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Sum-Rate Maximization
for Energy Harvesting Nodes

With a Generalized Power Consumption Model
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Abstract— This paper considers a network of energy harvesting
wireless nodes transmitting simultaneously in a Gaussian inter-
ference channel and investigates a distributed power allocation
algorithm that maximizes the sum-rate. The power consumption
model is based on a series of step functions that allow to
model, among others, radio frequency circuits being on/off
and the startup power consumption of the transmitter. After
showing that the sum-rate maximization problem is nonsmooth,
nonconvex, and NP-hard, the Iterative Smooth and Convex
approximation Algorithm (ISCA) is proposed, which successively
approximates the step functions by proper smooth functions to
obtain a sequence of smooth nonconvex problems that can be
solved by means of the successive convex approximation method.
It is demonstrated that the ISCA distributedly converges to
a stationary solution of the sum-rate maximization problem.
For the particular case of point to point communications, the
numerical results show that the ISCA is able to avoid bad
stationary solutions, performing close to the globally optimal
solution. The performance of the ISCA is also evaluated in the
interference channel and with real solar energy harvesting data.

Index Terms— Energy harvesting, Gaussian interference
channel, circuitry power consumption, step functions, nonconvex
optimization, sum-rate maximization.

I. INTRODUCTION

ENERGY Harvesting Wireless Nodes (EHWNs)
are battery operated devices that exploit current

energy harvesting technologies, e.g., a solar panel or
a piezoelectric generator, to recharge their batteries.
Since the output powers provided by energy harvesters
are generally low, EHWNs are critically affected by
their energy availability and must adopt energy saving
policies. For example, reducing the transmission range by
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implementing multiple hops or switching “off” the device
when the transmission conditions are not adequate.
Accordingly, Energy Harvesting Wireless Nodes (EHWNs)
generally operate at low transmission powers that might
be comparable to other sinks of power consumption at the
transmitter, which include, among others, the consumption of
the radio frequency circuits being on and the startup power
consumption of the transmitter [1].

In this context, efficient transmission strategies must be
designed taking into account the limited energy availability
of EHWNs. Transmission strategies can be classified into two
well defined categories, namely, offline and online. The offline
strategies assume that the transmitter has full knowledge of
the energy harvesting process and channel state, which is
a realistic assumption when the channel is static and the
energy source is controllable or predictable (e.g., in wireless
power transmission scenarios or with solar panels). Contrarily,
online transmission strategies consider only causal knowledge
of these processes at the transmitter. Although the offline
assumption is, in some cases, idealistic, it has been broadly
used in the literature (e.g., [2]–[5], and references therein)
because it can be used as a benchmark for the later design
and evaluation of online transmission strategies.

Traditional power allocation polices, e.g., the famous clas-
sical waterfilling [6] for non-harvesting devices and its recent
(offline) generalization for EHWNs, named directional water-
filling [2], assume that the transmission power is the unique
energy sink at the transmitter. This is a reasonable assumption
when the transmission range is large (because the radiated
power dominates over other energy sinks), but it no longer
holds when the transmission range is short, e.g., as occurs in
energy efficient network topologies. In this context, several
authors have recently considered a more realistic power con-
sumption model [1], which accounts for the cost of having the
transceiver “on”, αt . Accordingly, the total consumed power is
p +αtH(p), where p denotes the radiated power and H(x) is
the unit step function defined for x ∈ R+ as1

H(x) =
{

0 if x = 0,

1 if x > 0.
(1)

By using this power consumption model, the works

1Notation: R+ denotes the set of nonnegative real numbers. Vectors and
vector valued functions are denoted by lower case boldface letters, i.e., v and
φ(v), respectively. (vu)U

u=1 defines a column vector obtained by stacking the
column vectors v1, . . . , vU and [v]k returns the k-th element of the vector v.
Symbol � (�) denotes the component-wise “smaller (greater) than or equal
to” inequality. Finally, [x]ba � max{a, min{x, b}}.
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in [4] and [7]–[14] derived transmission strategies in different
point to point scenarios. The power allocation that maximizes
the mutual information for a non-harvesting node was derived
in [7] and [8]. Optimal policies for an EHWN operating in
a static and fading continuous time channel were derived
in [9] and [4], respectively. In contrast, [12]–[14] studied the
optimal offline resource allocation for an EHWN operating in
a discrete time channel and showed that the step functions
can be replaced by additional optimization variables, namely,
indicator variables, which must belong to the set {0, 1}.
Integer relaxation was then used to obtain an upper bound
on the achievable mutual information and a feasible solution
that tends to the optimal when the number of streams and
channel accesses grow without bound [14].

To the best of our knowledge, few works have considered
the interference channel for EHWNs. The two-user Gaussian
interference channel was studied in [11], [15], and [16] from
an information theory perspective. The transmission scheme
that maximizes the sum-rate was derived in [15] by using the
time-sharing argument, while [16] explored energy coopera-
tion among transmitters to enlarge the rate region. Among
these works, only [11] considered the energy consumed in
the circuitry when the transmitter is “on”. In contrast to the
aforementioned works, [17] considered an arbitrary number
of transmitter-receiver pairs with Gaussian distributed signals
and derived the Nash equilibrium of the game that is obtained
when each user aims at maximizing its own rate.

Similarly, in this paper, we consider T energy harvesting
transmitters that simultaneously transmit Gaussian distributed
signals to their respective receivers. In contrast to [17], where
the objective of each transmitter-receiver pair is to maximize
its own rate, the objective of this paper is to devise a distrib-
uted power allocation algorithm that aims at maximizing the
network sum-rate. Additionally, we consider a general power
consumption model that can carefully account for the different
sources of power consumption in each transmitter, such as
radio frequency circuits being on/off and the startup power
consumption associated to off-on transitions. Mathematically,
this power consumption model contains additions and products
of step functions and, to the best of our knowledge, has not
been considered before in the literature. In this context, the
major contributions of this paper are:

• Formulating the sum-rate maximization problem in the
interference channel by considering (i) energy harvesting
capabilities at the transmitter nodes, and (ii) a gener-
alized power consumption model that accepts products
of step functions. This generic formulation allows for
the first time to model certain energy sinks (e.g., the
startup power consumption). Hence, by addressing this
problem, the contributions of this paper are two-fold.
First, it addresses an open problem for energy harvesting
devices in the interference channel. Second, it expands the
existing algorithms in the literature by refining the energy
consumption model at the transmitters; for example, the
works [4], [7], [8], and [12]–[14] in point to point links
(both for harvesting and non-harvesting nodes) as well
as [18] in the Gaussian interference channel for non-
harvesting transmitters.

• Proposing a distributed algorithm, namely, the Iterative
Smooth and Convex approximation Algorithm (ISCA),
that addresses the nonsmooth and nonconvex sum-rate
maximization problem. The ISCA successively approx-
imates the step functions by smooth functions in order
to derive a smooth nonconvex optimization problem that
can be solved by the Successive Convex Approxima-
tion (SCA) method [19]. The main advantages of the
proposed approach with respect to the use of indicator
variables with integer relaxation are: (i) it applies to
nonconvex objective functions; (ii) it accepts products
of step functions (note that if the step functions were
replaced by additional indicator variables as in [14], the
resulting relaxed problem would still be nonconvex due to
products of optimization variables); and (iii) the problem
can be solved in a distributed way under very mild
assumptions. We believe that the ISCA may shed light
on solving other problems that contain step functions.

• Proving that the ISCA converges to a stationary solution
of the original nonsmooth nonconvex sum-rate maximiza-
tion problem.

• Evaluating the performance of the ISCA numerically for
two different scenarios. First, we consider a point to
point link, and show that the stationary point obtained
with the ISCA achieves almost the same sum-rate than
the asymptotically optimal solution obtained in [14].
Second, we consider multiple transmitters simultane-
ously operating in an interference channel, and evaluate
the performance of the ISCA when solar energy is
harvested.

