean is

min
µ∈Ue

µ

wTµ = min∥∥∥S−1/2
µ γ

∥∥∥
2
≤δµ

wT (µ̂+ γ) = wT µ̂+ min∥∥∥S−1/2
µ γ

∥∥∥
2
≤δµ

wTγ

1A special case is S = I and the uncertainty set becomes a sphere.
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= wT µ̂+ min
‖γ̃‖2≤δµ

wTS1/2
µ γ̃ = wT µ̂− δµ

∥∥∥S1/2
µ w

∥∥∥
2
. (6.7)

It is easy to check that both the worst-case values (6.5) and (6.7) are
concave in w, which is desired since (6.2) is a maximization problem.

6.1.3 Worst-Case Variance Based on Σ Directly

Now let us focus on the worst-case variance and we start by incorpo-
rating the uncertainty into the covariance matrix Σ directly.

Box Uncertainty Set

Again, let us elementwise first consider the box type uncertainty set as
follows:

UbΣ = {Σ|Σ ≤ Σ ≤ Σ,Σ � 0}, (6.8)

where Σ and Σ are as lower and upper bounds.
A special case is that if Σ � 0 and w ≥ 0 holds, the worst-case

variance can be found directly [200]:

max
Σ∈Ub

Σ

wTΣw = wTΣw. (6.9)

However, when either Σ � 0 or w ≥ 0 may not hold, the worst-case
variance does not have a closed-form expression anymore. Fortunately,
an equivalent formulation can be found as follows. First note that the
worst-case value max

Σ∈Ub
Σ

wTΣw is given by the convex problem

maximize
Σ

wTΣw

subject to Σ ≤ Σ ≤ Σ,
Σ � 0.

(6.10)

Then it is easy to have the equivalent dual problem of (6.10) as [127, 63]

minimize
Λ,Λ

Tr(ΛΣ)− Tr(ΛΣ)

subject to
[
Λ−Λ w

wT 1

]
� 0,

Λ ≥ 0, Λ ≥ 0,

(6.11)
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which is a convex SDP, and in fact the constraints are jointly convex
in the inner dual variable variables Λ and Λ and the outer variable w.

Now we can easily have a specific equivalent formulation of (6.2) as
follows. Given the uncertainty sets Ubµ and UbΣ, (6.2) equals the convex
Problem I in Table 6.1. In fact, Table 6.1 summarizes all the convex
problems for all the possible combinations of uncertainty sets.

Elliptical Uncertainty Set

The elliptical uncertainty set of the covariance matrix can be defined
as [127]

UeΣ =
{

Σ|
(
vec(Σ)− vec(Σ̂)

)T
S−1

Σ

(
vec(Σ)− vec(Σ̂)

)
≤ δ2

Σ, Σ � 0
}
,

(6.12)

where the predefined parameters Σ̂ � 0, δΣ > 0, and SΣ � 0 denote
the location, size, and the shape of the uncertainty set.

To proceed, we consider a reformulation of (6.2) as follows:

maximize
w,X

min
µ∈Uµ

wTµ− λmax
Σ∈UΣ

Tr(XΣ)

subject to wT1 = 1, w ∈ W,[
X w
wT 1

]
� 0.

(6.13)

Since Σ � 0, the last constraint implies X � wwT which in turn is
satisfied with equality at an optimal solution and thus (6.13) is equal
to (6.2) and an optimal portfolio w of (6.13) is also optimal for (6.2).
The advantage of (6.13) over (6.2) is that it allows us to derive a final
equivalent convex problem.

Similar to (6.10), the inner worst-case variance in (6.13) over the
elliptical uncertainty set is given by the following problem:

maximize
Σ

Tr(XΣ)

subject to
(
vec(Σ)− vec(Σ̂)

)T
S−1

Σ

(
vec(Σ)− vec(Σ̂)

)
≤ δ2

Σ,

Σ � 0.
(6.14)
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Problem (6.14) is convex and equals its dual problem:

minimize
Z

Tr
(
Σ̂ (X + Z)

)
+ δΣ

∥∥∥S1/2
Σ (vec(X) + vec(Z))

∥∥∥
2

subject to Z � 0.
(6.15)

Note that the objective is jointly convex in X and Z, and the formu-
lations III and IV in Table 6.1 are the resulting convex problems over
the elliptical uncertainty set (6.12).

6.1.4 Worst-Case Variance Based on Factor Model

Instead of incorporating the uncertainty into the covariance matrix
directly, it is may be more accurate to explore the structure of the
covariance matrix and thus the uncertainty can be incorporated in
a more proper way. Recall from Chapter 2 that one example of the
financial time series modeling is the explicit factor model:

rt = µ+ ΠT ft + wt. (6.16)

Here, for simplicity we assume µ ∈ RN is the vector of mean returns,
f ∼ N (0,F) ∈ RK is the vector of returns of the factors that drive the
market, Π ∈ RK×N is the matrix of factor loadings, wt ∼ N (0,D)
is the residual noise, and D is diagonal, i.e., D = Diag(d). Then the
covariance has the following structure:

Σ = ΠTFΠ + D. (6.17)

For this structure (6.17), we assume F is known exactly and Π and D
contain some estimation errors.

Similar to the previous cases, we assume the uncertainty sets of Π
and D are separable, convex, and compact, and they are denoted as
UΠ and UD, respectively. Now, the worst-case variance turns out to be

max
Π∈UΠ,D∈UD

wTΣw = max
Π∈UΠ,D∈UD

wT
(
ΠTFΠ + D

)
w

= max
Π∈UΠ

wTΠTFΠw + max
D∈UD

wTDw. (6.18)

Now, the expression in (6.18) is not concave in the uncertainty param-
eters any more and the results in Section 6.1.1 cannot be used. Here
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we can consider the worst-case terms in (6.18) one by one and the goal
is to find the worst-case variance either in a closed-form or given by an
efficiently solvable convex problem.

Let us start with the second one which is simpler. Since D is the
covariance for the residual noise and is assumed to be diagonal, the
following uncertainty set is considered in practice [86]

UD = {D|D = Diag(d), d ≤ d ≤ d}. (6.19)

Denoting D = Diag(d), we have

max
D∈UD

wTDw = wTDw. (6.20)

For the first worst-case term in (6.18), i.e., max
Π∈UΠ

wTΠTFΠw, note
that the objective is convex in Π; however, the goal is to maximize the
objective and thus it is nonconvex. In general, it is not easy to compute
the worst-case value efficiently.

In the following, we will review some uncertainty sets so that the
worst-case value max

Π∈UΠ
wTΠTFΠw can be either computed in a closed-

form or given by solving a convex problem.

Sphere Uncertainty Set

The uncertainty set of Π is assumed to be a sphere2 and is given by

UsΠ = {Π|Π = Π̂ + ∆, ‖∆‖F ≤ δΠ}. (6.21)

Without loss of generality and for simplicity, we set F = I so that

max
Π∈Us

Π

√
wTΠTΠw = max

Π∈Us
Π
‖Πw‖2 , (6.22)

which is the square root of max
Π∈UΠ

wTΠTΠw. One can upper bound the
worst-case value in (6.22) as follows [54]:

max
Π∈Us

Π
‖Πw‖2 = max

‖∆‖F≤δΠ

∥∥∥Π̂w + ∆w
∥∥∥

2

≤
∥∥∥Π̂w

∥∥∥
2

+ max
‖∆‖F≤δΠ

‖∆w‖2

2This can be easily extended to an elliptical uncertainty set.
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≤
∥∥∥Π̂w

∥∥∥
2

+ max
‖∆‖F≤δΠ

‖∆‖F ‖w‖2

=
∥∥∥Π̂w

∥∥∥
2

+ δΠ ‖w‖2 . (6.23)

In fact, this upper bound is achievable by ∆ = δΠu wT

‖w‖2
where

u =


Π̂w∥∥∥Π̂T w
∥∥∥

2

, if Π̂w 6= 0,

any unitary vector, otherwise.
(6.24)

The Problem V in Table 6.1 shows the equivalent convex formula-
tion when only worst-case variance is considered and the uncertainty
sets are UD in (6.19) and UsΠ in (6.21). Similar to Problems I-IV in
Table 6.1, it is easy to combine the worst-case means over different
uncertainty sets to get more equivalent convex formulations. They are
quite straightforward and thus are omitted.

Column-Wise Elliptical Uncertainty Set

Another type of uncertainty is the column-wise elliptical uncertainty
set [86]

UceΠ = {Π = Π̂ + ∆, ‖∆i‖g ≤ δΠ,i, i = 1, . . . , N}, (6.25)

where ∆i is the i-th column of ∆, ‖x‖g =
√

xTGx and G is a given
positive definite weight matrix, and δΠ = [δΠ,1, . . . , δΠ,N ]T represent
the sizes of the elliptical uncertainty sets.

Even though the worst-case value max
Π∈UΠ

wTΠTFΠw indeed is a non-
convex problem, it is shown in [86] that the following inequality

max
Π∈UΠ

wTΠTFΠw ≤ v (6.26)

holds if and only if there exist σ > 0, τ ≥ 0, and t ≥ 0 ∈ RK that
satisfy the following convex constraints:

τ + 1T t ≤ v, (6.27)
|w|TδΠ ≤ r, (6.28)

σ ≤ 1
λmax (H) , (6.29)
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∥∥∥∥∥
[

2r
σ − τ

]∥∥∥∥∥
2
≤ σ + τ, (6.30)∥∥∥∥∥

[
2si

1− σλi − ti

]∥∥∥∥∥
2
≤ 1− σλi + ti, i = 1, . . . ,K, (6.31)

where UΛUT is the spectral decomposition of H = G−1/2FG−1/2,
Λ = Diag([λ1, . . . , λK ]) and s = UTH1/2G1/2Π̂w.

Problem VI in Table 6.1 presents the resulted equivalent convex
formulation when the uncertainty sets are UD in (6.19) and UceΠ in
(6.25). Again, we omit the cases of considering worst-case mean and
worst-case variance together since the derivations of equivalent convex
formulations can be obtained straightforwardly based on the previous
derivations.

6.1.5 Summary of Different Equivalent Formulations

Table 6.1 summarizes all the previously reviewed cases and, as men-
tioned before, straightforwardly, we can have many more different
equivalent convex formulations for different combinations of the un-
certainty sets of the mean vector and variance matrix.

6.2 Robust Sharpe ratio Optimization

Let us first recall the convex reformulation of Sharpe ratio maximiza-
tion with only the capital budget constraint wT1 = 1, i.e., (5.14) as
follows:

minimize
w

wTΣw

subject to wT (µ− rf1) = 1,
wT1 > 0.

(6.32)

Actually, the equality constraint wT (µ− rf1) = 1 in (6.32) can be
relaxed as the inequality wT (µ − rf1) ≥ 1 since optimality is always
achieved at the equality. Then the robust Sharpe ratio problem can be
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Table 6.1: Different robustifications of the problem (6.2).

maximize
w

min
µ∈Uµ

wTµ− λmax
Σ∈UΣ

wTΣw

subject to wT1 = 1, w ∈ W.

Uncertainty
Sets Equivalent Convex Formulations

I
Ubµ = (6.4)
UbΣ = (6.8)

maximize
w,Λ,Λ

wT µ̂− |w|Tδ

− λ
(
Tr(ΛΣ)− Tr(ΛΣ)

)
subject to wT1 = 1, w ∈ W,[

Λ−Λ w
wT 1

]
� 0,

Λ ≥ 0, Λ ≥ 0.

II
Ueµ = (6.6)
UbΣ = (6.8)

maximize
w,Λ,Λ

wT µ̂− δµ
∥∥∥S1/2w

∥∥∥
2

− λ
(
Tr(ΛΣ)− Tr(ΛΣ)

)
subject to wT1 = 1, w ∈ W,[

Λ−Λ w
wT 1

]
� 0,

Λ ≥ 0, Λ ≥ 0.

III
Ubµ = (6.4)
UeΣ = (6.12)

maximize
w,X,Z

wT µ̂− |w|Tδ − λTr
(
Σ̂ (X + Z)

)
− λδΣ

∥∥∥S1/2
Σ (vec(X) + vec(Z))

∥∥∥
2

subject to wT1 = 1, w ∈ W,[
X w
wT 1

]
� 0, Z � 0.
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maximize
w

wTµ− λ max
Π∈UΠ,D∈UD

wT (ΠTFΠ + D)w

subject to wT1 = 1, w ∈ W.

Uncertainty
Sets Equivalent Convex Formulations

IV
Ueµ = (6.6)
UeΣ = (6.12)

maximize
w,X,Z

wT µ̂− δµ
∥∥∥S1/2w

∥∥∥
2

− λTr
(
Σ̂ (X + Z)

)
− λδΣ

∥∥∥S1/2
Σ (vec(X) + vec(Z))

∥∥∥
2

subject to wT1 = 1, w ∈ W,[
X w
wT 1

]
� 0, Z � 0.

V
UD = (6.19)
UsΠ = (6.21)

maximize
w, y

wTµ− λ
(
wTDw + y2

)
subject to wT1 = 1, w ∈ W,∥∥∥Π̂Tw

∥∥∥
2

+ δΠ ‖w‖2 ≤ y.

VI
UD = (6.19)
UceΠ = (6.25)

maximize
w, v, σ, τ, t, s

wTµ− λ
(
wTDw + v

)
subject to wT1 = 1, w ∈ W,

τ + 1T t ≤ v, t ≥ 0,
|w|TδΠ ≤ r

σ ≤ 1
λmax (H) ,∥∥∥∥∥

[
2r

σ − τ

]∥∥∥∥∥
2
≤ σ + τ,

s = UTH1/2G1/2Π̂w,∥∥∥∥∥
[

2si
1− σλi − ti

]∥∥∥∥∥
2
≤ 1− σλi + ti,

i = 1, . . . ,K.
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formulated based on (6.32) as follows:
minimize

w, κ
max
Σ∈UΣ

wTΣw

subject to min
µ∈Uµ

wT (µ− rf1) ≥ 1,

wT1 > 0,

(6.33)

where Uµ and UΣ denote some general uncertainty sets for µ and Σ,
respectively, and the robust techniques stated in the previous Section
6.1 can be directly used to obtain some equivalent convex formulations.

When there exist some other convex constraints apart from the
capital budge constraint, the robust formulation is not to simply add
them into (6.33) but becomes more complicated. The detailed deriva-
tion approach can be found in [200]. Nevertheless, for the derived ro-
bust formulation in [200], the robust techniques in Section 6.1 are still
applicable.

6.3 Connections with Robust Beamforming

Let us first recall the receive beamforming problem (5.18):

maximize
w

σ2
s |wHa|2
wHRw

(6.34)

where w ∈ CN is the complex beamforming vector variable denoting
the weights of N array observations and a ∈ CN and R ∈ CN×N

(estimated in advance) are the signal steering vector (also known as
the transmission channel) and the positive definite interference-plus-
noise covariance matrix, respectively.

Similar to the (real-valued) parameters µ and Σ for portfolio design,
the (complex-valued) parameters a and R need to be estimated first
and may contain some estimation errors. Since the objective in (6.34)
is invariant to the magnitude of wHa, the robust counterpart of (6.34)
has the following general form [204, 205]:

minimize
w

max
R∈UR

wHRw

subject to min
a∈Ua

∣∣∣wHa
∣∣∣ ≥ 1,

(6.35)

where Ua and UR denote the uncertainty sets of a and R, respectively.
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6.3.1 Worst-Case Signal Power Constraint

In this subsection, we deal with the worst-case signal power constraint
in (6.35), i.e., mina∈Ua

∣∣∣wHa
∣∣∣ ≥ 1.

The authors of [204] considered a sphere uncertainty set

Usa = {a|(a − â)H(a − â) ≤ δ2
a}, (6.36)

where the predefined parameters â and (usually very small) δa > 0
define the location and size of the uncertainty set, respectively.

Denoting γ , a − â, we have ‖γ‖2 ≤ δa and∣∣∣wHa
∣∣∣ =

∣∣∣wH(â + γ)
∣∣∣ ≥ ∣∣∣wH â

∣∣∣− ∣∣∣wHγ
∣∣∣ ≥ ∣∣∣wH â

∣∣∣− δa ‖w‖2 . (6.37)

It can be shown that if δa is small enough such that
∣∣∣wH â

∣∣∣ > δa ‖w‖2
always holds, then the inequalities in (6.37) are achieved with equality
by [204]

γ = − w
‖w‖2

δae
j∠(wH â). (6.38)

That is to say,

min
a∈Ua

∣∣∣wHa
∣∣∣ =

∣∣∣wH â
∣∣∣− δa ‖w‖2 . (6.39)

However, then the worst-case signal power constraint mina∈Ua

∣∣∣wHa
∣∣∣ ≥

1 turns out to be ∣∣∣wH â
∣∣∣− δa ‖w‖2 ≥ 1, (6.40)

which is still nonconvex.
Fortunately, the objective of (6.35) is unchanged under any arbi-

trary phase rotation of w, and one can always rotate w properly so that
wH â is real and positive. That is, (6.40) can be further equivalently
reformulated as the following convex constraints:

wH â − δa ‖w‖2 ≥ 1, (6.41)
Im{wH â} = 0. (6.42)

Interestingly, we can see that the derivations for the (complex-
valued) worst-case signal power here are very similar to that for the
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(real-valued) worst-case mean under the elliptical uncertainty set in
Section 6.1.2. For example, the (complex-valued) worst-case signal
power wH â − δa ‖w‖2 in (6.41) looks the same as the (real-valued)
worst-case mean wT µ̂− δµ

∥∥∥S1/2
µ w

∥∥∥
2
in (6.7) with Sµ = I.

6.3.2 Worst-Case Interference-Plus-Noise Power

Now let us consider the worst-case interference-plus-noise power in
(6.35), i.e., maxR∈UR wHRw.

The authors of [205] considered replacing the interference-plus-noise
covariance matrix with the SCM:

RSCM = 1
T

X̂HX̂, (6.43)

where X̂ ∈ CT×N is the observation matrix such that the t-th row of X̂
is the transpose of the t-th observation x(t), and T is the total number
of observations. Then they considered a spherical uncertainty set for
the underlying true observations X as follows:

UsX = {X|X = X̂ + ∆, ‖∆‖F ≤ δX}. (6.44)

Instead of studying the worst-case interference-plus-noise power,
one can study its square root value

max
X∈Us

X

√
wHXHXw = max

X∈Us
X
‖Xw‖2 . (6.45)

Given the uncertainty set (6.44), the worst-case value admits a closed-
form expression [205]

max
X∈Us

X
‖Xw‖2 =

∥∥∥X̂w
∥∥∥

2
+ δX ‖w‖2 . (6.46)

Actually, the derivation procedure of (6.46) is exactly the same as that
of (6.23) for worst-case portfolio variance and thus it is omitted.

6.3.3 Robust Beamforming Formulation

Finally we can see that with the uncertainties are considered in (6.36)
and (6.44), the worst-case robust problem formulation (6.35) can be
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reformulated in a convex form as follows:

minimize
w

∥∥∥X̂w
∥∥∥

2
+ δX ‖w‖2

subject to wH â − δa ‖w‖2 ≥ 1,
Im{wH â} = 0.

(6.47)

Thus, it is interesting to see that both robust portfolio optimiza-
tion and robust beamforming can be dealt with using almost the same
techniques.



7
Multi-Portfolio Optimization

Portfolio managers usually manage multiple accounts corresponding to
different clients, and the portfolios associated with different accounts
are pooled together for execution, amplifying the level of the so-called
market impact (cf. Chapter 4) on all accounts. In the previous Chapters
5 and 6, each portfolio is considered and optimized individually disre-
garding the effect or impact on other portfolio, however, if this aggre-
gate market effect is not considered when each account is individually
optimized, the actual market impact can be severely underestimated.

Thus, a more realistic way is to analyze and optimize the multi-
ple portfolios jointly while adhering to both the account-specific con-
straints and also some global constraints present on all accounts. The
holistic approach is termed multi-portfolio optimization.

The detailed organization of this chapter is as follows. Section 7.1
reviews some basic concepts and definitions. Section 7.2 states some
typical problem formulations and Section 7.3 presents a solving ap-
proach based on game theory.

135
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Figure 7.1: Multiple accounts and market impact.

7.1 From Single-Portfolio to Multi-Portfolio

In the real markets, portfolio managers always manage multiple ac-
counts and each account is in fact effected by all the others as shown
in Figure 7.1. In practice, such an impact usually is undesired, e.g., the
impact on account 1 given by account 2 and the other accounts always
tends to weaken the profitability of account 1, and it is referred to as
market impact.