The remainder of the paper is structured as follows.
In Section II, the sum-rate maximization problem for a net-
work of EHWNs is formulated. In Section III, the smooth
and convex approximations of the step functions are given.
In Section IV, the ISCA is presented for a general power
consumption model, which is particularized in Section V to
the power consumption model used in [14]. The performance
of the ISCA in terms of achieved rate and computational
complexity is numerically evaluated in Section VI. Finally,
the paper is concluded in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a Gaussian interference channel composed of
T transmitter and receiver pairs sharing the same band over
single-input single-output frequency-selective links composed
of K parallel subcarriers. Transmission takes place during N
time slots of duration Ts , where, at the n-th slot, the channel
power gain from transmitter t , t = 1, . . . , T , to receiver r ,
r = 1, . . . , T , at the k-th subcarrier is denoted by htr (k, n).
We do not consider interference cancellation techniques in
order to avoid the need of having a centralized control or coor-
dination in the network and, accordingly, we treat the multiuser
interference as additive noise. Thus, assuming that Gaussian
signaling is used, the rate of user t depends on its radiated
power, pt ∈ RK N+ , pt = (ptn)

N
n=1, ptn = (pt (k, n))K

k=1
and on the transmission power of all the other transmitters,
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Fig. 1. Representation of the energy harvesting process at the t-th transmitter.

i.e., p−t = (pt ′)T
t ′ �=t=1, as

rt (pt , p−t )

=
N∑

n=1

K∑
k=1

log

⎛
⎜⎝1 + pt (k, n)htt (k, n)

σ 2
t (k) + ∑

t ′ �=t
pt ′(k, n)ht ′t (k, n)

⎞
⎟⎠, (2)

where σ 2
t (k) denotes the noise power at the t-th receiver and

k-th subcarrier.2

We consider that transmitters can harvest energy from the
environment to recharge their batteries. As it is commonly
done in the literature [2], we characterize the energy harvesting
process with a packetized model. Thus, a packet of energy
containing Et j Joules is harvested at the beginning of the et j -th
channel access,3 j = 1, . . . , Jt , with Jt denoting the total
number of harvested energy packets at transmitter t . The
initial battery level is modeled as the first harvested packet
Et1 at et1 = 1 and the battery capacity is assumed to be
infinite. We use the term epoch τt j to denote the set of
channel accesses between two consecutive energy arrivals,
i.e., τt j = {et j , et j +1, . . . , et ( j+1)−1} with et (Jt+1) = N+1 so
that the last epoch is well defined. A temporal representation
is given in Fig. 1. Note that this packetized model can capture
any continuous energy harvesting profile by considering that
all the energy harvested within a certain slot is aggregated in
an energy packet that arrives at the beginning of the subsequent
slot.

The transmission strategy pt must satisfy the energy causal-
ity constraints, which impose that the battery level must
be nonnegative or, equivalently, that the energy cumulatively
expended by the end of the �-th epoch, � = 1, . . . , Jt , is not
greater than the energy cumulatively harvested, i.e.,

[Bt (pt )]� �
�∑

j=1

Et j

︸ ︷︷ ︸
Harvested energy

− Ts

�∑
j=1

∑
n∈τt j

Ctn(pt )

︸ ︷︷ ︸
Expended energy

≥ 0, ∀�, t,

(3)

where Ctn(pt ) denotes the power consumption model at trans-
mitter t and slot n.

Since EHWNs operate at low energy levels, the power
consumption model must account not only for the transmission

2We consider that each channel varies sufficiently slowly, so that the
information theoretical results are meaningful.

3Since the transmission strategy can only be changed in a channel use basis,
we consider that, independently of the energy packet arrival instant, it becomes
available for the transmitter at the beginning of the next channel use.

TABLE I

WEIGHTS AND INNER FUNCTIONS OF C1
tn AND C2

tn

radiated power but also for the other energy sinks. In [14], the
power consumption of transmitter t at slot n was modeled as

C1
tn(ptn) =

(
K∑

k=1

pt (k, n)

)
︸ ︷︷ ︸
Transmission power

+ αtH
(

K∑
k=1

pt (k, n)

)
︸ ︷︷ ︸

Power consumption per active slot

+
K∑

k=1

βtH(pt (k, n)),︸ ︷︷ ︸
Power consumption per active stream

(4)

were the constant αt ≥ 0 models the energy consumption
associated to the different components of the radio frequency
chain when the transceiver is “on”; and βt ≥ 0 accounts for the
additional cost of activating a certain subcarrier. As a result
of considering these energy sinks, the optimal transmission
strategy alternates between “off” and “on” cycles; however,
due to the startup time of the transceiver, “off-on” transitions
also entail energy consumption [20] that can be accounted by
refining the previous model as

C2
tn(pt (n−1), ptn) = C1

tn(ptn)

+ γt

(
1 − H

(
K∑

k=1

pt(k, n − 1)

))
H
(

K∑
k=1

pt (k, n)

)
︸ ︷︷ ︸

Startup power consumption

, (5)

where γt ≥ 0 denotes the startup power consumption at
transmitter t ; (1 − H(

∑K
k=1 pt(k, n − 1))) is one when the

channel access n − 1 is “off”, H(
∑K

k=1 pt(k, n)) is one when
the n-th channel access is “on”, and their product takes value
one when an “off-on” transition occurs.

In this work we consider a general power consumption
model of the form:

Ctn(pt ) =
(

K∑
k=1

pt (k, n)

)
︸ ︷︷ ︸
Transmission power

+
St∑

s=1

wt s

Qts∏
q=1

H(φt sq(pt ))

︸ ︷︷ ︸
Remaining power sinks

, (6)

where wt s �= 0 is a given weight; St ∈ N is the num-
ber of summands containing step functions; Qts ∈ N

stands for the number of factors of the s-th summand; and
φt sq : RK N+ → R+ must be concave, Lipschitz continuous,
and continuously differentiable. Note that C1

tn and C2
tn are

particular cases of Ctn in (6); the associated weights and
inner functions, φt sq(pt ), are given in Table I, where C1

tn has
St = K + 1 summands, and C2

tn has St = K + 3. Observe that
a different power consumption model can be used for each of
the network nodes, which can be specified when the network
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is being deployed and one knows the different energy sinks of
each node.

Our objective is to design a distributed offline power allo-
cation strategy that maximizes the sum-rate of a network of
EHWNs transmitting simultaneously in the Gaussian inter-
ference channel. As mentioned in the introduction, offline
strategies assume non-causal knowledge of the harvested
energy at the transmitters, which is realistic when the energy
source is predictable. Note that if the offline power allocation
can be computed distributedly by the network nodes, then
it can be updated when a substantial change in the energy
harvesting prediction is observed. Additionally, for scenarios
where energy cannot be predicted, the offline solution can be
used as a benchmark to evaluate online policies. The offline
sum-rate maximization problem is

(P̂) : max
p

T∑
t=1

rt (pt , p−t ) (7a)

s.t.
Bt (pt ) � 0Jt , ∀t = 1, . . . , T
pt ∈ Pt , ∀t = 1, . . . , T

}
� P̂

(7b)

(7c)

where p � (pt )
T
t=1, and Pt = {pt : pt � 0K N ,

pt � pmax
t } with pmax

t � ((pmax
t (k, n))K

k=1)
N
n=1 limits the

maximum transmit power. The classical power constraint does
not appear directly in the formulation (as it happens in non-
harvesting systems with a fixed energy budget) but in the
so-called energy causality constraints (7b) since energy is
created and consumed over time.