Suppose there are N assets with mean vector and covariance matrix
given by µ ∈ RN and Σ ∈ RN×N . Now we consider multiple, say K,
accounts, and their corresponding investment portfolios are denoted as
wk ∈ RN , k = 1, . . . ,K. So now we have multiple portfolios to optimize
at the sample instead of only a single portfolio. In the following we will
first quantify the market impact and then consider the utility function
and different types of constraints.
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7.1.1 Market Impact Cost Function

A key concept of the extension from single-portfolio to multi-portfolio
is to understand how one account will be affected by the other accounts,
i.e., the market impact among portfolios of different accounts.

Recall there areK portfolios: wk ∈ RN , k = 1, . . . ,K. Let us denote
w−k , (wl)l 6=k and w , (wk)Kk=1 as the other portfolios (i.e., all the
portfolios except portfolio k) and all the portfolios, respectively. For
simplicity, 〈x,y〉 and xTy are used interchangeably to denote the inner
product of vectors x and y.

A popular market impact on the portfolio wk caused by itself and
the other ones w−k is [210]

TC(wk,w) , 1
2
(〈

[wk −w0
k]+, c+(w)

〉
+
〈

[wk −w0
k]−, c−(w)

〉)
,

(7.1)

where

[wk −w0
k]+ , max(0,wk −w0

k) (7.2)
[wk −w0

k]− , max(0,−(wk −w0
k)) (7.3)

represent the buy and sell trades of the k-th account, respectively, and

c+(w) , Ω+
K∑
l=1

[wl −w0
l ]+ (7.4)

c−(w) , Ω−
K∑
l=1

[wl −w0
l ]− (7.5)

are the linear market impact costs of buy and sell trades of all the
accounts, respectively, [8, 18]. Here, Ω+ and Ω− are positive diago-
nal matrices representing the market impact of buy and sell trades,
respectively.

7.1.2 Mean-Variance Utility Function

Instead of ignoring the market impact in single-portfolio optimization
(cf. Chapter 5), the utility function of each portfolio is composed of
both the mean-variance trade-off (cf. Section 5.1.1) and the market
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impact cost in multi-portfolio optimization, that is, the utility function
of account k is

uk(wk,w−k) , µTwk −
1
2ρkw

T
kΣwk − TC(wk,w), (7.6)

where the first two terms together are the mean-variance trade-off that
depends on the portfolio of account k (i.e., wk) only with ρk > 0 being
the trade-off parameter, and the third term TC(wk,w) as defined in
(7.1) is the market impact cost function that measures the impact
quantitatively among the portfolios of all accounts.

Substituting (7.1)-(7.5) into (7.6), the utility function uk(wk,w−k)
can be rewritten more explicitly as follows:

uk(wk,w−k) =µTwk −
1
2ρkw

T
kΣwk

− 1
2

〈
[wk −w0

k]+,Ω+
K∑
l=1

[wl −w0
l ]+
〉

− 1
2

〈
[wk −w0

k]−,Ω−
K∑
l=1

[wl −w0
l ]−
〉
. (7.7)

7.1.3 Individual and Global Constraints

For multi-portfolio optimization, there are two types of constraints:
individual constraints that apply to each specific account and global
constraints that apply to all (or a group of) accounts.

Individual Constraints

The individual constraints are similar to the constraints stated in Sec-
tion 5.1.4, e.g., holding constraint lk ≤ wk ≤ uk, long-only constraint
wk ≥ 0, etc., for each account k where k = 1, . . . ,K, and they are
referred to as individual constraints.

For the multi-portfolio optimization, since each account may have
different capital budgets, the capital budget constraints can be math-
ematically represented as 1Twk ≤ bk, where bk ≥ 0, k = 1, . . . ,K, are
the capital budget bounds for the corresponding accounts.

For clarity of presentation, we use Wk to denote all the individual
constraints on account k, and in general we assume it is non-empty,
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closed, and convex. We further useW ,W1×· · ·×WK to denote their
Cartesian product set.

Global Constraints

As to the global constraints, one example is that the total traded vol-
ume of each asset over all the accounts must be less than a threshold
(e.g., 10% of the average daily trading volume). Mathematically, these
global constraints on all the accounts are

K∑
k=1
|wk,i − w0

k,i| ≤ Di, i = 1, . . . , N. (7.8)

These constraints can be extended so that the traded volume of some
groups of assets (e.g., industries, sectors, countries, asset classes, etc.)
should be limited, that is,

K∑
k=1

∑
i∈Gl

|wk,i − w0
k,i| ≤ Ui, l = 1, . . . , L, (7.9)

where Gl denotes the l-th group of assets and there are L groups.
It is easy to see from (7.8) and (7.9) that one account’s portfolio

design, say wk, also depends on other accounts’ actions w−k. Therefore,
the presence of global constraints couple all the portfolios together.

The global constraints (7.8) and (7.9) can be rewritten in a more
compact form. We first define a multivariate function

g(w) =


(∑K

k=1 |wk,i − w0
k,i| −Di

)N
i=1(∑K

k=1
∑
i∈Gl
|wk,i − w0

k,i| − Ul
)L
l=1

 , (7.10)

then (7.8) and (7.9) can be simply rewritten as g(w) ≤ 0 (or more
often g(wk,w−k) ≤ 0 for the consistency of notation).

7.2 Multi-Portfolio Problems

For the multi-portfolio case, there exist many different formulations.
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7.2.1 Naive Formulation

One of the most direct formulations is to ignore the market impact
among different accounts, do not consider the global constraints, and
simply optimize each account individually (but include the market im-
pact of the individual account) as follows [175]:

maximize
wk

µTwk −
1
2ρkw

T
kΣwk

− 1
2
〈

[wk −w0
k]+,Ω+[wk −w0

k]+
〉

− 1
2
〈

[wk −w0
k]−,Ω−[wk −w0

k]−
〉

subject to wk ∈ Wk


∀k, (7.11)

where the objective contains a mean-variance trade-off with ρk > 0
being the trade-off parameter and a market impact cost caused only
by itself.

We can see both the objectives and the constraints of the problems
in (7.11) depend on each individual account portfolio wk and the prob-
lems can be optimized separately. In other words, (7.11) represents K
different single-portfolio optimization problems.

7.2.2 Total Social Welfare Maximization Problem

When the market impact among different accounts is considered, all the
accounts are coupled together. Then one direct formulation is simply
maximize the summation of all the utilities of all the accounts, i.e., the
total social welfare maximization problem [154]

maximize
w

K∑
k=1

uk(wk,w−k)

subject to w ∈ W,

(7.12)

where uk(wk,w−k) are defined in (7.7), w = (wk)Kk=1,W =W1×· · ·×
WK , and w also needs to satisfy the global constraints g(w) ≤ 0 if
they are present.

Even though the central problem (7.12) can achieve the maximum
social welfare, it may not result in fair enough portfolios: smaller ac-
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counts suffer from a shortage of liquidity and they are forced to sacrifice
their own benefits to achieve social optimality [175, 173].

7.2.3 Game Theoretical Formulation Under Individual Constraints

Amore fair formulation proposed in [210] is that each account competes
against the others and chooses a portfolio that maximizes its own utility
under individual constraints. Mathematically, it can be formulated as
a Nash Equilibrium Problem (NEP): given the other strategies w−k,
account k aims at solving

maximize
wk

uk(wk,w−k)

subject to wk ∈ Wk

∀k, (7.13)

where uk(wk,w−k) is defined in (7.7).
Compared with the naive individual formulation in (7.11), the main

difference is that the objectives in (7.13) depend on not only the portfo-
lio of each account wk but also the portfolios of the other accounts w−k.
Thus all the problems given by (7.13) are coupled via their objectives.

With the NEP formulation, a solution of interest is the well-known
notion of the Nash Equilibrium (NE) point from which no account has
an incentive to deviate from unilaterally. That is, a solution wne =
(w?

k)Kk=1 is an NE of the NEP (7.13) if

uk(w?
k,w?

−k) ≥ uk(wk,w?
−k), ∀wk ∈ Wk, ∀k. (7.14)

7.2.4 Game Theoretical Formulation Under Global Constraints

When there are global constraints, incorporating them into (7.13) re-
sults in the following Generalized NEP (GNEP) [210]:

maximize
wk

uk(wk,w−k)

subject to wk ∈ Wk

g(wk,w−k) ≤ 0

∀k, (7.15)

where there is coupling in both utility and constraint sets.
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Similar to an NE of (7.13), a solution of interest of (7.15) is referred
to as Generalized NE (GNE) such that wgne = (w?

k)Kk=1 and

uk(w?
k,w?

−k) ≥ uk(wk,w?
−k), ∀wk ∈ Wk, g(wk,w?

−k) ≤ 0, ∀k.
(7.16)

The extra coupling in the constrain sets caused by the global con-
straints makes the GNEP (7.15) much more difficult to analyze than
the NEP (7.13).

7.2.5 Difficulties

For the above naive and total social welfare maximization problems,
i.e., (7.11) and (7.12), the main difficulty is that the objectives in gen-
eral are nonconcave and nondifferentiable due to the projections in the
utilities [·]+ and [·]−.

For the NEP (7.13) and GNEP (7.15), apart from the above non-
concave and nondifferentiable objectives, the coupling in the objectives
and constraints sets of the multi-account problems further complicates
the analysis.

7.3 Efficient Solving Methods

In this section, some reformulation techniques are considered to deal
with the difficulty caused the projections [·]+ and [·]− and then the
efficient solving methods for all the problems, i.e., (7.11), (7.12), (7.13),
and GNEP (7.15) are reviewed.

7.3.1 Reformulations of Objectives and Constraints

To deal with the projections [·]+ and [·]−, one can first introduce some
new variables, ∀k,

w̃k ,

[
w̃+
k

w̃−k

]
≥ 0 (7.17)

such that

[wk −w0
k]+ = w̃+

k , (7.18)
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[wk −w0
k]− = w̃−k , (7.19)

wk −w0
k = w̃+

k − w̃−k , (7.20)

0 =
〈
w̃+
k , w̃

−
k

〉
. (7.21)

Then the utility function in (7.7) can be rewritten as (some constants
are added)

ũ(w̃k, w̃−k) =
[
µ− ρkΣw0

k

−µ+ ρkΣw0
k

]T
︸ ︷︷ ︸

, µ̃T
k

w̃k −
1
2ρkw̃

T
k

[
Σ −Σ
−Σ Σ

]
︸ ︷︷ ︸

, Σ̃

w̃k

− 1
2w̃T

k

[
Ω+

Ω−

]
︸ ︷︷ ︸

, Ω̃

(
K∑
l=1

w̃l

)

= µ̃Tk w̃k −
1
2ρkw̃

T
k Σ̃w̃k −

1
2w̃T

k Ω̃
(

K∑
l=1

w̃l

)
, (7.22)

which now is a differentiable function.
For the introduced variable w̃k, relaxing the nonconvex constraint

(7.21), one can define the following individual set based on (7.17)-
(7.20):

W̃k ,
{
w̃k

∣∣∣ [I −I
]
w̃k + w0

k ∈ Wk, w̃k ≥ 0
}
, (7.23)

which is convex in w̃k.

7.3.2 Naive Solution

For each k, the objective of the naive formulation (7.11) can be obtained
by ignoring the market impact terms caused by the other accounts in
uk(wk,w−k) (cf. (7.7)). Thus, similar to (7.22), a relaxation of the naive
formulation (7.11) is

maximize
w̃k

µ̃Tk w̃k −
1
2ρkw̃

T
k Σ̃w̃k −

1
2w̃T

k Ω̃w̃k

subject to w̃k ∈ W̃k

∀k, (7.24)

which is convex since the objective is quadratic concave and the feasible
is convex for each given k, and thus it is efficiently solvable.
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Similar to (7.11), the relaxation (7.24) actually represents K indi-
vidual convex problems and, fortunately, it is shown that each optimal
w̃k satisfies (7.21) for all k and thus the relaxation (7.24) is tight for
and therefore equivalent to (7.11) [210]. An optimal solution of (7.24)
is referred to as a naive solution.

7.3.3 Total Social Welfare Maximization

For the total welfare maximization problem (7.12), replacing
uk(wk,w−k) with ũ(w̃k, w̃−k) in (7.22) and rearranging the terms, one
can have the following relaxation [210]:

maximize
w̃

Pso(w̃) , µ̃T w̃− 1
2w̃TMsow̃

subject to w̃ ∈ W̃1 × · · · × W̃K

(7.25)

where µ̃ , (µ̃k)Kk=1, w̃ , (w̃k)Kk=1,

Mso = Diag(ρ)⊗ Σ̃ + J⊗ Ω̃ (7.26)

and J is a K ×K matrix with all entries being 1.
Again, it is shown in [210] that (7.25) is convex and the optimal w̃k

satisfies (7.21) for all k and thus the relaxation (7.25) is tight.

7.3.4 Multi-Portfolio Optimization with Individual Constraints

Replacing uk(wk,w−k) in the NEP (7.13) with ũ(w̃k, w̃−k) results in
the following relaxation NEP:

maximize
w̃k

ũ(w̃k, w̃−k)

subject to w̃k ∈ W̃k

∀k. (7.27)

And it is shown that (7.21) is satisfied by an NE of (7.27), thus the
NEP (7.27) indeed equals the NEP (7.13).

Since the constraint sets of w̃k are decoupled, based on potential
game theory [148], it is further shown in [210] that the NEP is equal
to the following optimization problem:

maximize
w̃

Pne(w̃) , µ̃T w̃− 1
2w̃TMnew̃

subject to w̃ ∈ W̃1 × · · · × W̃K ,
(7.28)
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where

Mne = Diag(ρ)⊗ Σ̃ + 1
2(I + J)⊗ Ω̃, (7.29)

in the sense that w̃ is an NE of (7.27) if and only if it is optimal
to (7.28). Later, the authors of [210] showed that (7.28) is strongly
convex and thus its optimal solution, or equivalently, the NE of (7.27)
or (7.13), is unique.

7.3.5 Multi-Portfolio Optimization with Global Constraints

Even when there exist global constraints, one can still show that the
GNEP (7.15) is equal to the following GNEP [210]:

maximize
w̃k

ũ(w̃k, w̃−k)

subject to w̃k ∈ W̃k

g̃(w̃) ≤ 0

∀k, (7.30)

where

g̃(w̃) ,
K∑
k=1


(
w̃+
k,i + w̃−k,i

)N
i=1(∑

i∈Gl

(
w̃+
k,i + w̃−k,i

)
− Ul

)L
l=1

− [(Di)Ni=1
(Ul)Ll=1

]
. (7.31)

Similar to (7.28), one can construct the following convex problem
with global constraints:

maximize
w̃

Pne(w̃) = µ̃T w̃− 1
2w̃TMnew̃

subject to w̃ ∈ W̃1 × · · · × W̃K ,

g̃(w̃) ≤ 0.

(7.32)

However, now the constraint sets of all the w̃k are coupled and one
can only conclude that an optimal solution to (7.32) is a GNE of the
GNEP (7.30), but not vice versa [210]. An optimal solution to (7.32) is
referred to as a Variational Equilibrium (VE), and it is actually unique
since (7.32) is strongly convex.

Example 7.1. Let us now consider some numerical experiments. The
mean vector µ, covariance matrix Σ, and market impact coefficient
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Fig. 1. Utility improvement of the NE and socially optimal solution against the
naive approach.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide some numerical results to illus-
trate the efficacy of our multi-portfolio optimization framework,
along with the convergence behavior of the proposed distributed
iterative algorithms. In our simulations, we consider synthetic
data such that , , and model annual expected values from

to 5% and volatility values given in annualized terms in
the range of 20% to 30%. We assume that the number of assets
is .
1) Utility Improvement: We first compare each account’s

utility improvement achieved by NE and socially optimal so-
lutions over the naive approach measured by:

where is the optimal solution of (8) with , and
is defined in (4). We assume that there are

accounts and they are subject to the long-only constraint and
budget constraint. The result is plotted in Fig. 1. We can see
from the red bar that the performance of the NE outperforms
the naive design, because the market impact cost incurred from
transactions of other accounts are properly counted.
We also compare the NE (red bar on the left) and the socially

optimal solution (black bar on the right). We can see that the
social optimality is at the price of accounts 1, 3 and 4. This con-
solidates again what has been observed in [9]: some accounts
can probably get better payoff by acting alone than staying in
the socially optimal solution. The unilateral optimality and the
uniqueness makes the NE ameaningful outcome that can be pre-
dicted by all accounts.
To compare the NE and the socially optimal solution from

the perspective of total welfare, we also plot in dashed lines the
following metric:

Fig. 2. Convergence of Algorithm 1: potential function versus iteration.

As expected, socially optimal solutions can achieve a higher
total welfare than NE.
2) Convergence of Algorithm 1: We assume that the number

of accounts is 5, 10 and 20, respectively, and each account is
subject to the long-only constraint. The results are illustrated in
Fig. 2, where we update the portfolio in each iteration and the
resulting value of the potential function is plotted. We
can see that the algorithm converges reasonably fast for both
sequential and simultaneous update, with the convergence speed
depending as expected upon the number of accounts.
3) Global Constraint: We assume that each account is sub-

ject to the long-only constraint. In Fig. 3, we can see that, as the
number of accounts increases, the global transaction-size con-
straint may be violated if it is not properly considered. Moti-
vated by liquidity problems for a specific asset in practice, the
issue is specially aggravated due to the aggregate effect over ac-
counts.
4) Convergence of Outer Loop of Algorithm 3: We assume

that the number of accounts is 5 and 10, respectively. Each ac-
count is subject to the long-only constraint, and the accounts
are also subject to the global transaction-size constraint as (5).
The convergence behavior of the outer loop of Algorithm 3 is
illustrated in Fig. 4, where in each iteration we generate the
NE for a fixed and the corresponding duality gap (defined as

where is ob-
tained a priori from solving (27) by [36]) is plotted. We see
that the asymptotic convergence speed of is fast and indepen-
dent of the number of accounts, since the GNEP (25) is solved in
its dual domain and the dimension of the dual variable is equal
to the number of global constraints.

VII. CONCLUDING REMARKS

In this paper, we have studied the multi-portfolio optimiza-
tion problem where multiple accounts are coupled through the
market impact cost, which is modeled as an affine function of
the aggregate trades from all accounts. The analysis is from
the perspective of non-cooperative game theory, and we have
shown that there always exists a unique NE, and moreover de-
vised (synchronous and asynchronous) distributed algorithms

Figure 7.2: Utility improvement of the NE, and socially optimal solution against
the naive solution.

matrices Ω+ and Ω− are randomly generated. Suppose there are N = 5
assets.

For the moment, the number of accounts is fixed to K = 5 with
individual constraints. We compare three methods, i.e., i) the naive
problem (7.11), ii) the total social welfare maximization problem (7.12),
and iii) the NEP (7.13), in terms of two criteria:

• the relative utility improvement of each account:
uk(w)− uk(wnaive)

uk(wnaive)
(7.33)

• the relative utility improvement of all the accounts:∑K
k=1 uk(w)−

∑K
k=1 uk(wnaive)∑K

k=1 uk(wnaive)
(7.34)

where w is either wne and wso and w = 0.
Figure 7.2 shows the numerical results measured by (7.33) and

7.34. We can see that the social welfare maximization problem (7.12)
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Fig. 3. Global transaction-size versus number of accounts.

Fig. 4. Convergence of Algorithm 3: duality gap versus iteration.

with satisfactory convergence properties. Then we have ana-
lyzed the NEP with global constraints imposed on all accounts,
resulting in a GNEP. We have shown as well that there always
exists a unique VE which can be computed in a distributed
manner. Finally, we have considered the maximization of the
total welfare along with distributed schemes.

APPENDIX A
PROOF OF LEMMA 5

Proof: In (17), the utility function of account is

(34)

and the constraint is . The former two terms
of (34) depend only on the difference between and . We
use contradiction to show that at the optimal solution, and

are orthogonal.
First assume that there exists such that

. It is easy to see that the variable
is feasible since

. Consider a new function
with defined as

which is convex in . The convexity of infers that
minimizes over iff :

where we have made use of the fact that are positive
diagonal matrices and . This establishes that
minimizes over , and is the maximizing
variable of in (34), contradicting the optimality
of . This completes the proof.

APPENDIX B
PROOF OF THEOREM 15

Proof: A variable is a VE of the GNEP (30) if and only
if it solves the following optimization problem:

(35)

Since (35) is a convex optimization problem, the optimal so-
lution of (35) can be equally achieved from its dual problem,
provided Slater’s condition is satisfied [2]:

(36)

where and is
the Lagrange multiplier associated with .
For a fixed , the inner maximization problem in (36) is a

potential game equivalent to the following NEP:

(37)

Since is a saddle point of the minimax problem (36)
[32], can be obtained by solving (37) with while

are primal feasible, dual feasible and satisfy the com-
plementary slackness condition.

Figure 7.3: Global transaction size versus number of accounts.

achieves the best total social welfare (see the horizontal dashed black
line), but at the price of sacrificing accounts 1, 3, and especially, account
4 (see the vertical black bars). The NEP improves the total welfare sig-
nificantly (see the horizontal dashed red line) albeit below the social
solution; however, opposed to the social solution, it does not sacrifice
individual accounts as much as the social formulation (see the red bars
vs the black bars).

Later we also considered to include some global constraints, e.g.,
a global transaction size constraint. Figure 7.3 shows the total trans-
action size versus of the number of accounts. Clearly, we see that the
global transaction size constraint may be violated if it is not properly
considered. �

Remark 7.1. In this chapter, we have focused on the reformulation
of different nonconvex problems in convex form, but without going
into the details of the specific algorithms to solve such problems. It is
possible to derive highly efficient parallel and distributed algorithms
for the above convex problems [210]. �



8
Index Tracking

Active investment strategies assume that the markets are not perfectly
efficient and fund managers can identify mispriced stocks and/or make
superior predictions and then collect (hopefully positive) profits based
on them (cf. Chapters 5-7).

Passive investment strategies, on the other hand, assume the mar-
kets are efficient enough and cannot be beaten in the long run, there-
fore, the investment philosophy is to directly follow the markets.

This chapter reviews one of the most popular and important passive
investment strategies: index tracking. The goal of index tracking is to
construct a tracking portfolio whose value follows a market index (or
some preferred benchmark index).

The detailed organization of this chapter is as follows. Section 8.1
reviews different methods of index tracking, i.e., full index tracking,
synthetic index tracking, and sparse index tracking. Sections 8.2 and
8.3 focus on two approaches of sparse index tracking, i.e., the two-step
approach and joint optimization approach, separately.

148



8.1. Different Index Tracking Methods 149

8.1 Different Index Tracking Methods

Suppose that a benchmark index is composed of N stocks, let rb =
[rb1, . . . , rbT ]T ∈ RT and X = [r1, . . . , rT ]T ∈ RT×N denote the returns of
the benchmark index and the N stocks in the past T days, respectively.
Let b ∈ RN denote the (normalized) benchmark index weights such
that b > 0, bT1 = 1, and Xb = rb. Further, let w denote the tracking
portfolio to be designed, which must satisfy w ≥ 0 and wT1 = 1.

8.1.1 Tracking Performance

Tracking Error

Given the covariance matrix of the benchmark stocks Σ and the bench-
mark index weight vector b, the theoretical tracking error is defined
as

TTE(w) = (w− b)T Σ (w− b) . (8.1)

Since Σ needs to be estimated first and b may not be available, the
empirical tracking error, defined as

TE(w) = 1
T
‖Xw− rb‖22, (8.2)

is more popular in practice [134, 177]. It measures how closely the
tracking portfolio mimics the benchmark index empirically. In princi-
pal, the smaller, the better. Note that the daily stock returns are in
general very small and if we suppose E [rt] = 0, the expected value of
TE equals TEE:

E [TE(w)] = 1
T

E
[
‖Xw− rb‖22

]
, (8.3)

= (w− b)T E
[ 1
T

XTX
]

(w− b) , (8.4)

= (w− b)T Σ (w− b) . (8.5)
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Excess Return

Apart from tracking error, another important criterion is excess return
(ER):

ER(w) = 1
T

1T (Xw− rb), (8.6)

It represents how much the tracking portfolio outperforms the bench-
mark index, and the larger, the better.

Combined Criterion

To achieve a trade-off between the tracking error (8.2) and the excess
return (8.6), a combined objective is thus considered [17, 19]:

U(w) = αTE(w)− (1− α)ER(w), (8.7)

where α ∈ [0, 1] is a predefined trade-off parameter.

Goal

Since the excess return (8.6) is linear in the tracking portfolio w, with-
out loss of generality and for clarity of presentation, we focus on the
tracking error (8.2) only. The goal of index tracking is to construct a
portfolio w? (or a derivative like future contract) to track the perfor-
mance of the benchmark index with the tracking error (8.2) being small
or, even better, minimized.

8.1.2 Full Index Tracking

The most straightforward tracking method, referred to as full index
tracking, is to purchase all the index constituents in appropriate quan-
tities to perfectly track the index, i.e., w? = b and ‖Xw? − rb‖22 = 0.
However, it has several significant disadvantages [17, 134], for example:

• including all the stocks may not be practical especially when the
index contains some illiquid stocks and it is hard to purchase such
stocks; and

• allocating capital in all assets would also incur significant trading
cost.
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8.1.3 Synthetic Index Tracking

The second method is to use derivatives, like future contracts, to track
the index (e.g., E-mini S&P future contract is used to track the S&P500
Index). The advantage of future contracts is that the trading cost is
relatively lower than stocks, however, dynamically tracking the index
by rolling the contracts can be both expensive and risky because of the
counterparty risk and illiquidity of contracts. These drawbacks make
future contracts less attractive in tracking the index [19, 106].

8.1.4 Sparse Index Tracking

To make the index tracking more practical (i.e., relatively lower trading
cost and less risky), a third method was proposed: to use a subset of
stocks to track the index (i.e., ‖w?‖0 � N) with only a small sacrifice
in tracking error (i.e., ‖Xw?−rb‖2 is still close to 0) [17]. This method
is referred to as sparse index tracking and in fact it is the core business
of ETFs, which now have been very popular in the markets1.

In the following content of this chapter, we will focus on two main
approaches of sparse index tracking, namely, the two-step approach and
joint optimization approach.

8.2 Sparse Index Tracking: Two-Step Approach

The first approach of sparse index tracking is to decompose the task
into two steps [19, 52, 155]:

• stock selection: selecting a subset of K (K � N) stocks; and

• capital allocation: distributing the capital among the selected
stocks.

8.2.1 Stock Selection

Let us first introduce different stock selection methods.
1Many funds provide some ETF products and some of them have very large

assets under management (AUM) even at the magnitude of $10 billion USD, e.g.,
see http://etfdb.com/type/size/large-cap/.
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Random Selection

One simple and naive idea is to randomly select K stocks from the N
index stocks [52]. This method in general is used as a benchmark.

Selection Based Market Capitals

A widely used stock selection method, especially for a market capital
weighted index, is to select the largest K stocks according to their
market capitals (e.g., the product of outstanding shares2 and prices)
[155]. For the market capital weighted index, if the index weight vector
b is available, one can select the stocks with K largest weights bi.

Selection Based on Correlation

Another idea is to select the stocks that have similar return perfor-
mances as the index [19, 52]. For example, given the correlation between
the i-th stock and the benchmark index

ρib = Cov(X·i, rb), (8.8)

this method selects the stocks with K largest correlations ρib.

Selection Based on Cointegration

The idea is to select K stocks so that there exists a linear combination
of their log-prices cointegrated well with the value of the benchmark
index [5, 19]. Mathematically, based on the following model:

It =
N∑
i=1

siβipi,t + wt, (8.9)

where si ∈ {0, 1}, one needs to find the optimal s with sT1 = K (i.e.,
selection of K stocks) and the weights βi such that wt is most likely
stationary (e.g., resulting the smallest p-value of the stationary test).
This problem itself is NP-hard. Exhaustive search can be employed

2Outstanding shares refer to a company’s stock currently held by all its share-
holders, including share blocks held by institutional investors and restricted shares
owned by the company’s officers and insiders.
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when N is small; some heuristic method, e.g., genetic algorithm, is
needed otherwise [19].

8.2.2 Capital Allocation

Once a subset of K stocks has been selected, the second step is to
design the capital allocation among them. Before we proceed, let us
use the binary vector s? ∈ RN :

s?i =

1, if stock i is selected
0, otherwise

(8.10)

with 1T s? = K to represent the selected K stocks.

Naive Allocation

When the benchmark portfolio weight vector b is known, a naive alloca-
tion is to distribute the capital among the selected stocks proportional
to the original weights with their summation equal to 1. That is, the
naive allocation weight vector is

w? = b� s?
1T (b� s?) , (8.11)

where � means Hadamard product.

Optimization Allocation

The naive allocation weight (8.11) is simple enough, however, the track-
ing error is not optimized and sometimes the benchmark weight vec-
tor b may not be available. The optimization allocation overcomes this
drawback by minimizing the tracking error based on the selected stocks
directly as follows [155]3:

minimize
w

1
T
‖X(w� s?)− rb‖22

subject to 1T (w� s?) = 1,
w ≥ 0.

(8.12)

3The authors of [155] considered a more complicated nonconvex objective and
they employed a genetic algorithm to solve their nonconvex problem.
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Problem (8.12) is convex and can be solved efficiently. The optimal
allocation simply is the optimal solution of (8.12).

8.3 Sparse Index Tracking: Joint Optimization Approach

The previous approach executes the two steps of stock selection and
capital allocation sequentially; however, it is not clear how optimal the
resulting tracking portfolio is. A better approach may be to conduct
these two steps jointly and systematically.

8.3.1 Problem Formulation

A direct way is to regularize the cardinality of the tracking portfolio
weights [106]:

minimize
w

1
T
‖Xw− rb‖22 + λ‖w‖0

subject to 1Tw = 1,
w ≥ 0,

(8.13)

where λ ≥ 0 is a predefined parameter.

8.3.2 `1-norm Approximation

Generally, problem (8.13) is hard to solve due to the nonconvex and
discontinuous cardinality term ‖w‖0 (note that ‖w‖0 =

∑N
i=1 1{wi 6=0}).

Figure 8.1 shows the indicator function 1{x6=0} (see the solid black line).
A popular approximation of ‖w‖0 that is convex and promotes spar-

sity is the `1-norm function ‖w‖1 as indicated by the dashed red line
in Figure 8.1, i.e., the LASSO (least absolute shrinkage and selection
operator) technique [96]. LASSO has indeed been used in portfolio op-
timization [3, 33, 48, 73, 74].

Unfortunately, this technique does not work for index tracking with
long only constraints (i.e., 1Tw = 1 and w ≥ 0) since

‖w‖1 =
N∑
i=1
|wi| =

N∑
i=1

wi = 1Tw = 1 (8.14)

is constant.
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Figure 8.1: Indicator function and approximations.

8.3.3 Reweighted `1-norm Approximation

Since the convex `1-norm approximation does not work for an in-
dex tracking problem, a better (possibly nonconvex) approximation
is needed. An example is [37]

ρp(x) = log(1 + |x|/p)
log(1 + 1/p) , (8.15)

where p > 0 is a parameter and ρp(x) → 1{x 6=0} as p → 0. Figure 8.1
shows an illustrative example of p = 0.2, i.e., the dashed-dotted blue
line.

Replacing the indicator function 1{x 6=0} by the approximation func-
tion ρp(x) results in the following problem:

minimize
w

1
T
‖Xw− rb‖22 + λ

∑N
i=1ρp(wi)

subject to 1Tw = 1,
w ≥ 0.

(8.16)
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In fact, there are also some other approximations for the indicator
function, e.g., see [185] and references therein. For example, the |x|p
with 0 < p < 1 is used in [75, 106] and a smoothed version of |x|p is
used in [41]. However, there does not exist either efficient algorithms
[41, 106] or heuristic algorithms that can guarantee the quality of the
solution [75].

Following [37], we will present an iterative algorithm that interest-
ingly turns out to replace ‖w‖0 with a sequence of reweighted `1-norm
approximations. The idea also applies to the problems in [41, 106].

The idea is, at each iteration point, say x0, to approximate ρp(x)
with its first-order Taylor approximation, as follows:

ρp (x) = log (1 + |x| /p)
log (1 + 1/p) (8.17)

≈ 1
log (1 + 1/p)

[
|x|

p+ |x0|
+ log

(
1 +

∣∣∣x0
∣∣∣ /p)− ∣∣x0∣∣

p+ |x0|

]
(8.18)

= 1
(p+ |x0|) log (1 + 1/p)︸ ︷︷ ︸

, d(x0)

|x|+ const (8.19)

= d(x0) |x|+ const (8.20)
, u(x, x0). (8.21)

Figure 8.2 shows an illustrative example of u(x, x0) at point x0 = 1
(see the dashed magenta line).

Then at the k-th iteration point wk, one can solve the follow-
ing reweighted approximation problem to get the next iteration point
wk+1:

minimize
w

1
T
‖Xw− rb‖22 + λ

∥∥∥D (
wk
)

w
∥∥∥

1

subject to 1Tw = 1,
w ≥ 0,

(8.22)

where

D
(
wk
)

= Diag
(
d
(
wk1

)
,
. . . , d

(
wkN

))
. (8.23)
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Figure 8.2: Reweighted `1-norm approximation.

Algorithm 6 summarizes the iterative procedure. It can be easily shown
that Algorithm 6 converges to a stationary point of problem (8.16)
following [164].

Algorithm 6 Reweighted `1-norm approximation for index tracking.
Input: w0

Output: a stationary point of problem (8.16)
1: repeat
2: Compute d

(
wki

)
according to (8.19)

3: Compute D
(
wk
)
according to (8.23)

4: Solve (8.22) and set the optimal solution as wk+1

5: k ← k + 1
6: until convergence

Example 8.1. For illustration purposes, here we conduct some syn-
thetic experiments in MATLAB.

The data is synthetically generated as follows. We consider
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Figure 8.3: Comparisons of different sparse index tracking methods.

N = 200 stocks and draw T = 1000 i.i.d. samples, de-
noted as r1, . . . , r1000, from the multivariate Gaussian distribution
N (µ,Σ), where µ = randn(N, 1)/252 and Σ = DCD with D =
2 ∗ diag(rand(N, 1))/sqrt(252) and Cij = 0.7|i−j|. The data matrix
is X =

[
rT1 , . . . , rT1000

]T
∈ R1000×200.

Next, we construct an artificial index. We first randomly generate
a temporary vector t = rand(N, 1) and then set the artificial index
weights by normalizing t so that the summation of the weights equals
one, i.e., b = t

1T t . The historical returns of the constructed benchmark
index are rb = Xb ∈ RT .

We compare the following sparse index tracking methods:

• two-step approach: we select the stocks with K largest corre-
lations (8.8) and then consider both the naive allocation (i.e.,
(8.11)) and the optimization allocation (i.e., (8.12)); and

• joint optimization approach: Algorithm 6.

Figure 8.3 shows the square root of tracking error versus the number
of selected stocks. We can clearly see that: i) for the two-step method,
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Figure 8.4: Tracking performances of some sparse index tracking portfolios.

the optimization allocation method outperforms the naive allocation
method, e.g., the square root of the tracking error is reduced from
4.45% to 2.58% when K = 10; and ii) the joint optimization approach
outperforms the methods of the two-step approach, e.g., the joint opti-
mization approach even achieves a much lower square root of tracking
error at 0.94% with fewer stocks K = 8 compared with the results
4.45% and 2.58% of the two-step approach with K = 10.

Figure 8.4 shows the tracking performances of the joint optimization
approach: the tracking path deviates from the index path significantly
when K = 15 (see the dashed red line) and the tracking path mimics
the index path very closely when K = 78 (see the dashed-dotted blue
line). �

8.3.4 Nonconvex Constraints

For simplicity, we imposed only the long only constraints (i.e., 1Tw = 1
and w ≥ 0) in the previous parts of this chapter. In practice, some fund
managers may also impose some holding constraints (see Section 5.1.4)
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and the joint optimization problem becomes

minimize
w, s

1
T
‖Xw− rb‖22 + λ1T s

subject to 1Tw = 1,
w ≥ 0,
siLi ≤ wi ≤ siUi, ∀i
si ∈ {0, 1}, ∀i

(8.24)

where Li and Ui are the holding lower and upper bound for the i-th
stock, respectively, only if it is selected, and 0 ≤ Li ≤ Ui.

The binary variable s complicates problem (8.24). There are several
different methods to deal with it. In the following, we briefly explain
each method and list the corresponding references:

• thresholding method: a practical heuristic is to solve the problem
(8.24) without the binary variable s and then select the stocks
with weights larger than a certain threshold (i.e., decide s based
on the optimized w) and then optimize (8.24) with s fixed. To
make the solution more robust, one can remove a few stocks each
time and apply the idea several times to achieve enough sparsity
in the portfolio [106];

• mixed-integer programming (MIP): problem (8.24) indeed is an
MIP and there are some commercial solvers like GUROBI4 and
CPLEX5 that can solve MIPs with small and medium sizes ef-
ficiently. Thus, one can directly apply such standard solvers to
solve small and medium size MIP type index tracking problems
[36, 177];

• heuristic algorithms: for MIP with a large size, standard solvers
may fail, and some heuristic algorithms, e.g., genetic algorithms
[10, 17, 177], and differential evolution [10, 134], are used in prac-
tice. However, the solution in general may be far from optimal.

4http://www.gurobi.com/
5http://www-01.ibm.com/software/commerce/optimization/cplex-

optimizer/index.html
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Risk Parity Portfolio Optimization

The Markowitz portfolio (cf. Chapters 5-7) has never been embraced
by practitioners, among other reasons because it only considers the risk
of the portfolio as a whole and ignores the risk diversification.

Recently, an alternative risk parity portfolio design has been receiv-
ing significant attention from both the theoretical and practical sides
due to its advantage in diversification of (ex-ante) risk contributions
among assets. Such risk contributions can be deemed good predictors
for the (ex-post) loss contributions, especially when there exist huge
losses. The main goal of this chapter is to introduce the concepts of
risk parity portfolio, review different existing formulations, and study
different efficient solving algorithms.

The detailed organization is as follows. Section 9.1 introduces the
concepts of risk contribution and risk parity portfolio. Section 9.2 lists
several existing specific risk parity formulations and presents a general
risk parity portfolio problem formulation that can fit most of the listed
specific risk parity formulations. To solve the risk parity problems, Sec-
tion 9.3 details an efficient numerical solving approach for the general
risk parity portfolio problem formulation based on successive convex
optimization methods.

161
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9.1 What is a Risk Parity Portfolio?

Let us first start with introducing the concept of risk contribution based
on which we can define the risk parity portfolio.

9.1.1 Risk Contribution

Suppose there are N assets and the mean vector and (positive definite)
covariance matrix of the returns are denoted as µ ∈ RN and Σ ∈
RN×N , respectively. For a portfolio w ∈ RN , to study the risk parity
portfolio, we need some well defined risk measurements f (w) so that
the “risk contribution” of each asset to the risk of the whole portfolio
can be quantified. We start with the following desired property as it
will be the key to quantify the risk parity.

Theorem 9.1 (Euler’s Theorem). Let a continuous and differentiable
function f : RN 7→ R be a positively homogeneous function of degree
one 1. Then

f (w) =
N∑
i=1

wi
∂f

∂wi
. (9.1)

One observation from property (9.1) is that the component wi ∂f∂wi

can be regarded as the risk contribution from asset i to the total risk
f (w).

Interestingly and fortunately, most of the existing risk measure-
ments do satisfy the Euler property (9.1) either directly (VaR and
CVaR) or indirectly (variance) as we show next.

Volatility

Note that variance σ2 (w) = wTΣw does not satisfy (9.1) directly.
Fortunately, it is easy to check that volatility σ (w) =

√
wTΣw does

satisfy (9.1):
N∑
i=1

wi
∂σ

∂wi
=

N∑
i=1

wi

( Σw√
wTΣw

)
i

= 1√
wTΣw

N∑
i=1

wi (Σw)i

1A function f (w) is a positively homogeneous function of degree one if f (cw) =
cf (w) holds for any constant c > 0.
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Figure 9.1: One example that satisfies the Euler property (9.1).

= 1√
wTΣw

wTΣw = σ (w) . (9.2)

Thus variance fits (9.1) indirectly via volatility. Figure 9.1 shows an
example of σ (w) and we can see that the function is linear along any
direction starting from the origin.