The problem in (7) has the following major difficulties: first,
it is nonsmooth, nonconvex, and NP-hard, which was shown
in [21] for a simpler scenario; and second, it is key that the
solution can be computed distributedly by the network nodes
to adjust their strategies when strong variations of the energy
harvesting profile are observed. In this context, we propose the
ISCA that is able to distributedly compute a stationary solution
of the sum-rate maximization problem in (7). The details of the
ISCA are presented in Section IV. By now, it is important to
know that the ISCA is composed of two loops: the outer loop
performs a Successive Smooth Approximation (SSA) of the
step functions so that, at each iteration, a smooth nonconvex
problem that approximates (7) is derived; then, the inner
loop solves this smooth nonconvex problem by means of the
SCA algorithm proposed in [19].

III. APPROXIMATIONS OF THE STEP FUNCTION

The objective of this section is twofold: (i) to design a
smooth approximation of the unit step function in (1), which
is used in the outer loop of the ISCA; and (ii) to derive a
convex approximation of the smooth approximation in (i) that
can be handled by the SCA algorithm in the inner loop. The
later approximation, (ii), has to satisfy some tight technical
requirements in order to guarantee convergence, as listed
in [19, Assumption 3], that intrinsically couple the design
of the approximations in (i) and (ii) because depending
on the chosen smooth approximation, it might be either
easy or extremely difficult to later find an accurate convex
approximation. In this context, we can easily derive a convex

Fig. 2. Representation of Hρ(x) in (8) for different values of the
approximation control parameter ρ.

Fig. 3. Representation of the smooth approximation of H(x1)H(x2),
i.e., Hρ(x1, x2) in (9) for different values of the approximation control
parameter ρ.

approximation if the smooth approximation is: (C1) differen-
tiable and (C2) decomposable as the summation of concave
and convex functions.

A. Smooth Approximation of the Step Function

In this section, we present a smooth approximation of the
step function that satisfies (C1)-(C2).

1) Single Step Function: We approximate H(x) in (1) with
the function Hρ : R+ → [0, 1], defined as

Hρ(x) = 1 − e− x
ρ , (8)

where ρ > 0 is a parameter that controls how good the
approximation is (the smaller the value of ρ the better the
approximation) as illustrated in Fig. 2. Additionally, it can be
easily shown that limρ→0 Hρ(x) = H(x).

2) Product of Step Functions: In practice, it is also pos-
sible to encounter products of step functions as happens
with the startup power consumption in (5). For illustrative
reasons, we first consider a single product of step functions,
i.e., H(x1)H(x2), and later, in Lemma 1, we present a smooth
approximation of higher order products. We approximate
the product of step functions H(x1)H(x2) with the function
Hρ : R2+ → [0, 1], defined as

Hρ(x1, x2) = Hρ(x1)Hρ(x2) = 1 + e− x1+x2
ρ︸ ︷︷ ︸

Convex

−e− x1
ρ − e− x2

ρ︸ ︷︷ ︸
Concave

.

(9)

This approximation is depicted in Fig. 3, where it is observed
that the approximation improves when the control parameter
ρ is reduced. This is clearly observed for ρ = 0.1, where the
approximation of the product of step functions takes value 0
at the axes and close to 1 elsewhere.4

4Note that, for compactness in the notation, we use Hρ to denote both the
smooth approximation of the single step and the product of step functions.
Throughout the paper, we distinguish between them by the dimension of the
argument.
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Lemma 1: Given a set of variables xq ∈ R+, q = 1, . . . , Q,
and x = [x1, . . . , xQ ]T, then the product of Q step functions,∏Q

q=1 H(xq), can be approximated by the differentiable func-

tion Hρ : RQ
+ → [0, 1], defined as

Hρ(x) = 1 +
∑
i∈E

∑
0< j1···< ji≤Q

e−
∑i

k=1 x jk
ρ

︸ ︷︷ ︸
Convex

−
∑
i∈O

∑
0< j1···< ji≤Q

e−
∑i

k=1 x jk
ρ

︸ ︷︷ ︸
Concave

, (10)

where E and O are a partition of the set {1, . . . , Q} that
take the even and odd elements, respectively; and ρ > 0 is
the parameter that controls the approximation. Additionally,
limρ→0 Hρ(x) = ∏Q

q=1 H(xq).
Proof: The function Hρ(x) in (10) is obtained simply

by expanding the product
∏Q

q=1 Hρ(xq). Since e−x/ρ is dif-
ferentiable so it is Hρ(x). The concavity and convexity of
the different terms follows by noting that e−x/ρ is a convex
function. Finally, limρ→0 Hρ(x) = ∏Q

q=1 limρ→0 Hρ(xq) =∏Q
q=1 H(xq).
Note that in the inner summations the values of ji take

all the possible combinations of i elements from the set
{1, . . . , Q}; accordingly, each of these sums contains

(Q
i

)
terms.

B. Convex Approximation of the Smooth Step Function

In this section, we derive a convex approximation of the
smooth step function, Hρ(φ(x)), around the point x0 for a
given transformation φ (whose component functions are all
concave), which is denoted as H̆ρ(x; x0,φ).

1) Convex Approximation of the Single Step Function:
We first consider the convex approximation of the single
step function in (8), Hρ(φ(x)), which, from the rules of
function composition, is a concave function [22]. Thanks to
this concavity, it is easy to show that its linearization at the
point x0, i.e., H̆ρ(x; x0, φ) = 1 + ξρ(x; x0, φ), is a convex
function that satisfies the requirements in [19, Assumption 3],
which for completeness are given in Appendix A. We have
defined ξρ(x; x0, φ) as the linearization of the concave term,

−e
−φ(x)

ρ , around the point x0, i.e.,

ξρ(x; x0, φ) � ∇xφ(x0)

ρ
e− φ(x0)

ρ (x − x0) − e− φ(x0)
ρ . (11)

2) Convex Approximation of Products of Step Func-
tions: Similarly, by linearizing the concave terms of the
smooth product of step functions, we can obtain a convex
approximation of Hρ(φ(x)) that satisfies the requirements
in [19, Assumption 3].

Lemma 2: Let φ � [φ1, . . . , φQ ]T with φq being concave,
Lipschitz continuous, and continuously differentiable, then the

function

H̆ρ (x; x0,φ) = 1 +
∑
i∈E

∑
0< j1···< ji≤Q

e−
∑i

k=1 φ jk
(x)

ρ

︸ ︷︷ ︸
Convex

+
∑
i∈O

∑
0< j1···< ji≤Q

ξρ

(
x; x0,

i∑
k=1

φ jk

)
︸ ︷︷ ︸

Linear

(12)

is a convex approximation of Hρ(φ(x)) around the point x0
that satisfies the required conditions in [19, Assumption 3],
where ξρ is given in (11).

Proof: See Appendix A.
Remark 1: Using smooth approximations of step functions

to deal with its discontinuity is not a new concept in the liter-
ature; it has been used before to approximate the cardinality
operator (or �0 norm), e.g., see [23] and [24]. However, to the
best of our knowledge this is the first paper that derives an
approximation for the product of step functions that takes into
account the SCA requirements in [19, Assumption 3]. Note
that the smooth approximation is not unique, for instance
a logarithmic approximation could be used (e.g, Hρ(x) =
log(1+ x/ρ)/log(1+ xM AX/ρ) with xM AX denoting the max-
imum possible value of the argument x). The key properties
of the proposed approximation are: (i) it easily generalizes
to products of step functions (products of logarithms are
no longer concave and the approximation would be difficult
to convexify); and (ii) the proposed smooth approximation
is more accurate than the logarithmic approximation under
the same value of ρ (the logarithmic approximation above
needs to reduce much more parameter ρ to be accurate,
i.e., ρ � 10−20, which leads to numerical problems due to
the finite precision of the solvers).