VaR and CVaR

For simplicity, we consider the Gaussian case VaR and CVaR in this
chapter. For the Gaussian distribution, VaR and CVaR can be ex-
pressed explicitly as [141]

VaR1−ε (w) =− µTw + κ1 (ε)
√

wTΣw, (9.3)

CVaR1−ε (w) =− µTw + κ2 (ε)
√

wTΣw, (9.4)
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where κ1 (ε) , Q−1 (ε) and κ2 (ε) , 1√
2πεe

−(Q−1(ε))2

2 , and Q−1(·) is the
inverse of the Q-function (see (4.18)). Here, we implicitly assume that
ε is small (e.g., ε ≤ 20%) and κ1 (ε) and κ2 (ε) are both positive.

From (9.3) and (9.4) we can see that if µ ∝ 1, ignoring the constant
terms, the volatility, VaR, and CVaR are equal up to a positive scalar.

More generally, the Gaussian distribution can be extended to ellip-
tical distributions [119] for which VaR and CVaR both are mean and
standard deviation trade-off expressions.

Remark 9.1. For the more general non-Gaussian VaR and CVaR, it
can be shown that they both satisfy (9.1), however, they do not have
closed-form expressions and some approximations are needed. For more
discussions, please refer to [76] and references therein. �

9.1.2 Risk Parity Portfolio

The risk parity portfolio is a portfolio such that each asset has the same
risk contribution. That is, given the risk measurement f (w), the risk
parity portfolio should satisfy [162, 163, 131]

wi
∂f (w)
∂wi

= wj
∂f (w)
∂wj

, ∀i, j. (9.5)

Risk budgeting portfolio is a more general concept. Given a budget
vector b = [b1, . . . , bN ]T > 0, and bT1 = 1, where budget b is inter-
preted as a perdetermined percentage risk contribution target for all
the assets, the risk budgeting portfolio should satisfy

wi
∂f (w)
∂wi

= bif (w) , ∀i. (9.6)

Obviously, the risk parity portfolio is a special case of the risk bud-
geting portfolio with b = 1/N .

Due to the popularity of the terminology “risk parity”, it is always
used to refer to a broad portfolio allocation method of risk diversifi-
cation (e.g., including both risk parity and risk budgeting portfolios)
[167]. We take the broad concept of “risk parity” unless specified oth-
erwise in this chapter.
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9.2 Risk Parity Portfolio Formulations

There are many different existing specific formulations on risk parity
portfolios due to different risk measurements used or different profiles
of investors. In this section, we first review some specific formulations
and then consider a general risk parity portfolio problem formulation.

9.2.1 Some Specific Formulations

Recall that the risk contribution of asset i is wi(Σw)i√
wΣw , then the risk

parity (9.5) and risk budgeting (9.6) relationships turn out to be

risk parity : wi (Σw)i = wj (Σw)j , (9.7)

risk budgeting : wi (Σw)i = biwTΣw, (9.8)

respectively, where b = [b1, . . . , bN ]T > 0 is the given risk budgeting
for n assets and bT1 = 1. Actually, relationship (9.7) is a special case
of relationship (9.8) with bi = 1/N for all i.

Again, we denote the feasible set as W , {w|wT1 = 1} ∩W where
wT1 = 1 denotes the capital budget constraint and W is a convex set
that denotes the other constraints.

Only when Σ is diagonal and there exists a long-only constraint,
i.e., W = {w|w ≥ 0}, the nonlinear equation systems (9.8) admit a
unique solution [167]:

wi =
√
bi/
√

Σii∑n
k=1
√
bk/
√

Σkk
, i = 1, . . . , N. (9.9)

However, for non-diagonal Σ or when there are some additional
constraints, the closed-form solution does not exist anymore and some
optimization problems are constructed instead.

Paper [131] is one of the first few papers that focuses on finding
the risk parity portfolio via optimization. The proposed problem for-
mulation is to penalize the summation of squared differences among
risk contributions:

minimize
w

∑N
i,j=1

(
wi (Σw)i − wj (Σw)j

)2

subject to wT1 = 1, w ∈ W.
(9.10)
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Motivated by problem (9.10), Bai et al. [14] simplified the objective
of (9.10) to solve:

minimize
w,θ

∑N
i=1 (wi (Σw)i − θ)

2

subject to wT1 = 1, w ∈ W.
(9.11)

To find a portfolio that meets the risk budgeting targets b as much
as possible, Bruder and Roncalli proposed to solve [34]:

minimize
w

∑N
i=1

(
wi(Σw)i

wT Σw − bi
)2

subject to wT1 = 1, w ∈ W.
(9.12)

Similarly, it is easy to have some other alternative (but different) prob-
lem formulations, e.g.,

minimize
w

∑N
i,j=1

(
wi(Σw)i

bi
− wj(Σw)j

bj

)2

subject to wT1 = 1, w ∈ W,
(9.13)

and
minimize

w

∑N
i=1

(
wi (Σw)i − biwTΣw

)2

subject to wT1 = 1, w ∈ W,
(9.14)

and
minimize

w

∑N
i=1

(
wi(Σw)i√

wT Σw
− bi
√

wTΣw
)2

subject to wT1 = 1, w ∈ W,
(9.15)

and
minimize

w,θ

∑N
i=1

(
wi(Σw)i

bi
− θ

)2

subject to wT1 = 1, w ∈ W.
(9.16)

Note that all the above formulations are nonconvex and they are
only some examples. Actually, there are many more specific formula-
tions; for more a comprehensive summary, please see [76, Table I].

Unfortunately, all the above problem formulations are generally
nonconvex in general. In the following we review a numerical approach
that attacks all of them in a unified way.
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9.2.2 General Risk Parity Portfolio Problem

Let us start with a general risk parity formulation proposed in [76] that
can fit all the previously stated specific formulations. The general risk
parity formulation can be expressed as

minimize
w

U (w) , R (w) + λF (w)
subject to wT1 = 1, w ∈ W,

(9.17)

where

• R (w) measures the risk concentration and has the form

R (w) ,
N∑
i=1

(gi (w))2 (9.18)

in which each gi (w) is a smooth differentiable nonconvex function
that measures the risk concentration of the i-th asset. The smaller
the quantity R (w) is, the more uniform the risk is distributed
among n assets;2

• F (w) is a convex function that represents some traditional pref-
erences on the portfolio. For example, it can be the expected
portfolio loss (e.g., F (w) = −µTw), the mean-variance trade-off
of the portfolio loss (e.g., F (w) = −µTw+νwTΣw where ν > 0
is the trade-off parameter), or F (w) = 0 when the goal is to
distribute the risk only;

• λ ≥ 0 is some trade-off parameter between the portfolio prefer-
ence and risk concentration; and

• wT1 = 1 denotes the capital budget constraint andW is a convex
set that denotes the investor’s profiles, capital limitations, market
regulations, etc.

This problem formulation is quite general to fit the previously stated
specific formulations, for example, setting gi (w) = wi (Σw)i−biwTΣw
and λ = 0 recovers the problem (9.14).

2In some problem formulations, the definition
∑N

i,j=1 (gij (w))2 is used where
gij (w) measures the difference between the risk contributions of assets i and j, for
which the analytical approach derived in this paper still applies.
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Figure 9.2: Performances of SQP and IPM.

Since each function gi (w) is highly nonconvex, the problem (9.17)
is also nonconvex and hard to solve. In the literature, usually tra-
ditional off-the-shelf nonlinear optimization methods, like sequential
quadratic programming (SQP) [153] and interior point methods (IPM)
[35] built in the MATLAB function fmincon, are used in practice
[14, 34, 131, 168, 90, 184]. However, for the nonconvex risk parity prob-
lem, in general they are time consuming and sometimes may not even
converge globally [14, 90, 184]. This can be shown by a simple numerical
example as follows.

Example 9.1. We set N = 500 and simulate the problem (9.14). The
covariance matrix is randomly generated as Σ = VVT where V =
rand(N, N). For simplicity and for illustrative purposes, we consider the
long-only constraints, e.g., wT1 = 1 and w ≥ 0, and for this special
case it is known that the optimal objective is zero [167].3

Figure 9.2 shows one typical realization of the performance of objec-
tive vs CPU time of the SQP and IPM methods built in the MATLAB

3More comprehensive numerical experiments based on both synthetic and real
data can be found in [76].



9.3. SCRIP: An Efficient Numerical Solving Approach 169

function fmincon, and we have similar results for all the realizations.
Basically, we observe that the SQP and IPM methods may either not
even converge or converge to a unsatisfactory point very slowly. �

9.3 SCRIP: An Efficient Numerical Solving Approach

Just as shown before, the general standard off-the-shelf numerical non-
convex nonlinear optimization methods, like SQP and IPM, are not
efficient for nonconvex problems like (9.17).

To overcome this drawback, the authors of [76] explored the struc-
ture of the nonconvex part of U (w), e.g., R (w) =

∑N
i=1 (gi (w))2, as

follows. At the k-th iteration, the proposed method aims to solve

minimize
w

P(w;wk),︷ ︸︸ ︷
N∑
i=1

(
gi
(
wk
)

+
(
∇gi

(
wk
))T (

w−wk
))2

+ τ
2

∥∥∥w−wk
∥∥∥2

2
+ λF (w)

subject to wT1 = 1, w ∈ W,

(9.19)

where τ > 0 is the parameter for the regularization term. Here, the
nonconvex term R (w) is convexified by linearizing each gi (w) inside
the square operation. The added proximal term

∥∥∥w−wk
∥∥∥2

2
is for con-

vergence reasons [178].
The beauty of the approximation P

(
w; wk

)
is that it is an easily

computable quadratic convex function and has the same gradient as
R (w) at each iteration point wk:

∇P
(
w; wk

)
|w=wk = ∇R (w) |w=wk , (9.20)

where ∇P
(
w; wk

)
denotes the partial gradient of P

(
w; wk

)
with re-

spect to the first argument w.
Note that P

(
w; wk

)
can be rewritten more compactly as

P
(
w; wk

)
=
∥∥∥Ak

(
w−wk

)
+ g

(
wk
)∥∥∥2

2
(9.21)

where

Ak ,
[
∇g1

(
wk
)
, . . . ,∇gN

(
wk
)]T

, (9.22)
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g
(
wk
)
,
[
g1
(
wk
)
, . . . , gN

(
wk
)]T

. (9.23)

Then the problem (9.19) can be further rewritten as

minimize
w

1
2wTQkw + wTqk + λF (w)

subject to wT1 = 1, w ∈ W,
(9.24)

where

Qk , 2
(
Ak
)T

Ak + τI, (9.25)

qk , 2
(
Ak
)T

g
(
wk
)
−Qkwk. (9.26)

In general, under the assumption that F (w) is convex, for
nonempty convex set W (recall that W =

{
w|wT1 = 1

}
∩ W) and

τ > 0, problem (9.24) is strongly convex and can be solved by the
existing efficient solvers (e.g., MOSEK [150], SeDuMi [189], SDPT3
[194], etc.). Moreover, if F (w) is linear or convex quadratic, and W
only contains linear constraints, problem (9.24) reduces to a QP.

Algorithm 7 summarizes the sequential solving approach and it is
referred to as SCRIP (Successive Convex optimization for RIsk Parity
portfolio) since it is based on a successive convex optimization method.

Algorithm 7 Successive Convex optimization for RIsk Parity portfolio
(SCRIP).
Input: k = 0, w0 ∈ W1, τ > 0, {γk} > 0
Output: a stationary point of problem (9.17)
1: repeat
2: Solve (9.24) to get the optimal solution ŵk

3: wk+1 = wk + γk
(
ŵk −wk

)
4: k ← k + 1
5: until convergence

Based on the result of [178, Theorem 3], it can be shown [76] that
under some technical assumptions and τ > 0, γk ∈ (0, 1], γk → 0,∑
k γ

k = +∞, and
∑
k

(
γk
)2
< +∞, then either Algorithm 7 converges

in a finite number of iterations to a stationary point of (9.17) or every
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Figure 9.3: Performances of SQP, IPM, and SCRIP.

limit of wk (at least one such point exists) is a stationary point of
(9.17). There are also some interesting remarks on Algorithm 7.

Remark 9.2. Actually, one can easily have more algorithms by explor-
ing two ideas: i) constructing a simpler QP approximation at each iter-
ation, e.g., the quadratic coefficient matrix can be even diagonal, and
ii) deriving some fast numerical updates when solving the inner QP
approximation for some specific constraints. Here we do not explore
them; however the interested reader is referred to [76, Algorithms 2-5]
for detailed information. �

Let us now revisit the previous Example 9.1 to conclude this chap-
ter. Figure 9.3 shows the performance of objective vs CPU time of
the existing SQP and IPM methods and the iterative SCRIP method.
Clearly, we can see that SCRIP converges much more quickly and
achieves a better objective value. This is also observed in more com-
prehensive numerical experiments, cf. [76].
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Statistical Arbitrage
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10
Statistical Arbitrage

Markowitz mean-variance portfolio optimization mainly follows the
trends of the prices, i.e., the mean vector of the returns, to maximize the
portfolio return with the portfolio risk under control, i.e., the portfolio
variance is under a given threshold (cf. Part II, i.e., Chapters 5-9).

Conversely, the mean-reversion type of quantitative investment
strategies aims at making profit based on the noisy fluctuations in the
market prices regardless of the trends. This will be covered in this part,
Part III, which contains only this chapter, Chapter 10. The underly-
ing rough idea is to short-sell the (relatively) overvalued stocks and
buy the (relatively) undervalued stocks, and hopefully a positive profit
will be generated if their values converge. Such a type of quantitative
investment strategy is referred to as “statistical arbitrage”.

The detailed organization of this chapter is as follows. Section 10.1
explains the concept of cointegration and compares it with correlation.
Sections 10.2-10.4 focus on introducing the “ancestor” of statistical ar-
bitrage, that is, pairs trading. Section 10.2 studies different methods
of discovering the potential pairs, once the potential pairs have been
detected, Section 10.3 then tests whether they are indeed cointegrated
or not, and Section 10.4 proceeds to checking the tractability and de-

173
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signing trading rules. At the end, Section 10.5 generalizes pairs trading
to statistical arbitrage.

10.1 Cointegration versus Correlation

To begin with, let us first recall the definition of cointegration intro-
duced in Section 2.6: a time series is called integrated of order p, de-
noted as I(p), if the time series obtained by differencing the time series
p times is weakly stationary, while by differencing the time series p− 1
times is not weakly stationary, and a multivariate time series is said to
be cointegrated if it has at least one linear combination being integrated
of a lower order.

Unlike correlation, which generally characterizes (relatively short-
term) co-movements in log-returns, cointegration refers to (relatively
long-term) co-movements in log-prices [61]. Correlation and cointegra-
tion are two related but different concepts. High correlation of log-
returns does not necessarily imply high cointegration in log-prices, and
neither does high cointegration in log-prices imply high correlation of
log-returns [6].

Since cointegration is the key concept for statistical arbitrage and
it is often confused with correlation, let us use some simple numerical
examples to introduce cointegration and illustrate its relationship with
correlation.

10.1.1 Log-Price Series with High Cointegration

Recall that in Example 2.1 in Section 2.6, we introduced cointegration
based on a VECM model. Here, to understand the relationship between
cointegration and correlation, we consider a more direct stochastic com-
mon trend model of two stocks, as follows [188]:

y1t = γxt + w1t (10.1)
y2t = xt + w2t (10.2)
xt = xt−1 + wt, (10.3)

where y1t and y2t are the log-prices, xt is the stochastic common trend
(which is a random walk), γ is a (positive) loading coefficient, and w1t,
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w2t, and wt are i.i.d. errors that are independent of each other. For
simplicity, suppose w1t, w2t, and wt follow Gaussian distributions and
their means are zero and variances are σ2

1, σ2
2, and σ2, respectively.

W.l.o.g., we also assume γ = 1 in this section.
Based on the model (10.1)-(10.3) and according to the definition of

cointegration, we can first conclude that y1t and y2t are always cointe-
grated because the following linear combination

zt , y1t − y2t = w1t − w2t (10.4)

is stationary regardless of the values of σ2
1, σ2

2, and σ2. In the literature,
the above obtained stationary process zt is referred to as “spread”.1
However, the correlation between the first order differences of y1t and
y2t, i.e., the log-returns of the two stocks, is

ρ = σ2√
σ2 + 2σ2

1

√
σ2 + 2σ2

2

= 1√
1 + 2σ2

1
σ2

√
1 + 2σ2

2
σ2

, (10.5)

which depends on the value of σ2
1, σ2

2, and σ2. If σ2
1 � σ2 and/or σ2

2 �
σ2, ρ is very close to zero and the correlation is very low. Therefore, high
cointegration in log-prices does not necessarily imply high correlation
in log-returns.

Example 10.1. Let us now study an illustrative numerical example. We
set σ1 = σ2 = 0.2 and σ = 0.1 and randomly generate a sample path
with 200 observations for each random process in the model (10.1)-
(10.3).

Figure 10.1 shows the realization paths of y1t (the blue curve), y2t
(the red curve), and their difference y1t−y2t (the black curve). Clearly,
we can see that y1t and y2t have a co-movement and indeed they are
cointegrated since y1t − y2t is stationary, as shown by the black curve.

However, the empirical correlation coefficient is 0.1124 (the theo-
retical value based on (10.5) is 0.1111) which means the correlation in
the log-return series is quite low. Figure 10.2 shows the log-returns of
stock 2 versus that of stock 1 and it verifies the low correlation since
the points spread out in all directions.

1The spread zt in (10.4) happens to have zero mean because the means of w1t

and w2t are assumed to be zero. Generally, the spread mean is different from zero
in practice.
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Figure 10.1: Some sample paths of the log-price series of the two stocks: the
cointegration is high.
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Figure 10.2: Log-returns of stock 2 versus that of stock 1: the correlation is low.
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Figure 10.3: The correlation between the log-return series is high.

Therefore, we can conclude that high cointegration in log-prices
series does not necessarily imply high correlation in log-return series.�

10.1.2 Log-Return Series with High Correlation

Let us still focus on the previous stochastic common trend model (10.1)-
(10.3), but further consider a log-price series ỹ1t as follows:

ỹ1t = y1t + c0t, (10.6)

that is, we add a temporal trend in the log-price series y1t.
The correlation between the first order differences of ỹ1t and y2t is

still given by (10.5); however, ỹ1t and y2t are no longer cointegrated
since they will diverge increasingly as time goes by. In fact, this rela-
tionship is called cointegration with deterministic trend.

Example 10.2. Let us now consider a modification of Example 10.1.
We set σ1 = σ2 = 0.05, and σ = 0.3 and generate 200 samples of y1t
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Figure 10.4: The log-price series are not cointegrated.

and y2t according to the common stochastic model (10.1)-(10.3) and
ỹ1t according to (10.6) with c0 = 0.01.

The empirical correlation between the first order differences of ỹ1t
and y2t is 0.9504 (the theoretical value based on (10.5) is 0.9474), which
means the corresponding log-return series are highly correlated. Figure
10.3 shows the log-returns of stock 2 versus that of stock 1 and it verifies
the high correlation since the points fall closely along a straight line.

As to the cointegration, Figure 10.4 shows the realization paths of
ỹ1t (see the blue curve) and y2t (see the red curve). Clearly, we can
see that ỹ1t and y2t are not tied together by a stationary spread and
indeed they are diverging increasingly since the spread ỹ1t − y2t keeps
growing.

Thus, high correlation in log-return series does not necessarily imply
high cointegration in log-prices series. �

10.1.3 The Idea of Statistical Arbitrage Based on Cointegration

The idea behind statistical arbitrage is to short-sell the overvalued
spread, and buy the undervalued stocks and unwind the position when
the spread converges to its normal stage.
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Figure 10.5: Investing on the mean-reversion spread.

Figure 10.5 pictorially shows the idea of investing on the mean-
reversion spread. For example, suppose the stationary spread zt = y1t−
γy2t has mean zero, then one can buy the spread when it low at zt =
−s0, i.e., buy one dollar stock 1 and short-sell γ dollar stock 2 as
indicated in Figure 10.5 by the red point, and unwind the positions
when the spread reverts to zero after i time steps, i.e., zt+i = 0 as
indicated in Figure 10.5 by the red circle. The resulting log-return of
the strategy is zt+i − zt = s0. Similarly, one can sell the spread when
the spread is high at zt = s0, i.e., short-sell one dollar stock 1 and buy γ
dollar stock 2 as indicated in Figure 10.5 by the red point, and unwind
the positions when the spread reverts to zero again. The resulting log-
return is also zt − zt+i = s0.2

For illustrative purposes, let us revisit Example 10.1 and set
s0 = 0.25. Figure 10.6(a) shows the resulting mean-reversion stationary
spread zt and the buy and sell thresholds ±s0, Figure 10.6(b) reports
the raw signaling for buying or shorting the spread, and Figure 10.6(c)

2For simplicity, we ignore the trading costs, e.g., brokerage fee, stamp fee, slip-
page, etc. in this chapter.
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Figure 10.6: A simple example of statistical arbitrage: (a) the mean-reversion
spread and the thresholds ±0.25; (b) the positions, +1 and −1 means buy and sell
the spread, respectively; (c) the cumulative profit and loss (P&L).

states the cumulative profit and loss (P&L)3. We can see that the sta-
tistical arbitrage does generate consistent positive profit from Figure
10.6(c). However, note that this is the in-sample result of a synthetic
experiment without accounting for any trading costs. In practice, one
needs to focus on the out-of-sample results and take the trading costs
into consideration as well. Still, statistical arbitrage has generated sig-
nificant positive profits in the real markets.

Fact 10.1. Pairs trading probably is the first practically implemented
statistical arbitrage trading strategy. It was first invented in industry
by a quantitative trading team led by the quant Nunzio Tartaglia in
Morgan Stanley around the mid 1980s. Tartaglia’s team enjoyed signif-

3We invest one dollar in each asset whenever we buy or sell the spread, and the
P&L is computed as the cumulative summation of the profits and losses.
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icant success in pairs trading in 1987. The team was disbanded in 1989
and the members joined various other trading firms. However, pairs
trading became widely known. Until now, pairs trading has generated
hundreds of millions of dollars in profits for large institutions or hedge
funds, e.g., Morgan Stanley, Renaissance Technologies, D. E. Shaw &
Co., etc. �

In the following Sections 10.2-10.4, we first focus on pairs trading
as the example to introduce the main steps of statistical arbitrage. In
practice, pairs trading can be mainly decomposed into three steps [203]:

• Pairs selection: identify stock pairs that could potentially be coin-
tegrated.

• Cointegration test: test whether the identified stock pairs are in-
deed cointegrated or not.

• Trading strategy design: study the spread dynamics and design
proper trading rules.

In the literature, the papers focusing on pairs trading are usually
categorized into different approaches [92, 161], namely minimum dis-
tance approach [85, 151, 9], stochastic approach [57, 50, 195], and coin-
tegration approach [203, 125, 6]. However, most of them mainly focus
on only one (or two) of the above three steps and do not conduct the
other steps properly. Here, we prefer to review different papers follow-
ing the above three steps structure.

Later in Section 10.5, we will consider more general statistical ar-
bitrage among multiple stocks.

10.2 Pairs Selection

The markets usually contain thousands of stocks which can form mil-
lions of pairs. It is too computationally costly to check whether each
pair is cointegrated or not. A more practical way is to define an easy
and straightforward measure to preliminarily identify the most poten-
tially cointegrated pairs and then focus on testing the cointegration of
such identified pairs only.
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10.2.1 Normalized Price Distance

Probably the most simple and straightforward measurement is the nor-
malized price distance (NPD) [85, 9]:

NPD ,
T∑
t=1

(p̃1t − p̃2t)2 (10.7)

where the normalized price p̃1t of stock 1 is given by

p̃1t =
t∏
i=1

(1 +R1i) (10.8)

with R1i being the i-th simple return of stock 1. Actually, this criterion
implicitly assume the cointegration coefficient between the log-price of
two stocks equals 1, i.e., γ = 1. The normalized prices of the other
stocks are defined similarly. Then one can easily compute the NPDs
for all the possible pairs and select some pairs with the smallest NPDs
as the potentially cointegrated pairs.

The authors of [85] conduct pairs trading as follows. First, they
use the past 12 months daily data to construct pairs with the smallest
NPDs. Once the pairs are formed, they simply buy one dollar in the
undervalued stock and short-sell one dollar in the overvalued stock
when the normalized prices diverge more than two standard deviations,
and unwind the positions when the normalized prices cross later. After
6 months, the positions are forced to unwind regardless of whether the
prices have crossed or not.

Later, a following paper [9] provides more out-of-sample numerical
results and another one [151] incorporates a stop-loss trigger if the
distance diverges too much to limit the potential huge losses. Also,
since the `2-norm distance in (10.7) is too sensitive to outliers, it is
also suggested to consider some robust distance measurements, e.g.,
`1-norm distance [92].

Actually, the methods in [85, 9, 151] are just some specific practical
implementations and the cointegration test and trading strategy design
steps are either ignored or not properly conducted.
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10.2.2 Measurements Based on Stochastic Common Trend Model
and Factor Model

Now let us revisit the stochastic common trend model (10.1)-(10.3) and
do not assume γ = 1. Then, the log-returns can be decomposed into
two components as follows:

r1t = y1t − y1,t−1 = γwt︸︷︷︸
, rc

1t

+ (w1t − w1,t−1)︸ ︷︷ ︸
, rs

1t

(10.9)

r2t = y2t − y2,t−1 = wt︸︷︷︸
, rc

2t

+ (w2t − w2,t−1)︸ ︷︷ ︸
, rs

2t

(10.10)

where rc1t and rc2t are the log-returns due to the nonstationary stochastic
common trend with rc1t = γrc2t, and rs1t and rs2t are the log-returns due
to the stationary components (and thus the cumulative summations of
rs1t and rs2t are stationary).

Note that the factor model for stock i at time t has the form:

rit = πTi ft + εit, (10.11)

where ft is the factor which is the same for all the stocks, πi is the
vector of loading coefficients, and εit is the idiosyncratic noise.

The factor model (10.11) is a more general approach than the trend
model (10.9)-(10.10) in the sense that if we further assume π1 = γπ2
and the cumulative summations of the specific noise component εit,
i.e.,

∑t
k=1 εik, are stationary for all the stocks, then rc1t, rc2t, rs1t, and

rs2t are modeled by πT1 ft and πT2 ft, ε1t, and ε1t, respectively.
Based on the above connection, one can always first estimate the

factor model parameters, e.g., the factor loading coefficient estimates
π̂i, the factor covariance matrix estimates Σ̂f , and then define different
measurements to efficiently select the potentially cointegrated pairs.
For simplicity, we arbitrarily study the pair of stocks 1 and 2.

Normalized Factor Loadings Difference

The first idea is that, for a cointegrated pair, the log-returns due to the
common trend should be proportional to each other, which means the
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factor loading coefficients should be proportional to each other. There-
fore, one can define the normalized factor loadings difference (NFLD)
as follows [203]:

NFLD ,
∥∥∥∥∥ π̂1
‖π̂1‖2

− π̂2
‖π̂2‖2

∥∥∥∥∥
2

(10.12)

and then identify the pairs with the smallest NFLDs as the potentially
cointegrated ones.

Correlation Between Log-Returns due to Common Trend

Since the log-returns due to the common trend should be proportional
to each other, i.e., they should share the same direction, an alternative
idea is to compute the correlation coefficient between them [203]:

|ρ| =

∣∣∣∣∣∣ Cov(rc1t, rc2t)√
Var(rc1t)Var(rc2t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ Cov(π̂T1 ft, π̂T2 ft)√
Var(π̂T1 ft)Var(π̂T2 ft)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ π̂T1 Σ̂f π̂2√
(π̂T1 Σ̂f π̂1)(π̂T2 Σ̂f π̂2)

∣∣∣∣∣∣ = | cos θ|, (10.13)

where θ is the angle between the log-return series, and the potentially
cointegrated pairs are the ones with θ being close to zero or, equiva-
lently, |ρ| being close to one.

Remark 10.1. Note that it is the log-returns due to the common trend
only that are used to compute the absolute value of the correlation
in (10.13). We should not use the overall log-returns, i.e., difference
of log-prices, here because high correlation in the log-returns does not
necessarily imply high cointegration in the log-prices, as we have shown
in Section 10.1. �

10.3 Cointegration Test

Once a potentially cointegrated pair, e.g., stocks 1 and 2, has been
selected, the next step is to check whether they are cointegrated or
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not. That is, we need to find out whether or not there exists a value of
γ so that the spread

zt = y1t − γy2t (10.14)

is stationary. Note that in practice the mean of spread zt is not neces-
sarily zero and in general γ may not be one.

To test for cointegration of two stocks, one of the most simple and
direct methods is the Engle and Granger test [61] which usually con-
tains two steps:

1. linearly regress the log-prices of one stock against that of the other
stock and use the LS to compute the linear regression parameter;
and

2. test whether the estimated residuals of the linear regression are
stationary or not.

10.3.1 Linear Relationship

If zt in (10.14) is stationary, it can be rewritten into the following form:

zt = y1t − γy2t = µ+ εt, (10.15)

where µ represents the equilibrium value and εt is a zero mean station-
ary process that can be interpreted as the disturbance in the equilib-
rium [203]. The relationship (10.15) can be further rearranged as

y1t = µ+ γy2t + εt, (10.16)

which has the same expression as a linear regression. Then naturally
the LS is employed to estimate the cointegration coefficient γ and the
equilibrium value µ, and in fact, if y1t and y2t are I(1) and are cointe-
grated, the estimates converge to the true values at the rate of number
of observations [61].

Remark 10.2. In the literature, once the pairs are selected, many pa-
pers, e.g., [85, 151, 9, 57, 195], always long one and short the other
with equal dollars so that the strategy is dollar neutral. Actually, this
is equivalent to artificially fixing γ to be one and hoping that the spread

zt = y1t − y2t (10.17)
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is stationary. Based on (10.17), we can have the following relationship

zt − zt−1 = r1t − r2t, (10.18)

which implies that the two stocks should have the same average return
to ensure zt is stationary. The number of pairs sharing the same average
return in the real markets may be too few. Therefore, fixing γ = 1 may
reduce the chance of identifying truly cointegrated pairs. �

Remark 10.3. Please note that the log-prices are used for construct-
ing cointegrated pairs here and the cointegration coefficients (i.e., the 1
and γ in (10.15) in front of log-prices) mean the invested dollars in each
stock. To keep the invested dollar in each stock constant requires daily
rebalancing since the price change may deviate the invested value from
the constant level. One drawback of this method is that daily rebalanc-
ing may incur significant transaction costs and thus reduce total profit.
One way to avoid this daily rebalancing via constructing cointegration
pairs based on price series directly (as opposed to log-prices), in which
case the cointegration coefficients (i.e., the estimated linar coefficients
in front of prices) mean the numbers of shares invested in each stock.
However, using prices directly may reduce the chance of cointegration
since the noise in price is less symmetric than that in log-prices and
the resulting cointegration spread may be less stationary compared that
one obtained based on log-prices. Since the two approaches can be an-
alyzed almost in the same way, for clarity of presentation and without
loss of generality, we focus on pairs trading using log-prices only. �

10.3.2 Cointegration and Strength of Mean-Reversion

The spread zt is stationary if and only if the true residual series is sta-
tionary. In practice, we do not know the true values of the cointegration
coefficient γ and the equilibrium value µ, and we cannot know the true
residuals. However, the parameters γ and µ can be estimated by LS as
shown before and we denote their estimates as γ̂ and µ̂, respectively.
Then we can use the estimated residuals

ε̂t = y1t − γ̂y2t − µ̂ (10.19)
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as the approximations of the true ones and test the stationarity of the
estimated residuals instead.

Intuitively, without stepping into any statistical hypothesis test, an
ad hoc method may be to use a high mean crossing rate as an indicator
of mean-reversion: the higher the mean crossing rate is, the stronger
the strength of mean-reversion is [203]. Even though it is simple and
straightforward, it is not clear how to set the corresponding testing
critical value for a given statistical significance value. This actually can
be overcome by some statistical hypothesis tests as follows.

Dickey-Fuller (SF) Test

The DF test [49] is a hypothesis test for unit root nonstationarity. For
any given time series xt, the DF test first fits it to the following model:

∆xt = φ0 + c0t+ φ1xt−1 + et, (10.20)

where et denotes white noise, and then consider the null hypothesis
H0 : φ1 = 0 versus the the alternative hypothesis Ha : φ1 < 0. Here the
null hypothesis means the time series xt is a random walk, thus unit
root nonstationary. The intuition here is that, if xt is stationary, that
is φ1 < 0, then it tends to revert to its long term mean; for example,
supposing φ0 = c0 = 0, a large value (or a small value) tends to be
followed by a smaller value, that is, a negative change (or a large value,
that is, a positive change, respectively).

The DF statistic is defined as the t-statistic of the LS estimate of
φ1 under the null hypothesis

DF = φ̂1

std(φ̂1)
, (10.21)

where φ̂1 is the (expected) LS estimate and std(φ̂1) is the standard
deviation of the estimate [196]. Then given the statistical significance
value, the null hypothesis is rejected if the DF statistic is less than a
critical value.

Ideally, it is the true residuals εt that should be used in the above
DF test to test it is stationary and thus the cointegration between the
log-prices series y1t and y2t. However, as we mentioned, we can only
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use the estimated residuals instead in practice and the critical value in
the above DF test should be adjusted accordingly [130].

Augmented DF (ADF) Test

The ADF test is an extension by removing all the structural effects
(autocorrelation) in the time series as follows:

∆xt = φ0 + c0t+ φ1xt−1 +
p∑
i=1

φi+1∆xt−i + et, (10.22)

where the null and alternative hypotheses are the same as that of the
DF test. The remaining procedure of the ADF test for the cointegration
test is the same as that of the DF test.

Remark 10.4. Earlier we investigated the Engle and Granger cointe-
gration test based on two stocks. However, such a cointegration test
has several drawbacks: the two-step cointegration test is sensitive to
the ordering of variables in the regression; the first step “cointegration
regression” may lead to spurious estimators if the bivariate series are
not cointegrated, and it is not suitable for more than two stocks. An
alternative method is the Johansen test, which tests the rank of the ma-
trix Π (recall (2.49)) and obtains the corresponding MLE estimate in
the VECM [107, 108] so one can get all the possible cointegration vec-
tors. For more detailed discussions on different tests for cointegration,
please refer to [93]. The good thing is that there already exist highly
developed functions for the different tests, e.g., egcitest for the Engle
and Granger test and jcitest for the Johansen test in MATLAB or
packages egcm for the Engle and Granger test and urca for the Johansen
test in R programming language. �

For illustrative purposes, let us revisit previous Examples 10.1 and
10.2 to see how the simple Engle and Granger cointegration test works.

Example 10.3. Consider the generated sample paths of y1t and y2t in
Example 10.1. We simply use the MATLAB function egcitest with
default settings to test the cointegration. The estimated values are
µ̂ = −0.0521 and γ̂ = 0.9492, which are close to their true values µ = 0
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Figure 10.7: Engle and Granger cointegration test of Example 10.1.

and γ = 1. Then egcitest uses the ADF test to test the stationarity of
the estimated residuals. Here, the ADF statistic computed by (10.21)
is −14.009, less than the 5% significance level critical value −3.3669,
thus the ADF test is to reject the null hypothesis and y1t and y2t are
cointegrated. Figure 10.7 shows that the true and estimated residuals
look close to each other and they look stationary. As for Example
10.2, the default settings of egcitest do not contain the time trend
and it fails to reject the null hypothesis (note that the null hypothesis
is that ỹ1t and y2t are not cointegrated). However, if we allow the time
trend component estimation in egcitest, it produces the estimates
of the parameters µ̂ = 0.0037, γ̂ = 0.9945, and ĉ0 = 1, which again
are close to their true values µ = 0, γ = 1, and c0 = 1, respectively.
Now the ADF statistic computed by (10.21) is −15.1876, less than
the 5% significance level critical value −3.8283. Thus the ADF test
rejects the null hypothesis and ỹ1t and y2t are not cointegrated but
cointegrated with a deterministic trend. Similarly, Figure 10.8 shows
that the true and estimated residuals look close to each other and they
look stationary with a deterministic trend. �
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Figure 10.8: Engle and Granger cointegration test of the modification Example
10.2.

Furthermore, we consider one more simple example based on real
data to show how to retrieve real data and how the cointegration test
performs in practice.

Example 10.4. We focus on two main Chinese banks listed in the Hong
Kong Stock Exchange, i.e., Industrial and Commercial Bank of China
(ICBC, Code: 1398.HK) and China Construction Bank (CCB, Code:
0939.HK).

Figure 10.9 shows their adjusted log-prices from 01-Jan-2013 to 31-
Dec-2015. The data is retrieved from Yahoo! Finance using the MAT-
LAB function hist_stock_data4. We can see the two paths look really
close to each other.

Indeed, the cointegration test shows that they are cointegrated and
Figure 10.10 shows the (in-sample) spread (as indicated by the solid
black line), its mean level (as indicated by the dashed blue line), and
the thresholds deviating from the mean by one standard deviation (as

4http://www.mathworks.com/matlabcentral/fileexchange/18458-historical-
stock-data-downloader/content/hist_stock_data.m
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Figure 10.9: Log-prices of ICBC and CCB.
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indicated by the two solid magenta lines). The MATLAB code is in-
cluded in Appendix C. �

10.4 Investing in Cointegrated Pairs

Once cointegrated pairs have been identified, there are different trading
strategies that can be employed, for example, one can short the spread
zt when it is larger than its long term mean by a significant value (i.e.,
entry threshold) and unwind the position when the spread converges
to a smaller value (i.e., exit threshold). The analysis of the optimal
entry and exit thresholds for different rules is similar. For simplicity
of presentation and w.l.o.g., we take the following trading rule: buy or
sell the spread when it diverges from its long-term mean by s0 and
unwind the position when it passes through its mean. Thus, the key
problem now is how to design the value of s0 such that the total profit
is maximized.

10.4.1 Optimal Threshold Value

Intuitively, a large threshold provides a large profit for each trade, albeit
at a lower frequency, and a small threshold results in more frequent
trades but a smaller profit for each trade. Both of these two extremes
may not give the best total profit and an optimal threshold must be
found between them. To compute the total profit, one needs to know
two things: the profit of each single trade and the trading frequency.
The former is simply the threshold value s0 (based on the previous
trading rule and note that log-prices are used here) and the latter is
a monotonically decreasing function of the threshold value s0 which is
the key issue. Both the parametric and nonparametric approaches for
computing the trading frequency function are introduced next.

Parametric Approach

The idea of the parametric approach is to fit the spread dynamic with
a specific model based on which the trading frequency can be either
theoretically or numerically efficiently computed. There are several dif-
ferent parametric models that satisfy the above requirement, e.g., the
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white Gaussian noise model, mixture Gaussian model, ARMA model,
and hidden Markov ARMA model [203].

For illustrative purposes, let us focus on the white Gaussian noise
model and we further arbitrarily assume the noise is i.i.d. following a
standard Normal distribution since otherwise we can always standard-
ize the noise first.

The probability that a white Gaussian noise process at any time
deviates above from the mean by s0 or more is 1 − Φ(s0), where Φ(·)
is the c.d.f. of the standard Normal distribution. Therefore, in T steps
we expect to have T (1−Φ(s0)) events greater than s0 and the number
of shorts is one half of that, i.e., T (1 − Φ(s0))/2, since the spread
may need to cross the threshold s0 again before it reverts to the mean
level (cf. Figure 10.5). Similarly, we can get the number of buys is also
T (1 − Φ(s0))/2, and the total number of trades is T (1 − Φ(s0)). For
each trade, the profit is s0 and then the total profit is s0T (1− Φ(s0)).

Example 10.5. Let us use a simple numerical example to illustrate the
idea. We first randomly generate T = 70 samples from the standard
Normal distribution. The sample mean and variance are 0.1752 and
0.9928, respectively.

Figure 10.11(a) shows the true theoretical function (1−Φ(s0)) and
the estimated one which is computed based on the sample mean and
sample variance. Figure 10.11(b) shows the profit of each single trade,
and Figure 10.11(c) shows the total profit. The maximum of the esti-
mated total profit is achieved at the threshold s0 = 0.8 which is close
to the optimal threshold, i.e., the maximizer of the theoretical total
profit, at s0 = 0.75. �

Nonparametric Approach

For the previous parametric approach, one always needs to calibrate
a predefined model from the spread samples and then compute the
trading frequency for any given trading threshold either theoretically
or numerically. Is there an alternative way to find the trading frequency
directly from an observed spread path? The answer is affirmative and
it is the nonparametric approach [203].
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Figure 10.11: The computation of the total profit: parametric approach.