IV. THE ITERATIVE SMOOTH AND CONVEX

APPROXIMATION ALGORITHM

In this section, we propose the ISCA that is composed of
two loops as shown in Fig. 4. The outer loop indexed by ς ,
performs a SSA of (7), deriving, at each iteration, a nonconvex
smooth problem (P̃ς ), obtained by using the approximation
of the step functions in Lemma 1 given the approximation
control parameter ρς . Initially, we set ρ1 
 0 so that the
resulting problem is smooth (e.g., ρ1 = 5), reducing the
impact of the ISCA initial point, p1, over the final stationary
solution to (7), p̂. Then, the inner loop, indexed by ν, uses the
SCA in [19] to determine a stationary solution, p̃ς , of (P̃ς ).
Next, a termination condition is checked: if it is satisfied,
which implies that the approximation of the step functions
is tight enough, the ISCA concludes that a good solution
of the original problem (7) is p̂ = p̃ς ; otherwise, a new
outer iteration starts by reducing the approximation control
parameter, which improves the approximation of the step
functions. At each iteration, we use a warm start, i.e., a feasible
initial point for the inner loop is obtained that resembles
the stationary solution of the previous outer iteration. In the
following sections, we present more details on the ISCA.
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Fig. 4. Block diagram of the ISCA.

A. The Outer Loop: Successive Smooth
Approximation of the Step Functions

In this section, we formulate the smooth problem, (P̃ς ), at
the ς -th outer loop iteration. This problem, in spite of being
nonconvex, has an inherently high degree of convexity, which
is exploited by the inner loop:

(P̃ς ) : max
p

T∑
t=1

rt (pt , p−t ) (13a)

s.t.
Bς

t (pt ) � 0Jt , ∀t = 1, . . . , T

pt ∈ Pt , ∀t = 1, . . . , T

}
� P̃ς

(13b)

(13c)

where

[Bς
t (pt )]� �

�∑
j=1

⎡
⎣Et j − Ts

∑
n∈τt j

((
K∑

k=1

pt (k, n)

)

+
St∑

s=1

wt sHρς
(
φt s(pt )

))]
, � = 1, . . . , Jt ;

Hρ is given in (10); and φt s(pt ) is a vector function defined
as φt s(pt ) = [φt s1(pt ), . . . , φt s Qts (pt )]T.

B. The Inner Loop: Nonconvex Optimization of Smooth
Problems With SCA

Among the algorithms that converge to stationary solu-
tions of smooth nonconvex problems (e.g., gradient-based
descend schemes [25], SCA algorithms [18], [19], [26], fea-
sible sequential quadratic programming [27], parallel variable
distribution [28], etc.), we have selected the algorithm in [19]
for the inner loop because it has the following main advan-
tages: (i) it accepts nonconvex constraints; (ii) it exploits any
degree of convexity present in the problem, which results
in a much faster convergence; (iii) it can be solved in a
distributed way under very mild assumptions; and (iv) it
includes as special cases SCA-based algorithms, such as
(proximal) gradient or Newton type method, block coordinate
(parallel) descent schemes and difference of convex functions
methods.

The algorithm proposed in [19] is based on SCA and
consists on solving a sequence of strongly convex inner
approximations of the nonconvex smooth problem. Under
some structural assumptions, the algorithm converges to a

stationary solution. These assumptions enforce a specific
structure of: (i) the original nonconvex smooth problem
[19, Assumption 1]; (ii) the convex approximation of the
objective function [19, Assumption 2]; and (iii) the convex
approximation of the constraints [19, Assumption 3]. In order
to use the algorithm in [19] in our inner loop, we need to
satisfy these structural requirements.

It can be easily shown that the smooth problem in (13)
satisfies the structural requirements in [19, Assumption 1].
Since the objective function is nonconvex, we need to derive
a proper convex approximation. To do so, we exploit the
“partial” concavity of the rate of a certain user, rt (pt , p−t ),
with respect to its own transmission power pt . Hence, we
approximate the objective function in (13) around the current
iterate pςν = ((pςν

t (k, n))K
k=1)

N
n=1 as

∑T
t=1 r̆t (pt ; pςν), where

r̆t (pt ; pςν) = rt (pt , pςν
−t ) + π

ςνT
t (pt − pςν

t ) − bt
2 ||pt − pςν

t ||2.
The term π

ςν
t linearizes the rate functions of the users

t ′ �= t with respect to pt , i.e., π
ςν
t � ((π

ςν
tkn)

K
k=1)

N
n=1 =∑

t ′ �=t ∇pt rt ′(pt ′, p−t ′)
∣∣∣
pςν

with

π
ςν
tkn =

∑
t ′ �=t

−SN Rςν
t ′ (k, n)htt ′(k, n)

MU I ςν
t ′ (k, n)(1 + SN Rςν

t ′ (k, n))
; (14)

SN Rςν
t (k, n) � htt (k,n)pςν

t (k,n)

MU I ςν
t (k,n)

and MU I ςν
t (k, n) � σ 2

t (k) +∑
t ′ �=t pςν

t ′ (k, n)ht ′t (k, n) are the signal to interference plus
noise ratio and the multiuser interference-plus-noise power
experienced by user t given the power profile pςν . The
term bt

2 ||pt − pςν
t ||2 with bt ≥ 0 is a proximal

regularization term that relaxes the convergence conditions
of the inner loop algorithm and enhances the convergence
speed [18].

Accordingly, the strongly convex problem that has to be
solved in the ν-th inner loop iteration, which approximates
the smooth problem (P̃ς ) around the current iterate,
pςν , is

(P̆ςν) : max
p

T∑
t=1

r̆t (pt ; pςν) (15a)

s.t.
B̆ςν

t (pt ; pςν
t ) � 0Jt , ∀t

pt ∈ Pt , ∀t

}
� P̆ςν

(15b)

(15c)
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Algorithm 1 The Inner Loop: SCA of (P̃ς )

Input: pς1 ∈ P̃ς , aςν > 0.
Initialization: Set ν := 1.
Step 1: If a termination condition is satisfied: STOP.
Step 2: For every user t ∈ [1, T ], find p̆ςν

t that is the
unique optimal solution of the strongly convex problem
(P̆ςν

t ).
Step 3: Update the iterate: pς(ν+1)

t = pςν
t + aςν(p̆ςν

t −
pςν

t ),∀t .
Step 4: ν := ν + 1 and go to Step 1;

with

[B̆ςν
t (pt ; pςν

t )]� �
�∑

j=1

[
Et j − Ts

∑
n∈τt j

(( K∑
k=1

pt(k, n)
)

+
∑

s∈S+
t

wt sH̆ρς (pt ; pςν
t ,φt s) +

∑
s∈S−

t

wt sH̆−
ρς (pt ; pςν

t ,φt s)

)]
,

(16)

where S+
t = {s ∈ {1, . . . , St } : wt s > 0} and S−

t =
{s ∈ {1, . . . , St } : wt s < 0}; H̆ρ is given in Lemma 2;
and H̆−

ρ is defined as H̆ρ but swapping the odd and even
sets. We have defined H̆−

ρ because the negative weights invert
the concavity or convexity of the terms of the smooth step
function.

Additionally, since the objective function and constraints of
the different transmitters are decoupled, the problem decouples
into T subproblems one for each transmitter-receiver pair,
which leads to a distributed resource allocation strategy that
requires very limited feedback as presented later. Accordingly,
each transmitter must solve the following problem at each
inner loop iteration:

(P̆ςν
t ) : max

pt
r̆t (pt ; pςν) (17a)

s.t. B̆ςν
t (pt ; pςν

t ) � 0Jt ,
pt ∈ Pt .