The idea is as follows: given a sample path of the spread realization,
one can always compute the empirical trading frequency for any given
threshold. That is, suppose the observed sample path has length T ,
and it is denoted as z1, z2, . . . , zT . We consider J discretized threshold
values as s0 ∈ {s01, s02, . . . , s0J} and the empirical trading frequency
for the threshold s0j is

f̄j =
∑T
t=1 1{zt>s0j}

T
. (10.23)

However, in practice, the empirical values may not be a smooth function
in the discretized thresholds and the resulted total profit function may
be not accurate enough. To overcome this issue and obtain a smoother
trading frequency function, one can employ the regularization idea,
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which has been heavily used in Chapter 3, as follows:

minimize
f

J∑
j=1

(f̄j − fj) + λ
J−1∑
j=1

(fj − fj+1)2, (10.24)

where the second term is the regularization to induce smoothness and
λ > 0 is the regularization parameter which can be chosen according
to the rule in [203]. We can see that f is a smoothed version of the
empirical trading frequency f̄ . The problem (10.24) can be rewritten
as a unconstrained convex QP:

minimize
f

‖f̄ − f‖22 + λ ‖Df‖22 , (10.25)

where

D =


1 −1

1 −1
. . . . . .

1 −1

 ∈ R(J−1)×J (10.26)

is the first order difference matrix. Setting the derivative of the objec-
tive of (10.25) w.r.t. f to zero yields the optimal solution

f = (I + λDTD)−1f̄ . (10.27)

Similar to the parametric approach, let us use a simple example to
illustrate the idea of the nonparametric approach.

Example 10.6. We use the same observations as Example 10.5. Figure
10.12(a) shows the empirical and regularized trading frequencies and
Figure 10.12(c) shows the resulting total profit functions. We can see
the total profit function given by the nonparametric approach is not
smooth and is sensitive to the errors, for example, it gives the maxi-
mizer at the threshold s0 = 0.6. This issue indeed is overcome by the
regularization approach with λ = 24.5, as shown by the red star curve in
Figure 10.12(c). The new maximizer now is s0 = 0.75, which is exactly
the same as the optimal theoretical threshold. �



196 Statistical Arbitrage

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

s0
(a)

P
ro

ba
bi

lit
y 

of
 tr

ad
es

 

 
Theoretical
NonParam: empirical
NonParam: regularized

0 1 2 3
0

0.5

1

1.5

2

2.5

3

s0
(b)

P
ro

fit
 o

f e
ac

h 
tr

ad
e

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

s0
(c)

T
ot

al
 p

ro
fit

 

 
Theoretical
NonParam: empirical
NonParam: regularized

Figure 10.12: The computation of the total profit: nonparametric approach.

10.4.2 Holding Time

The above contents focused on designing the optimal threshold. Once
the threshold has been designed, investors may also be interested in
the corresponding holding time. For this purpose, we need to resort to
some continuous-time mean-reversion models first.

One of the most widely used mean-reversion models is the Ornstein-
Uhlenbeck process [114]:

dXt = κ(µ−Xt)dt+ σdWt, (10.28)

where µ denotes long term mean, κ > 0 represents the strength of
reversion, σ > 0 is the conditional volatility, and {Wt|t ≥ 0} is a
standard Brownian motion. It can be shown that the long term variance
is σ2

2κ which depends on both the conditional volatility σ and also the
strength of reversion κ.
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Intuitively, if the current value Xt is larger (or smaller) than the
long term mean, i.e., µ − Xt < 0 (or µ − Xt > 0, respectively) since
κ > 0, the change has a higher probability to be negative (or positive,
respectively) and thus the process tends to revert to its long term mean.
For example, if X0 = µ+ c σ√

2κ , then the most likely time T it reverts
to the long term mean µ is [57]

T = 1
κ

log
[
1 + 1

2

(√
(c2 − 3)2 + 4c2 + c2 − 3

)]
. (10.29)

Thus, we can see that the larger κ is, the faster the process reverts from
the deviation c σ√

2κ (note that this deviation is measured as c multiples
of the long term standard deviation σ√

2κ) to its long term mean.
In practice, the discretized model of (10.28) may be more useful

and it turns out to be

xt+1 − xt = κ(µ− xt)τ + σ
√
τεt+1, (10.30)

where τ > 0 is the discretization period and εt is i.i.d. and follows the
standard Normal distribution. It can be easily shown [57] that given
x0 ∼ N (µ0, σ

2
0), the distribution of xt is xt ∼ N (µt, σ2

t ) where

µt = µ+ (µ0 − µ)(1− bτ)t, (10.31)

σ2
t = σ2τ

1− (1− κτ)2 [1− (1− κτ)2t] + σ2
0(1− κτ)2t, (10.32)

and µt → µ and σ2
t → σ2τ

1−(1−κτ)2 provided that the discretization period
τ > 0 is small enough so that |1 − κτ | < 1. Note that when the dis-
cretization period τ goes to 0, the long term variance of the discretized
model σ2τ

1−(1−κτ)2 = σ2

2κ−κ2τ goes to σ2

2κ , which is the long term variance
for the continuous model.

The relationship (10.30) can be rewritten as:

xt+1 = A+Bxt + Cεt+1, (10.33)

where A = µ, 0 < B = 1 − κτ < 1, and C = σ
√
τ . Actually, model

(10.33) is also a univariate AR(1) model introduced in Section 2.5.1.
To infer a relatively smoother spread dynamic procedure, instead

of using (10.33) to model a spread process directly, the authors of [57]
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modeled the practical observed spread zt as the underlying true spread
xt plus an observation noise, as follows:

zt = xt +Dwt, (10.34)

where D > 0 is a model parameter and the i.i.d. noise wt follows
the standard Normal distribution and are independent of the noise in
(10.33).

In fact, the model (10.33)-(10.34) is a homogeneous Kalman filter,
which has been widely used in various fields, including system con-
trol [111], signal processing [176], financial engineering [206], etc., its
parameters can be easily estimated via the Expectation-Maximization
algorithm, and the filtering procedure admits closed-form update steps
under the Gaussian assumption.

Later, the paper [195] extends the work of [57] by considering a
time varying Kalman filter since the market regime may change with
time.

Again, let us consider a simple example to see how the above
Kalman filter can help to improve the modeling of the spread dynamics.

Example 10.7. Here, for the state transition process (10.33) we arti-
ficially set τ = 1/252, κ = 150, µ = 0, and σ = 0.02, which means
A = µ = 0, B = 1 − κτ = 1 − 150/252, and C = σ

√
τ = 0.02/

√
252.

For the observation process (10.34) we set D = 2C.
Figure 10.13 shows the randomly generated realization paths of

the underlying true spread xt, the noisy observed spread zt, and the
Kalman filtering spread x̂t. Compared with zt, we can see that the
filtering spread x̂t is relatively not as noisy and is closer to xt. This
is because, in principle, the Kalman filter can filter out the noise in
the observed spread to some degree and the trading threshold designed
based on the filtered spread process is relatively more reliable. �

10.5 From Pairs Trading to Statistical Arbitrage

Now, let us move one step further from pairs trading based on only
two stocks to statistical arbitrage for multiple stocks. The idea is still
based on cointegration: try to construct some linear combinations of
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Figure 10.13: A realization of a spread based on the Kalman filter model (10.33)-
(10.33): xt is the underlying hidden spread, zt is the observed noisy spread, and x̂t

is the Kalman filtering spread.

the log-prices of multiple (more than two) stocks such that the resulting
spread series are mean-reversion processes.

10.5.1 Statistical Arbitrage Based on VECM

Until now we have explained the cointegration of only two stocks. As
we have introduced the VECM before in Section 2.6, it is possible to
find some cointegration components among multiple stocks. Actually,
if we look at the VECM model (2.49) which is stated as follows:

rt = φ0 + Πyt−1 + Φ̃1rt−1 + · · ·+ Φ̃p−1rt−p+1 + wt. (10.35)

If 0 < rank(Π) = r < N , Π can be decomposed as

Π = αβT (10.36)

and then each of the r components of βTyt is stationary and thus a
mean-reversion process.
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Thus, following the procedure in Section 10.4, one can study the
spread and find the optimal trading threshold for each component.
Among all the cointegrated components, usually the one with strongest
strength of mean-reversion is preferred in practice [46].

10.5.2 Statistical Arbitrage Based on Factor Models

Let us now introduce the second method based on factor models. First
recall the factor model (10.11) for stock i at time t used in Section
10.2.2 as follows:

rit = πTi ft + εit, (10.37)

where ft is the factor which is the same for all the stocks, πi is the
vector of loading coefficients, and εit is the specific noise.

Then the idea of trading the mean-reversion pattern based on
(10.37) is to first properly select some tradeable factors and then test
whether the cumulative summations of the resulted specific noise εit
are stationary. If positive, then one can define zit =

∑t
j=0(rij − πTi fj)

as a spread. Some tradeable examples of ft are the log-returns of the
sector ETFs and/or that of several largest eigen-portfolios5 [13].

Again, for each constructed cointegration component, one can study
the spread and find the optimal trading threshold following the proce-
dure in Section 10.4.

5An eigen-portfolio is a portfolio whose weight is a eigenvector of the covariance
(or correlation) matrix of the stock returns.



11
Conclusions

This monograph has discussed the underlying connections between fi-
nancial engineering and signal processing.

Part I has focused on financial modeling and order execution. The
idea of decomposing a financial time series into a trend and noise com-
ponents is the same as that of decomposing discrete-time signal series
into useful signal and noise components; financial time series modeling
is similar to filter modeling in signal processing, e.g., the ARMA model
in financial engineering is the same as the pole-zero model in signal pro-
cessing; the order execution problem of minimizing the execution cost
is also similar to sensor scheduling in dynamic wireless sensor networks
and power allocation problems in broadcast channels.

Part II has mainly explored the (robust) portfolio optimization.
In fact, portfolio optimization is mathematically identical to beam-
forming/filter design and the robust techniques to handling those two
problems are also the same, e.g., the shrinkage technique in financial
engineering is exactly diagonal loading in beamforming design.

Part III has reviewed statistical arbitrage with three steps: pairs se-
lection, cointegration test, and trading strategy design. It is interesting
to see that some quantitative tools familiar to researchers in signal pro-
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cessing and control theory, e.g., the Kalman filter, have been applied in
financial engineering to improve the statistical arbitrage trading strat-
egy.

Based on the detailed explorations in this entire monograph and
in the above brief summary, we believe this monograph may serve as
a comprehensive tutorial on financial engineering from a signal pro-
cessing perspective. We hope it can help researchers in signal process-
ing and communication societies as a starting point to access financial
engineering problems more straightforwardly and systematically, and
apply signal processing techniques to deal with appropriate financial
problems.
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A
MATLAB Code of Example 3.1

clear all; clc; close all;
%% settings
% N: dim; T: # samples ; OutT: # outliers
N = 2;
T = 40;
OutT = 4;
CovMatrix = zeros(N,N);
MeanVec = zeros (1, N);
OutMeanVec = [-2, 2];

for i = 1:N
for j = 1:N

CovMatrix (i,j) = (0.8)^abs(i-j);
end

end

%% generate samples and outliers
SamPoints = mvnrnd (MeanVec , CovMatrix , T);
OutPoints = mvnrnd (OutMeanVec , CovMatrix , OutT);

%% data: samples + outliers
X = [ SamPoints ; OutPoints ];

%% sample covariance matrix , or equivalently , the Gaussian
MLE

CovNormal = X’*X./(T+OutT);

%% Cauchy MLE
CovCauchy = eye(N);
CovCauchyInv = inv( CovMatrix );

cvg = 0;
while (~ cvg)

w = (N+1) ./ (1 + diag(X* CovCauchyInv *X’));
tmpCov = (X’* diag(w)*X) ./ (T + OutT);
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if (norm( CovCauchy - tmpCov , ’fro ’) ./ norm(tmpCov , ’fro
’) < 1e -8)

cvg = 1;
else

CovCauchy = tmpCov ;
CovCauchyInv = inv( CovCauchy );

end
end

% get size c: solving Eq. (3.56) yields c = 0.4944.
fun = @(x,c,N) ((N+1) ./(1+x./c) .* (x./c) .* chi2pdf (x,N));
cmin = 0.01; cmax = 20;
Tol_c = 1e -6;
while 1

cc = (cmin + cmax) ./ 2;
q = integral (@(x)fun(x,cc ,N), 0, Inf);

if q > N + Tol_c
cmin = cc;

elseif q < N - Tol_c
cmax = cc;

else
break;

end
end
CovCauchy = CovCauchy ./ cc;

%% plot results
RG = 4;
x1 = -RG :.2: RG;
x2 = -RG :.2: RG;
[X1 ,X2] = meshgrid (x1 ,x2);

figure ()
% plot the sample points
hsam = plot( SamPoints (: ,1) ,SamPoints (: ,2) , ’k+’);
hold on;

% plot the outliers
hout = plot( OutPoints (: ,1) ,OutPoints (: ,2) , ’rs’, ’

MarkerFaceColor ’, ’r’);

% plot the true shape
ALL_Points = mvnpdf ([X1 (:) X2 (:)], MeanVec , CovMatrix );
ALL_points = reshape (ALL_Points , length (x2),length (x1));
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[c, hTrue] = contour (x1 , x2 , ALL_points ,[0.01] , ’LineWidth ’
, 2, ’Color ’, ’k’, ’LineStyle ’, ’:’);

% plot the shape based on Gaussian MLE
ALL_Points = mvnpdf ([X1 (:) X2 (:)], MeanVec , CovNormal );
ALL_points = reshape (ALL_Points , length (x2),length (x1));
[c, hNormal ] = contour (x1 ,x2 ,ALL_points ,[0.01] , ’LineWidth ’

, 2, ’Color ’, ’r’, ’LineStyle ’, ’-’);

% plot the shape based on Cauchy MLE
ALL_Points = mvnpdf ([X1 (:) X2 (:)], MeanVec , CovCauchy );
ALL_points = reshape (ALL_Points , length (x2),length (x1));
[c, hCauchy ] = contour (x1 ,x2 ,ALL_points ,[0.01] , ’LineWidth ’,

2, ’Color ’, ’b’, ’LineStyle ’,’-.’);

axis square
xlim ([-RG , RG])
ylim ([-RG , RG])
legend ([hsam , hout , hTrue , hCauchy , hNormal ], ’Samples ’, ’

Outliers ’, ’Oracle ’, ’MLE: Cauchy ’, ’MLE: Gaussian ’, ’
Location ’, ’SouthEast ’)

print(’-depsc ’, [’Normal_vs_Cauchy_Cov ’])



B
MATLAB Code of Figure 5.1

clear all; clc; close all;

%% initial settings
NumStocks = 3;
Sigma = eye( NumStocks );
mu = 0.5*[1 2 3]’;
SigmaInv = inv(Sigma);

%% portfolio optimization : solution (5.8)
Lams = 2.^[ -2:0.1:10];
NumLams = length (Lams);
meanVec = NaN(NumLams , 1);
stdVec = NaN(NumLams , 1);
onesNumStocks = ones(NumStocks ,1);

for whichLam = 1: NumLams
lam = Lams( whichLam );

nu = (2* lam - onesNumStocks ’ * SigmaInv * mu) / (
onesNumStocks ’ * SigmaInv * onesNumStocks );

w = SigmaInv * (mu + nu * onesNumStocks ) / (2* lam);

meanVec ( whichLam ) = w’*mu;
stdVec ( whichLam ) = sqrt(w’* Sigma*w);

end

%% Sharpe ratio portofilo , (5.13)
rf = 0.4;
wm = SigmaInv *(mu - rf* onesNumStocks );
wm = wm ./ sum(wm);
meanm = wm ’*mu;
stdm = sqrt(wm ’* Sigma*wm);
xx = linspace (0, 2, 400);
slope = (meanm - rf) ./ stdm;
yy = slope .* xx + rf;
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%% plot the results
figure ()
plot(stdVec , meanVec , ’k-’,’LineWidth ’ ,1.5);
hold on;
plot(xx , yy , ’b-’,’LineWidth ’ ,1.5);
xlim ([0 1.7028]) ;
ylim ([0 2.2172]) ;
text ( -0.05 ,rf ,’r_f ’)

% GMVP
scatter (min( stdVec ), min( meanVec ) ,25 ,’k’,’filled ’)
annotation (’textarrow ’ ,[0.72 ,0.62]/(1.5480)

,[1 -0.2 ,1 -0.05]/(2.0156) ,...
’String ’,’Global minimum variance ’)

% Sharpe ratio
scatter (stdm , meanm ,25 ,’b’,’filled ’)
annotation (’textarrow ’,[stdm +0.1 , stdm +0.005]/(1.5480) ,[

meanm -0.28 , meanm -0.125]/(2.0156) ,...
’String ’,’Maximum Sharpe ratio ’)

% Efficient frontier
annotation (’textarrow ’ ,[1.2 ,1.05]/(1.7028)

,[1.35 ,1.55]/(2.2172) ,...
’String ’,’Efficient frontier ’)

% Capital market line
annotation (’textarrow ’ ,[0.5, 0.57]/(1.7028) ,[1.5,

1.05]/(2.2172) ,...
’String ’,’Capital market line ’)

xlabel (’Standard deviation ’)
ylabel (’Expected return ’)

% remove ticks
set(gca ,’xtick ’ ,[])
set(gca ,’xticklabel ’ ,[])
set(gca ,’ytick ’ ,[])
set(gca ,’yticklabel ’ ,[])

print(’-depsc ’,’Efficient_Frontier ’)



C
MATLAB Code of Example 10.4

clear all; clc; close all;

%% retrive data
% the hist_stock_data function is available at
% http :// www. mathworks .com/ matlabcentral / fileexchange

/18458 - historical -stock -data - downloader / content //
hist_stock_data .m

RealData = hist_stock_data (’01012013 ’, ’31122015 ’, ’1398. HK
’, ’0939. HK’, ’frequency ’, ’d’);

%% process data
AllDates = sort( intersect ( RealData (1).Date , RealData (2).

Date));

[~, DateIdx ] = intersect ( RealData (1).Date , AllDates );
LogPrice1 = log( RealData (1). AdjClose ( DateIdx ));

[~, DateIdx ] = intersect ( RealData (2).Date , AllDates );
LogPrice2 = log( RealData (2). AdjClose ( DateIdx ));

% plot the log prices
figure ()
NumDays = length ( LogPrice1 );
h1 = plot (1: NumDays , LogPrice1 , ’b’, ’LineWidth ’, 1.5);
hold on;
h2 = plot (1: NumDays , LogPrice2 , ’r--’, ’LineWidth ’, 1.5);
grid on;
legend ([h1 , h2], {’ICBC ’, ’CCB ’}, ’location ’, ’NorthWest ’)
ylabel (’Log -price ’)

DateIdxShow = find ([1; diff(year( AllDates ))]);
set(gca ,’XTick ’,DateIdxShow )
set(gca , ’XTickLabel ’, datestr ({ AllDates { DateIdxShow }}, ’

yyyy ’))
print(’-depsc ’,’Real_log_prices ’)
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%% cointegration test
Y = [ LogPrice1 LogPrice2 ];
[h, pValue , stat , cValue , reg] = egcitest (Y);

%% plot the in - sample spread
figure ()
spread = Y * [1; -reg.coeff (2) ];
hspread = plot (1: NumDays , spread , ’k-’,’LineWidth ’, 1.5);
hold on;
plot (1: NumDays , mean( spread ) + std( spread ) .* ones(NumDays

,1) , ’m’, ’LineWidth ’, 1.5)
plot (1: NumDays , mean( spread ) - std( spread ) .* ones(NumDays

,1) , ’m’, ’LineWidth ’, 1.5)
plot (1: NumDays , mean( spread ) .* ones(NumDays ,1) , ’b--’, ’

LineWidth ’, 1.5)
ylabel (’In - sample spread ’)
DateIdxShow = find ([1; diff(year( AllDates ))]);
set(gca ,’XTick ’,DateIdxShow )
set(gca , ’XTickLabel ’, datestr ({ AllDates { DateIdxShow }}, ’

yyyy ’))
print(’-depsc ’,’Real_in_sample_spread ’)



Abbreviations

AR Autoregressive.
ARCH Autoregressive Conditional

Heteroskedasticity.
ARMA Autoregressive Moving Average.
CVaR Conditional Value-at-Risk.
GARCH Generalized Autoregressive

Conditional Heteroskedasticity.
GMVP Global Minimum Variance Portfolio.
GNE Generalized Nash Equilibrium.
GNEP Generalized Nash Equilibrium

Problem.
i.i.d./I.I.D. Independent and Identically

Distributed.
IPM Interior Point Methods.
LS Least-Square.
MA Moving Average.
MAP Maximum A Posterior.
ML Maximum Likelihood.
MLE Maximum Likelihood Estimator.
MSE Mean Squared Error.
MV Minimum Variance.
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NE Nash Equilibrium.
NEP Nash EquilibriumE Problem.
PCA Principal Component Analysis.
PSD Positive Semidefinite.
QCQP Quadratically Constrained

Quadratic Programming.
QP Quadratic Programming.
RMT Random Matrix Theory.
SAA Sample Average Approximation.
SCA Successive Convex Approximation.
SCM Sample Covariance Matrix.
SCRIP Successive Convex optimization for

RIsk Parity portfolio.
SDP Semidefinite Programming.
SDR Semidefinite Programming

Relaxation.
SINR Signal-to-Interference-plus-Noise

Ratio.
SNR Signal-to-Noise Ratio.
SQP Sequential Quadratic Programming.
SR Sharpe Ratio.
VaR Value-at-Risk.
VAR Vector Autoregressive.
VARMA Vector Autoregressive Moving

Average.
VECM Vector Error Correction Model.
VMA Vector Moving Average.
w.r.t. With Respect To.



Notation

Boldface lower-case letters denote column vectors, boldface upper-case
letters denote matrices, lower-case italics denote scalars, and upper-case
italics denote random scalar variables. For the financial time series, at
time t, we use pt to denote the price, Rt , pt−pt−1

pt−1
to denote net return,

yt , log pt to denote the log-price, rt , yt − yt−1 = log pt − log pt−1 =
log(1 + Rt) to denote the compound return or log-return, and wt to
denote the white noise.

∝ Proportional to.
, Defined as.
AT ,AH Transpose, conjugate transpose (Hermitian) of

the matrix A, respectively.
A−1 Inverse of the matrix A.
A† Matrix Moore-Penrose pseudoinverse of the

matrix A.
ai The i-th entry of the vector a.
Aij The element of matrix A at the i-th row and

j-th column.
A1/2 The principal square root of the matrix A, i.e.,

A1/2A1/2 = A.
Diag (A) A diagonal matrix with diagonal elements equal

to that of A.
|A| or det (A) Determinant of the matrix A.
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Tr (A) Trace of the matrix A.
|a| Absolute value of the scalar a.
‖a‖1 `1-norm of the vector a, i.e., ‖a‖1 ,

∑
i |ai|.

‖a‖2 Euclidean norm (i.e., `2-norm) of the vector a,
i.e., ‖a‖1 ,

√
aTa.

‖A‖F Frobenius norm of matrix A, i.e.,
‖A‖F ,

√
Tr (ATA).

I Identity matrix with proper size. A subscript
can be used to indicate the dimension as well.

a ≥ b Elementwise relation ai ≥ bi.
A � B A−B is a positive semidefinite matrix.
A � B A−B is a positive definite matrix.
R,C The set of real and complex numbers,

respectively.
Rm×n,Cm×n The set m-by-n matrices with real- and

complex-valued entries, respectively.
Sn The set of symmetric n-by-n matrices

Sn ,
{
X ∈ Rn×n|X = XT

}
.

Sn+ The set of positive semidefinite n-by-n matrices
Sn+ ,

{
X ∈ Rn×n|X = XT � 0

}
.

x? The optimal solution x to a problem. The
notation x denotes the vector form of all the
variables of the problem.

v? ((·)) The optimal value of problem (·).
∼ Distributed according to.
N (µ,Σ) Multivariate Gaussian distribution with mean µ

and covariance matrix Σ.
log (·) Natural logarithm.
E [·] Statistical expectation.
Var [·] Statistical variance.
Cov [·] Statistical covariance.
[a]+ Positive part of a, i.e., [a]+ , max (0, a).
sup, inf Supremum and infimum.
∪, ∩ Union and intersection.
∇xf (x) Gradient of function f (x) with respect to x.



Acknowledgments

The work of Yiyong Feng and Daniel P. Palomar was supported by the
Hong Kong Research Grants Council under research grants 16207814
and 16206315. Both the authors would like to thank the anonymous
reviewer, whose comments have significantly contributed to improve
the quality of this monograph.

215



References

[1] Y. Abramovich. Controlled method for adaptive optimization of filters
using the criterion of maximum SNR. Radio Engineering and Electronic
Physics, 26(3):87–95, 1981.

[2] Y. Abramovich and N. K. Spencer. Diagonally loaded normalised sam-
ple matrix inversion (LNSMI) for outlier-resistant adaptive filtering. In
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, volume 3, pages III–1105. IEEE, 2007.

[3] A. N. Akansu, S. R. Kulkarni, and D. M. Malioutov, editors. Financial
Signal Processing and Machine Learning. Wiley-IEEE Press, 2016.

[4] I. Aldridge. High-Frequency Trading: A Practical Guide to Algorithmic
Strategies and Trading Systems. John Wiley & Sons, 2013.

[5] C. Alexander. Optimal hedging using cointegration. Philosophical
Transactions of the Royal Society of London A: Mathematical, Phys-
ical and Engineering Sciences, 357(1758):2039–2058, 1999.

[6] C. Alexander, I. Giblin, and W. Weddington. Cointegration and asset
allocation: A new active hedge fund strategy. ISMA Centre Discussion
Papers in Finance Series, 2002.

[7] S. Alexander, T. F. Coleman, and Y. Li. Minimizing CVaR and VaR for
a portfolio of derivatives. Journal of Banking & Finance, 30(2):583–605,
2006.

[8] R. Almgren and N. Chriss. Optimal execution of portfolio transactions.
Journal of Risk, 3:5–40, 2001.

216



References 217

[9] S. Andrade, V. Di Pietro, and M. Seasholes. Understanding the prof-
itability of pairs trading. Unpublished working paper, UC Berkeley,
Northwestern University, 2005.

[10] K. Andriosopoulos, M. Doumpos, N. C. Papapostolou, and P. K. Poulia-
sis. Portfolio optimization and index tracking for the shipping stock and
freight markets using evolutionary algorithms. Transportation Research
Part E: Logistics and Transportation Review, 52:16–34, 2013.

[11] A. Ang and A. Timmermann. Regime changes and financial markets.
Technical report, National Bureau of Economic Research, 2011.

[12] O. Arslan. Convergence behavior of an iterative reweighting algorithm
to compute multivariate m-estimates for location and scatter. Journal
of Statistical Planning and Inference, 118(1):115–128, 2004.

[13] M. Avellaneda and J.-H. Lee. Statistical arbitrage in the US equities
market. Quantitative Finance, 10(7):761–782, 2010.

[14] X. Bai, K. Scheinberg, and R. Tutuncu. Least-squares approach to risk
parity in portfolio selection. Available at SSRN 2343406, 2013.

[15] M. Bańbura, D. Giannone, and L. Reichlin. Large Bayesian vector auto
regressions. Journal of Applied Econometrics, 25(1):71–92, 2010.

[16] L. Bauwens, S. Laurent, and J.V.K. Rombouts. Multivariate GARCH
models: A survey. Journal of Applied Econometrics, 21(1):79–109, 2006.

[17] J. E. Beasley, N. Meade, and T.-J. Chang. An evolutionary heuristic for
the index tracking problem. European Journal of Operational Research,
148(3):621–643, 2003.

[18] D. Bertsimas and A. W. Lo. Optimal control of execution costs. Journal
of Financial Markets, 1:1–50, 1998.

[19] D. Bianchi and A. Gargano. High-dimensional index tracking with coin-
tegrated assets using an hybrid genetic algorithm. Available at SSRN,
1785908, 2011.

[20] P. J. Bickel and E. Levina. Regularized estimation of large covariance
matrices. The Annals of Statistics, pages 199–227, 2008.

[21] J. Bien and R. J. Tibshirani. Sparse estimation of a covariance matrix.
Biometrika, 98(4):807–820, 2011.

[22] F. Black and R. Litterman. Asset allocation: combining investor views
with market equilibrium. The Journal of Fixed Income, 1(2):7–18, 1991.

[23] F. Black and R. Litterman. Global asset allocation with equities, bonds,
and currencies. Fixed Income Research, 2:15–28, 1991.



218 References

[24] F. Black and R. Litterman. Global portfolio optimization. Financial
Analysts Journal, 48(5):28–43, 1992.

[25] F. Black and M. Scholes. The pricing of options and corporate liabilities.
The Journal of Political Economy, pages 637–654, 1973.

[26] D. Blamont and N. Firoozy. Asset allocation model. Global Markets
Research: Fixed Income Research, 2003.

[27] Z. Bodie, A. Kane, and A. J. Marcus. Investments. Tata McGraw-Hill
Education, 10th edition, 2013.

[28] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics, 31(3):307–327, 1986.

[29] T. Bollerslev. Modelling the coherence in short-run nominal exchange
rates: a multivariate generalized arch model. The Review of Economics
and Statistics, pages 498–505, 1990.

[30] T. Bollerslev, R. F. Engle, and J. M. Wooldridge. A capital asset pricing
model with time-varying covariances. The Journal of Political Economy,
pages 116–131, 1988.

[31] J.-P. Bouchaud. Economics needs a scientific revolution. Nature,
455(7217):1181–1181, 2008.

[32] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[33] J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris. Sparse
and stable Markowitz portfolios. Proceedings of the National Academy
of Sciences, 106(30):12267–12272, 2009.

[34] B. Bruder and T. Roncalli. Managing risk exposures using the risk
budgeting approach. Technical report, University Library of Munich,
Germany, 2012.

[35] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm
for large-scale nonlinear programming. SIAM Journal on Optimization,
9(4):877–900, 1999.

[36] N. A. Canakgoz and J. E. Beasley. Mixed-integer programming ap-
proaches for index tracking and enhanced indexation. European Journal
of Operational Research, 196(1):384–399, 2009.

[37] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by
reweighted `1 minimization. Journal of Fourier Analysis and Applica-
tions, 14(5-6):877–905, 2008.



References 219

[38] B. D. Carlson. Covariance matrix estimation errors and diagonal loading
in adaptive arrays. IEEE Transactions on Aerospace and Electronic
Systems, 24(4):397–401, 1988.

[39] Y. Chen, A. Wiesel, and A. O. Hero III. Robust shrinkage estimation
of high-dimensional covariance matrices. IEEE Transactions on Signal
Processing, 59(9):4097–4107, 2011.

[40] X. Cheng, Z. Liao, and F. Schorfheide. Shrinkage estimation of high-
dimensional factor models with structural instabilities. The Review of
Economic Studies, 2016.

[41] T. F. Coleman, Y. Li, and J. Henniger. Minimizing tracking error while
restricting the number of assets. Journal of Risk, 8(4):33, 2006.

[42] G. Connor. The three types of factor models: A comparison of their
explanatory power. Financial Analysts Journal, 51(3):42–46, 1995.

[43] R. Couillet and M. McKay. Large dimensional analysis and optimization
of robust shrinkage covariance matrix estimators. Journal of Multivari-
ate Analysis, 131:99–120, 2014.

[44] T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley & Sons, 2012.

[45] H. Cox, R. M. Zeskind, and M. M. Owen. Robust adaptive beamform-
ing. IEEE Transactions on Acoustics, Speech and Signal Processing,
35(10):1365–1376, 1987.

[46] A. d’Aspremont. Identifying small mean-reverting portfolios. Quanti-
tative Finance, 11(3):351–364, 2011.

[47] R. A. Davis, P. Zang, and T. Zheng. Sparse vector autoregressive mod-
eling. Journal of Computational and Graphical Statistics, 0:1–53, 2015.

[48] V. DeMiguel, L. Garlappi, F. J. Nogales, and R. Uppal. A general-
ized approach to portfolio optimization: Improving performance by con-
straining portfolio norms. Management Science, 55(5):798–812, 2009.

[49] D. A. Dickey and W. A. Fuller. Distribution of the estimators for autore-
gressive time series with a unit root. Journal of the American statistical
association, 74(366a):427–431, 1979.

[50] B. Do, R. Faff, and K. Hamza. A new approach to modeling and esti-
mation for pairs trading. In Proceedings of 2006 Financial Management
Association European Conference, 2006.

[51] D. L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, 2006.



220 References

[52] C. Dose and S. Cincotti. Clustering of financial time series with ap-
plication to index and enhanced index tracking portfolio. Physica A:
Statistical Mechanics and its Applications, 355(1):145–151, 2005.

[53] B. Efron and C. Morris. Stein’s estimation rule and its competitors-an
empirical Bayes approach. Journal of the American Statistical Associa-
tion, 68(341):117–130, 1973.

[54] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems
with uncertain data. SIAM Journal on Matrix Analysis and Applica-
tions, 18:1035–1064, 1997.

[55] L. El Ghaoui, M. Oks, and F. Oustry. Worst-case value-at-risk and ro-
bust portfolio optimization: A conic programming approach. Operations
Research, pages 543–556, 2003.

[56] Y. C. Eldar. Rethinking biased estimation: Improving maximum likeli-
hood and the Cramér–Rao bound. Foundations and Trends R© in Signal
Processing, 1(4):305–449, 2008.

[57] R. J. Elliott, J. Van Der Hoek, and W. P. Malcolm. Pairs trading.
Quantitative Finance, 5(3):271–276, 2005.

[58] E. J. Elton, M. J. Gruber, S. J. Brown, and W. N. Goetzmann. Modern
Portfolio Theory and Investment Analysis. John Wiley & Sons, 2009.

[59] R. F. Engle. Autoregressive conditional heteroscedasticity with esti-
mates of the variance of United Kingdom inflation. Econometrica: Jour-
nal of the Econometric Society, pages 987–1007, 1982.

[60] R. F. Engle. Dynamic conditional correlation: A simple class of mul-
tivariate generalized autoregressive conditional heteroskedasticity mod-
els. Journal of Business & Economic Statistics, 20(3):339–350, 2002.

[61] R. F. Engle and C. W. J. Granger. Co-integration and error correction:
representation, estimation, and testing. Econometrica: Journal of the
Econometric Society, pages 251–276, 1987.

[62] R. F. Engle and K. F. Kroner. Multivariate simultaneous generalized
ARCH. Econometric Theory, 11(01):122–150, 1995.

[63] F. J. Fabozzi. Robust Portfolio Optimization and Management. Wiley,
2007.

[64] F. J. Fabozzi, S. M. Focardi, and P. N. Kolm. Financial Modeling of the
Equity Market: from CAPM to Cointegration, volume 146. John Wiley
& Sons, 2006.

[65] F. J. Fabozzi, S. M. Focardi, and P. N. Kolm. Quantitative Equity
Investing: Techniques and Strategies. Wiley, 2010.



References 221

[66] E. F. Fama and K. R. French. The cross-section of expected stock
returns. Journal of Finance, 47(2):427–465, 1992.

[67] E. F. Fama and K. R. French. Common risk factors in the returns on
stocks and bonds. Journal of Financial Economics, 33(1):3–56, 1993.

[68] E. F. Fama and K. R. French. Size and book-to-market factors in
earnings and returns. Journal of Finance, 50(1):131–155, 1995.

[69] E. F. Fama and K. R. French. Multifactor explanations of asset pricing
anomalies. Journal of Finance, 51(1):55–84, 1996.

[70] E. F. Fama and K. R. French. The capital asset pricing model: Theory
and evidence. Journal of Economic Perspectives, 18:25–46, 2004.

[71] J. Fan, Y. Fan, and J. Lv. High dimensional covariance matrix esti-
mation using a factor model. Journal of Econometrics, 147(1):186–197,
2008.

[72] J. Fan, L. Qi, and D. Xiu. Quasi-maximum likelihood estimation of
garch models with heavy-tailed likelihoods. Journal of Business & Eco-
nomic Statistics, 32(2):178–191, 2014.

[73] J. Fan, J. Zhang, and K. Yu. Vast portfolio selection with gross-
exposure constraints. Journal of the American Statistical Association,
107(498):592–606, 2012.

[74] B. Fastrich, S. Paterlini, and P. Winker. Constructing optimal sparse
portfolios using regularization methods. Computational Management
Science, pages 1–18, 2013.

[75] B. Fastrich, S. Paterlini, and P. Winker. Cardinality versus q-norm
constraints for index tracking. Quantitative Finance, 14(11):2019–2032,
2014.

[76] Y. Feng and D. P. Palomar. SCRIP: Successive convex optimization
methods for risk parity portfolios design. IEEE Transactions on Signal
Processing, 63(19):5285–5300, Oct. 2015.

[77] Y. Feng, D. P. Palomar, and F. Rubio. Robust order execution under
box uncertainty sets. In Proceedings of the Asilomar Conference on
Signals Systems, and Computers, pages 44–48, Pacific Grove, CA, Nov.
2013.

[78] Y. Feng, D. P. Palomar, and F. Rubio. Robust optimization of order
execution. IEEE Transactions on Signal Processing, 63(4):907–920, Feb.
2015.



222 References

[79] Y. Feng, F. Rubio, and D. P. Palomar. Optimal order execution for
algorithmic trading: A CVaR approach. In Proceedings of the IEEE
Workshop on Signal Processing Advances in Wireless Communications,
pages 480–484, Jun. 2012.

[80] C. Floros. Modelling volatility using high, low, open and closing prices:
evidence from four S&P indices. International Research Journal of Fi-
nance and Economics, 28:198–206, 2009.

[81] G. Frahm. Generalized elliptical distributions: theory and applications.
PhD thesis, Universität zu Köln, 2004.

[82] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[83] W. Fung and D. A. Hsieh. Measuring the market impact of hedge funds.
Journal of Empirical Finance, 7(1):1–36, 2000.

[84] M. B. Garman and M. J. Klass. On the estimation of security price
volatilities from historical data. Journal of Business, pages 67–78, 1980.

[85] E. Gatev, W. N. Goetzmann, and K. G. Rouwenhorst. Pairs trad-
ing: Performance of a relative-value arbitrage rule. Review of Financial
Studies, 19(3):797–827, 2006.

[86] D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Math-
ematics of Operations Research, 28(1):1–38, 2003.

[87] M. D. Gould, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn, and
S. D. Howison. Limit order books. Quantitative Finance, 13(11):1709–
1742, 2013.

[88] B. Graham and D. L. Dodd. Security Analysis: Principles and Tech-
nique. McGraw-Hill, 1934.

[89] B. Graham, J. Zweig, and W. E. Buffett. The Intelligent Investor: A
Book of Practical Counsel. Harper & Row, 1973.

[90] T. Griveau-Billion, J.-C. Richard, and T. Roncalli. A fast algorithm
for computing high-dimensional risk parity portfolios. arXiv preprint
arXiv:1311.4057, 2013.

[91] R. G. Hagstrom. The Warren Buffett Way: Investment Strategies of the
World’s Greatest Investor. John Wiley & Sons, 1997.

[92] M. Harlacher. Cointegration based statistical arbitrage. Department
of Mathematics, Swiss Federal Institute of Technology, Zurich, Switzer-
land, 2012.

[93] R. I. D. Harris. Using Cointegration Analysis in Econometric Modelling.
Harvester Wheatsheaf, Prentice Hall, 1995.



References 223

[94] J. Hasbrouck. Empirical Market Microstructure: The Institutions, Eco-
nomics and Econometrics of Securities Trading. Oxford University
Press, USA, 2007.

[95] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, New York, 2009.

[96] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with
Sparsity: The Lasso and Generalizations. CRC Press, 2015.

[97] N. Hautsch. Econometrics of Financial High-Frequency Data. Springer
Science & Business Media, 2011.

[98] S. Haykin and B. Van Veen. Signals and Systems. John Wiley & Sons,
2007.

[99] C.-J. Hsieh, I. S. Dhillon, P. K. Ravikumar, and M. A. Sustik. Sparse
inverse covariance matrix estimation using quadratic approximation. In
Advances in Neural Information Processing Systems, pages 2330–2338,
2011.

[100] D. Huang, S. Zhu, F. J. Fabozzi, and M. Fukushima. Portfolio selec-
tion under distributional uncertainty: A relative robust CVaR approach.
European Journal of Operational Research, 203(1):185–194, 2010.

[101] P. J. Huber. Robust Statistics. Springer, 2011.
[102] G. Huberman and W. Stanzl. Optimal liquidity trading. Review of

Finance, 9(2):165–200, 2005.
[103] J. C. Hull. Options, Futures, and Other Derivatives. Pearson Education

India, 9th edition, 2014.
[104] T. M. Idzorek. A step-by-step guide to the Black-Litterman model.