}
� P̆ςν

t

(17b)

(17c)

Since (P̆ςν
t ) is a strongly convex problem, its unique

solution, p̆ςν
t , can be easily determined by classical convex

optimization algorithms, e.g., interior point methods [22].
However, since the solution to (P̆ςν

t ) has to be computed
at each inner loop iteration, it is key to derive (if possible)
a closed form solution in order to reduce the computational
complexity of the ISCA. Section V derives an efficient solution
for the power consumption model C1

tn in (4).
The SCA-based inner loop algorithm is presented in

Algorithm 1 [19]. The algorithm uses the unique optimal
solution to (P̆ςν

t ), p̆ςν
t , to determine the initial point of the

following iteration, pς(ν+1)
t , which is computed as a convex

combination of p̆ςν
t and the previous iterate pςν

t .
Theorem 1 [19]: Given the smooth nonconvex problem

(P̃ς ), suppose that one of the two following conditions
holds:

a) The step size aςν is such that 0 < infν aςν ≤ supν aςν ≤
amax ≤ 1 and 2cr̆ ≥ amaxL∇r , where cr̆ is the

constant of uniform strong convexity of
∑T

t=1 r̆t (pt ; pςν)

and L∇r is Lipschitz continuity constant of
∑T

t=1∇prt (pt , p−t ).
b) (i) P̃ς is compact; (ii) p̆ςν is regular for every possible

initial point pς1 ∈ P̃ς ; and (iii) the step size aςν is such
that aςν ∈ (0, 1], aςν → 0, and

∑
ν aςν = +∞.

Then every regular limit point of {p̆ςν}∞ν=1 is a stationary
solution of (P̃ς ). Furthermore, none of such points is a local
minimum.

C. Determining a Feasible Initial Point for the Inner Loop

The inner loop in Algorithm 1 requires a feasible initial
point, i.e., pς1 ∈ P̃ς . The stationary solution to (P̃ς−1) cannot
be directly used since, in most of the cases, is not feasible,
i.e., p̃ς−1 /∈ P̃ς . Finding the projection of p̃ς−1 to the
nonconvex feasible set P̃ς would require to solve a nonconvex
problem, which is not practical because we need something
simple and fast. There are many heuristic approaches to find
the initial feasible point; the simplest and most general option,
which in practice works well, is to move from p̃ς−1 towards
the ISCA initial point, p1, which is required to belong to
P̂ ∩ P̃1. It can be easily shown that if p1 ∈ P̂ ∩ P̃1, then there
exists a step length, dς , such that an initial feasible point is
obtained, i.e., pς1 � p̃ς−1 + dς (p1 − p̃ς−1) ∈ P̃ς . Given the
power consumption models C1

tn and C2
tn in (4) and (5), we can

select p1 = 0.
Depending on the specific power consumption model one

may find better ways to obtain the initial feasible point for
the inner loop. For example, given the power consumption
model C1

tn , it can be shown that the steepest descent direction
of a given energy causality constraint is a descend direction
of the remaining ones. Hence, the feasible initial point can be
found by successively moving in the steepest descend direction
of the unfulfilled energy causality constraints.

D. Convergence of the ISCA and Distributed Implementation

Now, the details of all the building blocks of the
ISCA have been introduced. The following lemma
characterizes the relations between the feasible sets of
the outer loop problems, P̃ς , with respect to the feasible set
of the original problem, P̂ .

Lemma 3: (a) The sequence of feasible sets of the smooth
problems {P̃ς }N converges to P̂ in the Painlevé-Kuratowski
sense [29], i.e., limς→∞ P̃ς → P̂ . (b) If the step function
weights are all positive, wt s > 0, ∀t, s, then we have that
P̂ ⊆ P̃∞ ⊂ · · · ⊂ P̃ς+1 ⊂ P̃ς ⊂ · · · ⊂ P̃1. (c) If the weights
are all negative, wt s < 0, ∀t, s, then P̃1 ⊂ · · · ⊂ P̃ς ⊂
P̃ς+1 ⊂ . . . P̃∞ ⊆ P̂.

Proof: See Appendix B.
Next, we analyze the convergence of the ISCA.
Theorem 2: (a) Let p̃�ς be a global solution of (P̃ς ), then

every cluster point of the sequence {p̃�ς } converges to a
globally optimal solution of (P̂). (b) Every cluster point of
the sequence {p̃ς } converges to a stationary solution of the
problem (P̂).

Proof: See Appendix C.



5348 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 8, AUGUST 2016

In general, we cannot obtain the globally optimal solution
of (P̂) as the problems (P̃ς ) are nonconvex and we are not
able to obtain their globally optimal solution, p̃�ς . However,
from the previous theorem, we guarantee that the ISCA
converges to a stationary solution of the original problem (P̂)
for any decreasing sequence of {ρς }. The rate at which
the approximation parameter ρ is reduced affects the ISCA
performance and its computational complexity. If ρ is reduced
at a very fast rate in the outer loop, then the algorithm
might converge to a worse stationary solution. Contrarily,
if ρ is reduced at a very slow rate, the algorithm generally
converges to a better stationary solution, but the computational
complexity of the algorithm increases due to the elevated
number of outer loop iterations. In the numerical experiments,
we have observed a wide range of sequences {ρς } that achieve
a good trade-off between performance and computational
complexity.

In order to compute the solution in a distributed manner,
which is meaningful when the channel is static in time and
the energy harvesting process is predictable, the following
signalling is required so that the remaining transmitters can
compute the weights π

ςν
tkn : (i) at each outer loop iteration,

each transmitter has to broadcast the feasible initial point
of the inner loop; and (ii) at each inner loop iteration, each
transmitter t solely has to broadcast ∇p−t rt (pt , pςν

−t ), which
can be computed with the local measurements of the signal to
interference plus noise ratio and the multiuser interference.
Note that the energy causality constraints are not fulfilled
until convergence of the ISCA. Accordingly, it is required
that the nodes have a backup battery to be used for this
transitory regime, which can be recharged with the harvested
energy.

Remark 2: Note that if a different rate function is
employed, the ISCA can be used by deriving a proper convex
approximation of the objective function.

V. THE ISCA ALGORITHM FOR C1
tn IN (4)

In this section, we focus on the power consumption
model C1

tn in (4) and derive a closed form solution of the
inner loop problem.

As it has been mentioned in Section IV, at each inner loop
iteration, the t-th transmitter must solve (17) to obtain the
update direction. Given the power consumption model C1

tn,
we have

[B̆ςν
t (pt ; pςν

t )]�

=
�∑

j=1

⎡
⎣Et j −

∑
n∈τt j

(
ε
ςν
t (n) +

K∑
k=1

ϕ
ςν
t (k, n)pt (k, n)

)⎤
⎦ ,

with

ϕ
ςν
t (k, n) = Ts

(
1 + αt

ρς
e

−∑K
k=1 p

ςν
t (k,n)

ρς + βt

ρς
e

−p
ςν
t (k,n)

ρς

)

ε
ςν
t (n)

= Tsαt

(
1 −

(
1 +

∑K
k=1 pςν

t (k, n)

ρς

)
e

−1
ρς

∑K
k=1 pςν

t (k,n)

)

+ Tsβt

K∑
k=1

(
1 −

(
1 + pςν

t (k, n)

ρς

)
e

−1
ρς pςν

t (k,n)
)

, (18)

where the constants ϕ
ςν
t (k, n) and ε

ςν
t (n) are obtained after

linearizing the step functions at the current iterate, pςν
t .

Lemma 4: Given the power consumption model C1
tn, the

optimal solution to (17), p̆ςν
t (k, n), n ∈ τt j , is obtained

in closed form and is given in (19) at the bottom of
this page, where γ

ςν�
t (k, n) = −π

ςν
tkn + λ̄

ςν�
t j ϕ

ςν
t (k, n),

λ̄
ςν�
t j = ∑Jt

�= j λ
ςν�
t� with {λςν�

t� }Jt
�=1 being the optimal Lagrange

multipliers associated to the energy causality constraints
in (15b), which can be computed efficiently similarly to [3],
[30, FSA]. Additionally, if we do not include the proximal
regularization term, i.e., bt = 0, we obtain the following
iterative directional waterfilling like solution:

p̆ςν
t (k, n) =

[
1

γ
ςν�
t (k, n)

− MU I ςν
t (k, n)

htt(k, n)

]pmax
t (k,n)

0

. (20)

Proof: See Appendix D.

From the expression in (20), we can get some intuition
on the solution. First, if the water level, γ

ςν�
t (k, n)−1, is

smaller than MU I ςν
t (k, n)/htt (k, n), then it is preferable to

turn off the (k, n)-th subchannel. Second, the water level
decreases with the interference produced to other users, which
is quantified in the term −π

ςν
tkn . This implies that the users

will try to reduce the interference as much as possible to
increase the sum-rate. Third, the water level depends on
ϕ

ςν
t (k, n) in (18), i.e., the partial derivative of the smooth

energy consumption with respect to pt (k, n) evaluated at the
current iterate pςν

t (k, n). Accordingly, if the power of a certain
subchannel is small, pςν

t (k, n) → 0, the derivative of the
smooth step functions is large, and the water level is penalized;
vice versa if the power is large the water level is rewarded.
Note that these penalizations or rewards are weak at the
initial ISCA iterations, because the approximation of the step
functions is smooth, but they gain in importance as the ISCA
iterations go by. Finally, the water level is a function of the
Lagrange multipliers that depend on the energy availability of
the node in a similar way than in the directional waterfilling
solution [2].

p̆ςν
t (k, n) =

⎡
⎣1

2

(
pςν

t (k, n) − MU I ςν
t (k, n)

htt(k, n)

)

− 1

2bt

⎛
⎝γ

ςν�
t (k, n) −

√[
γ

ςν
t (k, n) − bt

(
pςν

t (k, n) + MU I ςν
t (k, n)

htt (k, n)

)]2

+ 4bt

⎞
⎠
⎤
⎦

pmax
t (k,n)

0

(19)
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Note that the ISCA can be applied to a broad class of
problems. In the following remarks, we use the ISCA to
derive stationary solutions of power allocation problems that,
to the best of our knowledge, have not been yet derived in the
literature.

Remark 3 (Transmission Power Only): Consider the sum-
rate maximization problem of a network of energy harvesting
nodes, where the unique source of energy consumption is the
transmission power (αt = 0, βt = 0, γt = 0). Then, the
inner loop of the ISCA (or the algorithm in [19]) can be
used to determine distributedly a stationary solution, where
the solution to the ςν-th inner loop problem is

p̆ςν
t (k, n) =

[
1

−π
ςν
tkn + λ̄

ςν�
t j Ts

− MU I ςν
t (k, n)

htt (k, n)

]pmax
t (k,n)

0

,

n ∈ τt j .
Remark 4 (Power Consumption Model C2

tn): Consider the
problem of maximizing the sum-rate given the power
consumption model C2

tn. Then, the ISCA determines
distributedly a stationary solution, where the inner loop
problem must be solved by numerical methods since it does
not accept a closed form solution. Additionally, the power
allocation strategy in a point to point link is obtained by
particularizing T = 1, which implies that π

ςν
tkn = 0,∀k, n.

Remark 5 (Non-Harvesting Nodes): Finally, consider the
sum-rate maximization problem of a network of non-
harvesting nodes given any power consumption model of the
form (6). Then, the ISCA distributedly determines a stationary
power allocation policy, where the strongly convex problem
that has to be solved at each inner loop iteration is (17) given
that Jt = 1,∀t , which imposes a sum-power constraint.

VI. RESULTS

In this section, we numerically evaluate the performance
of the ISCA in terms of achieved rate and computational
complexity of the algorithm. The most similar work is [14] that
considered the problem of maximizing the mutual information
in a point to point link with the power consumption model C1

tn.
Accordingly, in order to have some benchmark with which to
compare the performance of the ISCA, we first particularize
the solution derived in the previous section to the case T = 1.
The remaining system parameters have been set as follows.
We have considered N = 50 channel accesses of duration
Ts = 20 ms in which symbols are transmitted through K = 2
parallel streams. The power consumption constants are set
to αt = γt = 150 mW and βt = 10 mW . A Rayleigh
fading channel has been considered with unit mean channel
power gain. The energy harvesting process is modeled as a
compound Poisson process as done in [2], where the arrival
instants follow a Poisson distribution with rate 1

10 and the
energy in the packets is drawn from a uniform distribution
and normalized by the total harvested energy that varies
along the x-axis of Figs. 5-7. The initial point of the ISCA
is set to zero, and the approximation control parameter is
ρς = 0.5ρς−1 with ρ1 = 5. We have not used the proximal
regularization term, bt = 0, and the inner loop step size is
aςν = aς(ν−1)(1 − 10−3aς(ν−1)) with aς0 = 1, ∀ς .

Fig. 5. Achieved rate versus total harvested energy.

Fig. 6. Percentage of the total harvested energy expended in the circuitry.

Fig. 7. Mean execution time versus total harvested energy.

We consider two classes of strategies. On the one hand, we
consider strategies that use the power consumption model C1

tn
(i.e., strategies that disregard the startup power consumption,
γt = 0), which can be based either on the use of indicator
variables or on the use of the ISCA: (i) the indicator variables
based strategies are an upper bound of the solution, IV-UB
(γt = 0), and a feasible solution that performs close to
the upper bound IV (γt = 0) and were derived in [14];
(ii) the ISCA based strategies are ISCA-FSA (γt = 0) that
uses the closed form solution derived in Lemma 4, where the
Lagrange multipliers are obtained by using the FSA algorithm
in [3], and ISCA-BM (γt = 0) that solves (17) using the barrier
method given that γt = 0. On the other hand, we consider
strategies that account for the startup power consumption
(i.e., strategies that use the power consumption model C2

tn),
ISCA-BM, which solves (17) using the barrier method, and
the strategies IV and ISCA-FSA, which scale IV (γt = 0), and
ISCA-FSA (γt = 0) until the energy causality constraints with
startup power consumption are satisfied.

In this setup, Fig. 5 shows the achieved rate versus total
harvested energy. First, we observe that the stationary solution
provided by the ISCA strategies is close to the global optimum



5350 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 8, AUGUST 2016

Fig. 8. Violation of the original energy causality constraints as a function of
the ISCA outer iteration for the ISCA-FSA (γt = 0) power allocation strategy.

since the gap with the upper bound, IV-UB (γt = 0), is small.
Second, the ISCA based solutions perform slightly better than
the feasible strategy IV (γt = 0). Finally, as expected, the
strategies that consider the startup power consumption achieve
a lower sum-rate, where the stationary solution ISCA-BM
performs better than the other strategies that consider the
startup power consumption.

Fig. 6 shows the percentage of the total harvested energy
that is expended in the circuitry. The percentage of energy
spent in the circuitry is much higher at low harvested energies,
where the cost for turning on a subchannel is a high fraction
of the total available energy, and decreases in the high energy
regime, where the transmission power in each subchannel
increases. Additionally, at the high energy regime, the effect
of disregarding the startup power consumption does not have
a significant impact since most of the channel accesses are
active and, accordingly, there are a few off-on transitions.

Fig. 7 evaluates the computational complexity of the
different algorithms. It is observed that the worst performance
is achieved by ISCA-BM, where most of the execution time
is spent in the computation of the gradient and the Hessian
required for the Newton method [22]; however, it also solves
a more complex problem than the strategies that disregard
the startup power consumption. Note that the performance of
the ISCA with the barrier method improves when the startup
power consumption is disregarded. Finally, it is important
to mention that when a closed form solution of the inner
loop problem is available, as happens with ISCA-FSA, the
computational complexity of the ISCA is dramatically reduced
outperforming the strategy based on indicator variables.

Fig. 8 shows the violation of the original nonsmooth energy
causality constraints (7b) produced by the stationary solution
of each smooth nonconvex problem, which is computed
as the Euclidean norm of the nonfulfilled constraints.
To obtain Fig. 8, we have reduced the approximation control
parameter slightly slower to have more points, i.e., ρς =
0.8ρς−1 with ρ1 = 5. As expected, when the outer loop
iterations go by and the approximation control parameter
is reduced, the violation of the original nonsmooth energy
causality constraints is reduced.