Forecasting Expected Returns in the Financial Markets, page 17, 2002.
[105] W. James and C. Stein. Estimation with quadratic loss. In Proceed-

ings of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 361–379, 1961.

[106] R. Jansen and R. Van Dijk. Optimal benchmark tracking with small
portfolios. The Journal of Portfolio Management, 28(2):33–39, 2002.

[107] S. Johansen. Estimation and hypothesis testing of cointegration vectors
in Gaussian vector autoregressive models. Econometrica: Journal of the
Econometric Society, pages 1551–1580, 1991.

[108] S. Johansen. Likelihood-based inference in cointegrated vector autore-
gressive models. Oxford University Press Catalogue, 1995.

[109] I. Jolliffe. Principal Component Analysis. Wiley Online Library, 2002.



224 References

[110] P. Jorion. Bayes-stein estimation for portfolio analysis. Journal of
Financial and Quantitative Analysis, 21(03):279–292, 1986.

[111] T. Kailath. Linear Systems, volume 1. Prentice-Hall Englewood Cliffs,
NJ, 1980.

[112] A. Kammerdiner, A. Sprintson, E. Pasiliao, and V. Boginski. Optimiza-
tion of discrete broadcast under uncertainty using conditional value-at-
risk. Optimization Letters, 8(1):45–59, 2014.

[113] J. T. Kent and D. E. Tyler. Maximum likelihood estimation for the
wrapped cauchy distribution. Journal of Applied Statistics, 15(2):247–
254, 1988.

[114] Masaaki Kijima. Stochastic Processes with Applications to Finance.
CRC Press, 2013.

[115] R. Kissell, M. Glantz, R. Malamut, and N.A. Chriss. Optimal Trading
Strategies: Quantitative Approaches for Managing Market Impact and
Trading Risk. Amacom, 2003.

[116] G. M. Koop. Forecasting with medium and large bayesian VARs. Jour-
nal of Applied Econometrics, 28(2):177–203, 2013.

[117] C. Lam and J. Fan. Sparsistency and rates of convergence in large
covariance matrix estimation. The Annals of Statistics, 37(6B):4254,
2009.

[118] C. Lam, Q. Yao, and N. Bathia. Factor modeling for high dimensional
time series. In Recent Advances in Functional Data Analysis and Related
Topics, pages 203–207. Springer, 2011.

[119] Z. M. Landsman and E. A. Valdez. Tail conditional expectations for
elliptical distributions. The North American Actuarial Journal, 7(4):55–
71, 2003.

[120] O. Ledoit and M. Wolf. Improved estimation of the covariance matrix
of stock returns with an application to portfolio selection. Journal of
Empirical Finance, 10(5):603–621, 2003.

[121] O. Ledoit and M. Wolf. A well-conditioned estimator for large-
dimensional covariance matrices. Journal of multivariate analysis,
88(2):365–411, 2004.

[122] O. Ledoit and M. Wolf. Nonlinear shrinkage estimation of large-
dimensional covariance matrices. The Annals of Statistics, 40(2):1024–
1060, 2012.

[123] J. Li and P. Stoica. Robust Adaptive Beamforming. Wiley, 2006.



References 225

[124] W.-L. Li, Y. Zhang, A. M.-C. So, and M. Z. Win. Slow adaptive
OFDMA systems through chance constrained programming. IEEE
Transactions on Signal Processing, 58(7):3858–3869, 2010.

[125] Y.-X. Lin, M. McCrae, and C. Gulati. Loss protection in pairs trading
through minimum profit bounds: A cointegration approach. Advances
in Decision Sciences, 2006.

[126] R. B. Litterman. Forecasting with bayesian vector autoregressions–five
years of experience. Journal of Business & Economic Statistics, 4(1):25–
38, 1986.

[127] M. S. Lobo and S. Boyd. The worst-case risk of a portfolio. Technical
report, 2000.

[128] D. G. Luenberger. Investment Science. Oxford University Press, New
York, 1998.

[129] H. Lütkepohl. New Introduction to Multiple Time Series Analysis.
Springer Science & Business Media, 2007.

[130] J. G. MacKinnon. Critical values for cointegration tests. Technical
report, Queen’s Economics Department Working Paper, 2010.

[131] S. Maillard, T. Roncalli, and J. Teïletche. The properties of equally
weighted risk contribution portfolios. Journal of Portfolio Management,
36(4):60–70, 2010.

[132] B. G. Malkiel. A Random Walk Down Wall Street: The Time-tested
Strategy for Successful Investing. WW Norton & Company, 9th edition,
2007.

[133] D. G. Manolakis, V. K. Ingle, and S. M. Kogon. Statistical and adaptive
signal processing: spectral estimation, signal modeling, adaptive filtering,
and array processing, volume 46. Artech House Norwood, 2005.

[134] D. Maringer and O. Oyewumi. Index tracking with constrained port-
folios. Intelligent Systems in Accounting, Finance and Management,
15(1-2):57–71, 2007.

[135] H. M. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91,
1952.

[136] H. M. Markowitz. The optimization of a quadratic function subject to
linear constraints. Naval Research Logistics Quarterly, 3(1-2):111–133,
1956.

[137] H. M. Markowitz. Portfolio Selection: Efficient Diversification of In-
vestments. Yale University Press, 1968.



226 References

[138] H. M. Markowitz, G. P. Todd, and W. F. Sharpe. Mean-Variance Anal-
ysis in Portfolio Choice and Capital Markets, volume 66. Wiley, 2000.

[139] R. A. Maronna. Robust M -Estimators of multivariate location and
scatter. The Annals of Statistics, 4(1):51–67, 01 1976.

[140] R. A. Maronna, D. Martin, and V. Yohai. Robust Statistics: Theory and
Methods. John Wiley & Sons, Chichester., 2006.

[141] A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Manage-
ment: Concepts, Techniques and Tools. Princeton University Press,
2005.

[142] F. W. Meng, J. Sun, and M. Goh. Stochastic optimization problems with
CVaR risk measure and their sample average approximation. Journal
of Optimization Theory and Applications, 146(2):399–418, 2010.

[143] A. Meucci. Risk and Asset Allocation. Springer Science & Business
Media, 2009.

[144] A. Meucci. Quant nugget 2: Linear vs. compounded returns–common
pitfalls in portfolio management. GARP Risk Professional, pages 49–51,
2010.

[145] S. Moazeni, T. F. Coleman, and Y. Li. Optimal portfolio execution
strategies and sensitivity to price impact parameters. SIAM Journal on
Optimization, 20(3):1620–1654, 2010.

[146] S. Moazeni, T. F. Coleman, and Y. Li. Regularized robust optimization:
the optimal portfolio execution case. Computational Optimization and
Applications, 55(2):341–377, 2013.

[147] S. Moazeni, T. F. Coleman, and Y. Li. Smoothing and parametric
rules for stochastic mean-CVaR optimal execution strategy. Annals of
Operations Research, pages 1–22, 2013.

[148] D. Monderer and L. S. Shapley. Potential games. Games and Economic
Behavior, 14(1):124–143, 1996.

[149] R. A. Monzingo and T. W. Miller. Introduction to Adaptive Arrays.
SciTech Publishing, 1980.

[150] MOSEK. The MOSEK optimization toolbox for MATLAB manual.
Technical report, 2013.

[151] P. Nath. High frequency pairs trading with US treasury securities: Risks
and rewards for hedge funds. Available at SSRN 565441, 2003.

[152] W. B. Nicholson, J. Bien, and D. S. Matteson. Hierarchical vector
autoregression. arXiv preprint arXiv:1412.5250, 2014.



References 227

[153] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series
in Operations Research. Springer Verlag, second edition, 2006.

[154] C. O’Cinneide, B. Scherer, and X. Xu. Pooling trades in a quantita-
tive investment process. Journal of Portfolio Management, 32(4):33–43,
2006.

[155] K. J. Oh, T. Y. Kim, and S. Min. Using genetic algorithm to support
portfolio optimization for index fund management. Expert Systems with
Applications, 28(2):371–379, 2005.

[156] M. O’Hara. Market Microstructure Theory, volume 108. Blackwell Cam-
bridge, MA, 1995.

[157] E. Ollila and D. E. Tyler. Regularized m-estimators of scatter matrix.
IEEE Transactions on Signal Processing, 62(22):6059–6070, Nov 2014.

[158] F. Pascal, Y. Chitour, and Y. Quek. Generalized robust shrinkage esti-
mator and its application to stap detection problem. IEEE Transactions
on Signal Processing, 62(21):5640–5651, 2014.

[159] A. F. Perold. The implementation shortfall: Paper versus reality. Jour-
nal of Portfolio Management, 14(3):4–9, 1988.

[160] A. Pole. Statistical Arbitrage: Algorithmic Trading Insights and Tech-
niques, volume 411. John Wiley & Sons, 2011.

[161] H. Puspaningrum. Pairs Trading Using Cointegration Approach. PhD
thesis, 2012.

[162] E. Qian. Risk parity portfolios: Efficient portfolios through true diver-
sification. Panagora Asset Management, Sept. 2005.

[163] E. Qian. On the financial interpretation of risk contribution: Risk bud-
gets do add up. Journal of Investment Management, 4(4):41, 2006.

[164] M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence analysis
of block successive minimization methods for nonsmooth optimization.
SIAM Journal on Optimization, 23(2):1126–1153, 2013.

[165] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1997.
[166] R. T. Rockafellar and S. Uryasev. Optimization of conditional value-

at-risk. Journal of Risk, 2:21–42, 2000.
[167] T. Roncalli. Introduction to Risk Parity and Budgeting. CRC Press,

2013.
[168] T. Roncalli and G. Weisang. Risk parity portfolios with risk factors.

Available at SSRN 2155159, 2012.



228 References

[169] A. Roy, T. S. McElroy, and P. Linton. Estimation of causal invertible
varma models. arXiv preprint arXiv:1406.4584, 2014.

[170] F. Rubio, X. Mestre, and D. P. Palomar. Performance analysis and
optimal selection of large minimum variance portfolios under estimation
risk. IEEE Journal of Selected Topics in Signal Processing, 6(4):337–
350, 2012.

[171] D. Ruppert. Statistics and Data Analysis for Financial Engineering.
Springer, 2010.

[172] S. Sarykalin, G. Serraino, and S. Uryasev. Value-at-risk vs. conditional
value-at-risk in risk management and optimization. Tutorials in Oper-
ations Research. INFORMS, Hanover, MD, 2008.

[173] S. E. Satchell and B. Scherer. Fairness in trading: A microeconomic
interpretation. Journal of Trading, 5:40–47, 2010.

[174] S. E. Satchell and A. Scowcroft. A demystification of the black–
litterman model: Managing quantitative and traditional portfolio con-
struction. Journal of Asset Management, 1(2):138–150, 2000.

[175] M. W. P. Savelsbergh, R. A. Stubbs, and D. Vandenbussche. Multi-
portfolio optimization: A natural next step. In Handbook of Portfolio
Construction, pages 565–581. Springer, 2010.

[176] L. L. Scharf. Statistical Signal Processing, volume 98. Addison-Wesley
Reading, MA, 1991.

[177] Andrea Scozzari, Fabio Tardella, Sandra Paterlini, and Thiemo Krink.
Exact and heuristic approaches for the index tracking problem with
ucits constraints. Annals of Operations Research, 205(1):235–250, 2013.

[178] G. Scutari, F. Facchinei, Peiran Song, D. P. Palomar, and Jong-Shi
Pang. Decomposition by partial linearization: Parallel optimization
of multi-agent systems. IEEE Transactions on Signal Processing,
62(3):641–656, Feb. 2014.

[179] W. F. Sharpe. The sharpe ratio. Streetwise–the Best of the Journal of
Portfolio Management, pages 169–185, 1998.

[180] L. Shi and L. Xie. Optimal sensor power scheduling for state estima-
tion of Gauss–Markov systems over a packet-dropping network. IEEE
Transactions on Signal Processing, 60(5):2701–2705, May 2012.

[181] L. Shi and H. Zhang. Scheduling two Gauss–Markov systems: An op-
timal solution for remote state estimation under bandwidth constraint.
IEEE Transactions on Signal Processing, 60(4):2038–2042, Apr. 2012.



References 229

[182] A. Silvennoinen and T. Teräsvirta. Multivariate GARCH models. In
Handbook of Financial Time Series, pages 201–229. Springer, 2009.

[183] N. Y. Soltani, S.-J. Kim, and G. B. Giannakis. Chance-constrained
optimization of OFDMA cognitive radio uplinks. IEEE Transactions
on Wireless Communications, 12(3):1098–1107, 2013.

[184] I. Song. New Quantitative Approaches to Asset Selection and Portfolio
Construction. PhD thesis, Columbia University, 2014.

[185] J. Song, P. Babu, and D. P. Palomar. Sparse generalized eigenvalue
problem via smooth optimization. IEEE Transactions on Signal Pro-
cessing, 63(7):1627–1642, April 2015.

[186] S. Song and P. J. Bickel. Large vector auto regressions. arXiv preprint
arXiv:1106.3915, 2011.

[187] C. Stein. Inadmissibility of the usual estimator for the mean of a
multivariate normal distribution. In Proceedings of the Third Berke-
ley Symposium on Mathematical Statistics and Probability, volume 1,
pages 197–206, 1956.

[188] J. H. Stock and M. W. Watson. Testing for common trends. Journal of
the American statistical Association, 83(404):1097–1107, 1988.

[189] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones. Optimization Methods and Software, 11(1-4):625–
653, 1999.

[190] Y. Sun, P. Babu, and D. P. Palomar. Regularized Tyler’s scatter esti-
mator: Existence, uniqueness, and algorithms. IEEE Transactions on
Signal Processing, 62(19):5143–5156, 2014.

[191] Y. Sun, P. Babu, and D. P. Palomar. Regularized robust estimation
of mean and covariance matrix under heavy-tailed distributions. IEEE
Transactions on Signal Processing, 63(12):3096–3109, June 2015.

[192] K. S. Tatsuoka and D. E. Tyler. On the uniqueness of S-functionals and
m-functionals under nonelliptical distributions. The Annals of Statis-
tics, pages 1219–1243, 2000.

[193] E. O. Thorp and S. T. Kassouf. Beat the Market: A Scientific Stock
Market System. Random House New York, 1967.

[194] K.-C. Toh, M. J. Todd, and R. Tütüncü. On the implementation and us-
age of SDPT3–a MATLAB software package for semidefinite-quadratic-
linear programming, version 4.0. In Handbook on Semidefinite, Conic
and Polynomial Optimization, pages 715–754. Springer, 2012.



230 References

[195] K. Triantafyllopoulos and G. Montana. Dynamic modeling of mean-
reverting spreads for statistical arbitrage. Computational Management
Science, 8(1-2):23–49, 2011.

[196] R. S. Tsay. Analysis of Financial Time Series, volume 543. Wiley-
Interscience, 3rd edition, 2010.

[197] R. S. Tsay. Multivariate Time Series Analysis: With R and Financial
Applications. John Wiley & Sons, 2013.

[198] D. N. C. Tse. Optimal power allocation over parallel Gaussian broadcast
channels. In Proceedings of the International Symposium on Information
Theory, page 27, 1997.

[199] A. M. Tulino and S. Verdú. Random matrix theory and wireless com-
munications. Foundations and Trends R© in Communications and Infor-
mation theory, 1(1):1–182, 2004.

[200] R. H. Tütüncü and M. Koenig. Robust asset allocation. Annals of
Operations Research, 132(1):157–187, 2004.

[201] D. E. Tyler. A distribution-free m-estimator of multivariate scatter.
The Annals of Statistics, pages 234–251, 1987.

[202] D. E. Tyler. Statistical analysis for the angular central gaussian distri-
bution on the sphere. Biometrika, 74(3):579–589, 1987.

[203] G. Vidyamurthy. Pairs Trading: Quantitative Methods and Analysis,
volume 217. John Wiley & Sons, 2004.

[204] S. A. Vorobyov, A. B. Gershman, and Z. Q. Luo. Robust adaptive
beamforming using worst-case performance optimization: A solution to
the signal mismatch problem. IEEE Transactions on Signal Processing,
51(2):313–324, 2003.

[205] S. A. Vorobyov, A. B. Gershman, Z. Q. Luo, and N. Ma. Adaptive beam-
forming with joint robustness against mismatched signal steering vec-
tor and interference nonstationarity. Signal Processing Letters, IEEE,
11(2):108–111, 2004.

[206] C. Wells. The Kalman Filter in Finance, volume 32. Springer Science
& Business Media, 1996.

[207] A. Wiesel. Unified framework to regularized covariance estimation
in scaled gaussian models. IEEE Transactions on Signal Processing,
60(1):29–38, 2012.

[208] C. Yang and L. Shi. Deterministic sensor data scheduling under lim-
ited communication resource. IEEE Transactions on Signal Processing,
59(10):5050–5056, Oct. 2011.



References 231

[209] D. Yang and Q. Zhang. Drift-independent volatility estimation based on
high, low, open, and close prices. The Journal of Business, 73(3):477–
492, 2000.

[210] Y. Yang, F. Rubio, G. Scutari, and D. P. Palomar. Multi-portfolio
optimization: A potential game approach. IEEE Transactions on Signal
Processing, 61(22):5590–5602, Nov. 2013.

[211] M. Yuan. High dimensional inverse covariance matrix estimation via lin-
ear programming. The Journal of Machine Learning Research, 11:2261–
2286, 2010.

[212] M. Zhang, F. Rubio, and D. P. Palomar. Improved calibration of high-
dimensional precision matrices. IEEE Transactions on Signal Process-
ing, 61(6):1509–1519, 2013.

[213] M. Zhang, F. Rubio, D. P. Palomar, and X. Mestre. Finite-sample linear
filter optimization in wireless communications and financial systems.
IEEE Transactions on Signal Processing, 61(20):5014–5025, 2013.

[214] X. Zhang, H. V. Poor, and M. Chiang. Optimal power allocation for
distributed detection over MIMO channels in wireless sensor networks.
IEEE Transactions on Signal Processing, 56(9):4124–4140, Sept. 2008.


	FnT_SP_on_FE_Final_book_first_4_pages
	FnT_SP_on_FE_Final_article
	Introduction
	A Signal Processing Perspective on Financial Engineering
	Connections between Fin. Eng. and Signal Process.
	Outline

	I Financial Modeling & Order Execution
	Modeling of Financial Time Series
	Asset Returns
	General Structure of a Model
	I.I.D. Model
	Factor Model
	VARMA Model
	VECM
	Conditional Volatility Models
	Summary of Different Models and Their Limitations

	Modeling Fitting: Mean and Covariance Matrix Estimators
	Fitting Process, Types of Estimators, and Main Focus
	Warm Up: Large Sample Regime
	Small Sample Regime: Shrinkage Estimators
	Heavy Tail Issue: Robust Estimators
	Small Sample Regime & Heavy Tail Issue
	Summary of Different Estimators

	Order Execution
	Limit Order Book and Market Impact
	Price Model and Execution Cost
	Minimizing Expected Execution Cost
	Minimizing Mean-Variance Trade-off of Execution Cost
	Minimizing CVaR of Execution Cost


	II Portfolio Optimization (Risk-Return Trade-off)
	Portfolio Optimization with Known Parameters
	Markowitz Mean-Variance Portfolio Optimization
	Drawbacks of Markowitz Framework
	Black-Litterman Model

	Robust Portfolio Optimization
	Robust Mean-Variance Trade-off Portfolio Optimization
	Robust Sharpe ratio Optimization
	Connections with Robust Beamforming

	Multi-Portfolio Optimization
	From Single-Portfolio to Multi-Portfolio
	Multi-Portfolio Problems
	Efficient Solving Methods

	Index Tracking
	Different Index Tracking Methods
	Sparse Index Tracking: Two-Step Approach
	Sparse Index Tracking: Joint Optimization Approach

	Risk Parity Portfolio Optimization
	What is a Risk Parity Portfolio?
	Risk Parity Portfolio Formulations
	SCRIP: An Efficient Numerical Solving Approach


	III Statistical Arbitrage (Mean-Reversion)
	Statistical Arbitrage
	Cointegration versus Correlation
	Pairs Selection
	Cointegration Test
	Investing in Cointegrated Pairs
	From Pairs Trading to Statistical Arbitrage


	Conclusions
	Appendices
	MATLAB Code of Example 3.1
	MATLAB Code of Figure 5.1
	MATLAB Code of Example 10.4
	Abbreviations
	Notation
	References