Next, we evaluate the ISCA for the case of having T = 3
simultaneous transmitter-receiver pairs. Since the optimal
solution is unknown for T > 1, the performance of the ISCA is
evaluated with respect to the idealistic case of having multiple
non-interfering point to point links with the upper bound

Fig. 9. Sum-rate achieved in the interference channel when T = 3 for
different average power gains of the interference links.

Fig. 10. Harvested energy using solar panels at the different hours of the
day.

TABLE II

CHANNEL POWER GAINS

obtained with indicator variables IV-UB in [14]. As before,
we consider a time window of 1 s where the total harvested
energy of transmitters 1-3 is 2, 1.5 and 3 Joules, respectively.
For the direct links, we have considered a Rayleigh fading
channel with unit mean channel power gain. In this context,
Fig. 9 evaluates the achieved rate for different average channel
power gains of the interference links. It is observed that when
the channel power gain of the interference links is close to
zero, the performance of the ISCA is close to the idealistic
case of having multiple non-interfering point to point links.
However, as the channel power gain of the interference links
increases, the sum-rate of the ISCA is reduced.

Finally, we evaluate the performance of the ISCA for
realistic solar energy harvesting profiles. We consider T = 2
transmitters with a solar panel of 30% efficiency and
dimensions of 45 cm × 45 cm and 63 cm × 63 cm. The
data from the harvested energy is obtained from [31] and
is depicted in Fig. 10. We consider that the continuous
harvested energy is first stored in a super-capacitor and then
transferred at every hour transition to the rechargeable battery
to be used for transmission. The total transmission time is
one day that is divided in transmission slots of 15 minutes.
We consider K = 2 subcarriers. The channel power gains
in each subcarrier, htt ′(k, n), are given in Table II and are
assumed to be static in time. The power consumption constants
are set to αt = 100 μW, βt = 10 μW, and γt = 0. In this
context, Fig. 11 depicts the transmission power obtained with
the ISCA for each node and subcarrier. It is observed that both
nodes transmit solely at subcarrier k = 1, where the direct
link is better. At 7 am both nodes start harvesting energy.
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Fig. 11. Power allocation obtained for the ISCA algorithm under the solar
energy harvesting depicted in Fig. 10.

Then, node 2 starts transmitting, while node 1 remains off to
avoid generating interference. From 8 to 11, node 1 transmits
and 2 switches off; this occurs because in this time interval
node 1 harvests more energy. The nodes alternate transmission
cycles in a time division fashion from 11 to 13. Finally, from
13 until midnight both nodes transmit simultaneously at a
constant power.

VII. CONCLUSION

In this paper, we have studied the offline sum-rate
maximization problem of a Gaussian interference channel
composed of EHWNs by considering a general power
consumption model that is composed of step functions.
We have proposed the ISCA, a distributed power allocation
algorithm that is based on SSA of the step functions to derive
a sequence of smooth nonconvex problems that can be solved
by means of SCA. It has been shown that the ISCA converges
to stationary solutions of the original optimization problem,
which is nonsmooth, nonconvex, and NP-hard. The numerical
results have first focused on point to point communications
in order to have benchmarks to evaluate the performance of
the ISCA. In this setup, we have shown that the ISCA is
able to avoid bad stationary solutions performing close to
the globally optimal solution and reduces the complexity of
existing algorithms. The performance of the ISCA has been
also evaluated using real solar energy harvesting traces. It has
been observed that the power allocation obtained with the
ISCA naturally tries to avoid interference to maximize the
network sum-rate. In conclusion, the ISCA is a powerful
offline power allocation algorithm able to compute stationary
solutions in the Gaussian interference channel for a broad class
of power consumption models, which was not possible with
existing algorithms. In this context, the ISCA can be used to
evaluate novel online policies that do not require non-causal
knowledge of the harvested energy.

APPENDIX

A. Proof of Lemma 2

In the following lines, we show that H̆ρ(x; x0,φ) satisfies
all the requirements imposed from [19, Assumption 3] that
are:

Assumption 1: The function H̆ρ(·; ·,φ) : X ×Y → R must
satisfy [19, Assumption 3] for all φ: A1) H̆ρ(·; x0,φ) is convex
on X for all x0 ∈ Y; A2) H̆ρ(x; x,φ) = Hρ(φ(x)), for all
x ∈ X ; A3) Hρ(φ(x)) ≤ H̆ρ(x; x0,φ) for all x ∈ X and
x0 ∈ Y; A4) H̆ρ(·; ·,φ) is Lipschitz continuous on X × Y;

A5) ∇xH̆ρ(x0; x0,φ) = ∇xHρ(φ(x0)), for all x0 ∈ Y;
A6) ∇xH̆ρ(·; ·,φ) is continuous on X × Y; where
∇xH̆ρ(x0; x0,φ) denotes the partial gradient of H̆ρ(x; x0,φ)
with respect to x evaluated at (x0; x0,φ).

First note that since the component functions of φ are
all concave and e

−x
ρ is convex and decreasing, the function

e−
∑i

k=1 φ jk
(x)

ρ is convex [22], which proves the convexity of

the terms in (12). Accordingly, A1 is satisfied because H̆ρ is
the addition of convex and affine terms. Since H̆ρ(·; x0,φ)
is obtained after linearizing the concave terms of Hρ(φ(·)),
it follows that H̆ρ(·; x0,φ) is a global over estimator that
has the same value and gradient at x0. Hence, conditions A2,
A3, and A5 are also satisfied. Finally, since e

−x
ρ is Lipschitz

continuous, H̆ρ(·; ·,φ) is also Lipschitz continuous.

B. Proof of Lemma 3

Note that the difference between P̃ς+1 and P̃ς is due to the
reduction of the approximation control parameter (ρς+1 < ρς )
in the energy causality constraints. It can be easily shown
that: (i) Hρ is strictly decreasing in ρ (for x > 0)
and (ii) Hρ(x) ≤ ∏Q

q=1 H(xq), ∀x ∈ R
Q
+ , ρ > 0.

Accordingly, when all the weights are positive, we have from
(i) that the smooth energy causality constraints are tightened
when the approximation control parameter is reduced,
i.e., P̃ς+1 ⊂ P̃ς ,∀ς . Additionally, from (ii), the energy
causality constraints are relaxed when using the smooth
approximation, we have that P̂ ⊆ P̃ς . This proves (b). The
proof of (c) follows similarly by noting that when all the
weights are negative the original energy causality constraints
are tightened.

To prove (a), we define the sets P̃ς
+ and P̃ς

− in (21) at
the top of next page, where S+

t and S−
t are defined as

in (16). Note that P̃ς
+ approximates the positive step functions

only and P̃ς
−, the negative ones. Similarly than in the proofs

of (b) and (c) it follows that P̃ς+1
+ ⊂ P̃ς

+,∀ς and P̃ς
− ⊂

P̃ς+1
− ,∀ς . Additionally, following the same arguments, we

have that P̃ς
− ⊂ P̃ς ⊂ P̃ς

+. From [29, Exercise 4.3], we have
that the limits of the sets P̃ς

+ and P̃ς
− exists (the inner and

outer limits are equal) and are P̃ς
+ → P̂ and P̃ς

− → P̂ . This
leads to P̃ς → P̂, which proves (a).

C. Proof of Theorem 2

Let us write the original optimization problem (P̂) as
minp f̂ (p) with f̂ : RN K T → R∪{∞}, f̂ (p) = r(p)+ IP̂(p),
where r(p) = −∑T

t=1 rt (pt , p−t ) and I�(x) is the indicator
function of a given set � with I�(x) = 0 if x ∈ � and I�(x) =
∞ otherwise. Similarly, we write the smooth problem, (P̃ς ),
as minp f̃ ς (p) with f̃ ς (p) = r(p) + IP̃ς (p).

Lemma 5: f̃ ς (p) epi-converges to f̂ (p), f̃ ς (p)
e→ f̂ (p)

(epi-convergence is defined in [29]).
Proof: From the convergence of the feasible sets in

Lemma 3 and [29, Proposition 7.4 f], we have that IP̃ς

e→ IP̂ .
Given that r(p) is continuous and finite, the lemma is readily
proven by using [29, Exercise 7.8 a].
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P̃ς
+ �

⎧⎨
⎩pt ∈ Pt :

�∑
j=1

⎡
⎣Et j − Ts

∑
n∈τt j

⎛
⎝
(

K∑
k=1

pt(k, n)

)
+

∑
s∈S+

t

wt sHρς (φt s(pt ))

+
∑

s∈S−
t

wt s

Qts∏
q=1

H(φt sq(pt ))

⎞
⎠
⎤
⎦ ≥ 0,∀� = 1, . . . Jt ,∀t

⎫⎬
⎭

P̃ς
− �

⎧⎨
⎩pt ∈ Pt :

�∑
j=1

⎡
⎣Et j − Ts

∑
n∈τt j

⎛
⎝
(

K∑
k=1

pt(k, n)

)
+

∑
s∈S−

t

wt sHρς (φt s(pt ))

+
∑

s∈S+
t

wt s

Qts∏
q=1

H(φt sq(pt ))

⎞
⎠
⎤
⎦ ≥ 0,∀� = 1, . . . Jt ,∀t

⎫⎬
⎭ (21)

p̆ςν
t (k, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if γ
ςν
t (k, n) ≥ htt(k, n)

MU I ςν
t (k, n)

+ bt pςν
t (k, n),

p̄ςν
t (k, n) if

htt(k, n)

htt (k, n)pmax
t (k, n) + MU I ςν

t (k, n)
− bt (pmax

t (k, n) − pςν
t (k, n))

< γ
ςν
t (k, n) <

htt (k, n)

MU I ςν
t (k, n)

+ bt pςν
t (k, n)

pmax
t (k, n) if γ

ςν
t (k, n) ≤ htt (k, n)

htt (k, n)pmax
t (k, n) + MU I ςν

t (k, n)
− bt (pmax

t (k, n) − pςν
t (k, n))

(26)

Since the sets P̃ς and P̂ are closed and nonempty
and r(p) is continuous, it follows that the functions f̃ ς

and f̂ are proper, lower semi-continuous, and eventually
level-bounded [29]. Then, the proof of the statement in (a)
readily follows by using Lemma 5 and [29, Theorem 7.33].

Next, we prove the statement in (b). We will demonstrate
that a given cluster point, p̃, of the sequence {p̃ς }N converges
to a stationary solution of (P̂) and the same procedure can
be applied to every cluster point of the sequence. Thus,
there exists a suitable subsequence N ′ ⊆ N such that
limN ′∈ς→∞ p̃ς = p̃.

First of all, note that if ∇r(p̃) = 0, then necessarily p̃ is a
stationary solution of (P̂). Otherwise, if ∇r(p̃) �= 0, then p̃
is a stationary solution if and only if p̃ is a local (or global)
minimum of f̂ in the boundary of the feasible set P̂. Thus, we
need to show that when ∇r(p̃) �= 0, then p̃ ⊂ argminC(p̃,δ) f̂ �
{p ∈ C(p̃, δ)| f̂ (p) = infC(p̃,δ) f̂ }, where C(p̃, δ) denotes a
closed ball around the point p̃ with radius δ > 0. Similarly,
let O(p̃, δ) denote the open ball centered at p̃ with radius δ.

From the continuity of ∇r , we know that there is a
sufficiently large index ς̄ ∈ N ′ such that ∇r(p̃ς ) �= 0 ς ≥ ς̄ .
Then, similarly as before, we know that the points p̃ς , ∀ς ≥ ς̄ ,
correspond to local minimums of f̃ ς at the boundary of P̃ς ,
i.e., p̃ς ⊂ argminC(p̃ς ,δς ) f̃ ς , ∀ς ≥ ς̄ . Then, there exist
arbitrary small constants δ > 0 and ε > 0 and a sufficiently
large index ¯̄ς ∈ N ′, ¯̄ς ≥ ς̄ , such that the points p̃ς satisfy
that p̃ς ⊂ argminC(p̃,δ) f̃ ς and p̃ς ⊂ argminO(p̃,δ+ε) f̃ ς for
all ς ≥ ¯̄ς , or, equivalently,

inf
O(p̃,δ+ε)

f̃ ς = inf
C(p̃,δ)

f̃ ς = f̃ ς (p̃ς ), ∀ς ≥ ¯̄ς. (22)

The existence of δ and ε satisfying (22) follows from the
differentiability of r(p). Then, from [29, Proposition 7.29] and
Lemma 5, we know that lim infς (infC(p̃,δ) f̃ ς ) ≥ infC(p̃,δ) f̂

and

lim sup
ς

(
inf

O(p̃,δ+ε)
f̃ ς

)
= lim sup

ς

(
inf

C(p̃,δ)
f̃ ς

)
≤ inf

O(p̃,δ+ε)
f̂ ≤ inf

C(p̃,δ)
f̂ . (23)

Combining these two results, we have that infC(p̃,δ) f̃ ς →
infC(p̃,δ) f̂ .

Next, we show that p̃ is a stationary solution of the original
problem. Recall that p̃ς ⊂ argminC(p̃,δ) f̃ ς , ∀ς ≥ ¯̄ς and
that these sets are nonempty by [29, Theorem 1.9]. Similarly,
argminC(p̃,δ) f̂ is nonempty. Thus, we have

f̂ (p̃) ≤ lim inf
ς

f̃ ς (p̃ς ) ≤ lim sup
ς

f̃ ς (p̃ς ) (24)

= lim sup
ς

inf
C(p̃,δ)

f̃ ς ≤ inf
C(p̃,δ)

f̂ , (25)

where the first inequality follows from the definition of
epi-convergence [29, Proposition 7.2] and the last one
from (23). Accordingly, we have that f̂ (p̃) = infC(p̃,δ) f̂ .
Thus, whenever ∇r(p̃) �= 0, we have that p̃ is a local
minimum of f̂ on the boundary of the feasible set,
i.e., p̃ ⊂ argminC(p̃,δ) f̂ . Thus, p̃ is a stationary solution
of (P̂).

D. Proof of Lemma 4

We proof Lemma 4 by using the KKT sufficient optimality
conditions. The Lagrangian of the problem in (17) is

Lςν
t (pt ,λ

ςν
t ) = rt (pt , pςν

−t ) + π
ςνT
t (pt − pςν

t ) − bt
2 ||pt −

pςν
t ||2 + λ

ςνT
t B̆ςν

t (pt ; pςν
t ), where λ

ςν
t are the Lagrange

multipliers associated to the energy causality constraints
in (17b). Taking the derivative of the Lagrangian with
respect to pt (k, n), n ∈ τt j , and equating to zero, we
obtain p̆ςν

t (k, n) as given in (26) at the top of this page,
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where γ
ςν
t (k, n) = −π

ςν
tkn + λ̄

ςν
t j ϕ

ςν
t (k, n) with λ̄

ςν
t j =∑Jt

�= j λ
ςν
t� ; and p̄ςν

t (k, n) is obtained as the solution of the
following quadratic equation

htt (k, n)

htt (k, n) p̄ςν
t (k, n) + MU I ςν

t (k, n)

= γ
ςν
t (k, n) + bt ( p̄ςν

t (k, n) − pςν
t (k, n)). (27)

From [32, Lemma 35] (with Hk := htt (k,n)

MU I ςν
t (k,n)

, τ := bt ,

ck := pςν
t (k, n), μ̃k := γ

ςν
t (k, n)), the previous equation has

the following properties: (i) both roots are real, one root is
always negative, and the other is nonnegative; (ii) both roots
are decreasing in γ

ςν
t (k, n); and the nonnegative root is given

by (19). Finally, note that if the proximal step is zero, bt = 0,
then (20) follows directly from the first order equation in (27).
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