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PRIME: Phase Retrieval via
Majorization-Minimization

Tianyu Qiu, Prabhu Babu, and Daniel P. Palomar, Fellow, IEEE

Abstract—This paper considers the phase retrieval problem in
which measurements consist of only the magnitude of several
linear measurements of the unknown, e.g., spectral components
of a time sequence. We develop low-complexity algorithms with
superior performance based on the majorization-minimization
(MM) framework. The proposed algorithms are referred to as
PRIME: Phase Retrieval vIa the Majorization-minimization tech-
niquE. They are preferred to existing benchmark methods since at
each iteration a simple surrogate problem is solved with a closed-
form solution that monotonically decreases the original objective
function. In total, three algorithms are proposed using different
majorization-minimization techniques. Experimental results vali-
date that our algorithms outperform existing methods in terms of
successful recovery and mean-square error under various settings.

Index Terms—Phase retrieval, majorization-minimization,
convex optimization.

I. INTRODUCTION

PHASE retrieval, the recovery of a signal from the mag-
nitude of linear measurements like its Fourier transform,

arises in various applications such as optical imaging [1], crys-
tallography [2], microscopy [3], and audio signal processing
[4]–[6]. In general, optical devices (e.g., CCD cameras, human
eyes, etc.) can record the intensity of the incoming light but
not the phase, hence it is challenging to uniquely recover the
original signal without phase information.

Mathematically speaking, the phase retrieval problem is to re-
cover a K-dimensional complex signal x ∈ CK from the mag-
nitude of N linear measurements (usually corrupted with noise):

yi =
∣
∣aH

i x
∣
∣
2

+ ni ∈ R, i = 1, . . . , N, (1)

where the measurement vectors {ai ∈ CK }N
i=1 are known be-

forehand. In the Fourier transform case, they correspond to rows
of the Discrete Fourier Transform (DFT) matrix. In a more gen-
eral case, they can be any vectors of interest. Due to the loss of
phase information, the number of measurements should exceed
the dimension of the original signal in order to successfully re-
cover the signal. The authors of [7] proved that the number of
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measurements N should at least be on the order of K log K
for a successful recovery with high probability when the mea-
surement vectors are chosen independently and uniformly at
random on the unit sphere. A conjecture is posed in [8] that
4K − 4 measurements are necessary and sufficient for injectiv-
ity, i.e., to uniquely recover the original signal (up to a constant
phase shift) when provided with multiple measurements.

Numerical methods to recover the original signal x from mul-
tiple measurements {yi}N

i=1 fall mainly into two categories. The
first is based on the Gerchberg-Saxton algorithm [9]–[12], and
solves the phase retrieval problem through alternating minimiza-
tions. The second and more recent class is based on semidef-
inite relaxation [7], [13], [14]. The idea is to recover the orig-
inal signal through a convex semidefinite programming (SDP)
problem by introducing a rank-1 matrix X := xxH , named
“matrix-lifting.” Unfortunately, the increase of dimension in
this matrix-lifting procedure limits the application of the algo-
rithm to small scale problems and it is not appropriate for big
data problems. A novel work [12] combined the structure of the
Gerchberg-Saxton algorithm and the idea of SDP relaxation.
They lifted the phase vector instead of the original signal to for-
mulate a tractable convex relaxation for the original non-convex
quadratic problem, and solved it through a provably convergent
block coordinate descent algorithm where each iteration is only
a matrix vector product. More recently, [15] proposed to solve
the phase retrieval problem using the steepest descent method
with a heuristic step size. Interestingly, one of the algorithms we
present in this paper turns out to have similar updating rules but
with a clearly specified step size. Besides these, other methods
further exploit the signal sparsity: [16] combined the damped
Gauss-Newton method and “2-opt” method to retrieve the phase
of a sparse signal and [17] employed a probabilistic approach
based on the generalized approximate message passing.

In this paper, we propose methods to solve the phase retrieval
problem using different majorization-minimization (MM) tech-
niques [18]. Instead of dealing with the original cumbersome
optimization problem directly, an MM algorithm optimizes a
sequence of simple surrogate problems successively. The se-
quence of points generated by solving each surrogate problem
is guaranteed to converge to a stationary point of the original
problem. As for the phase retrieval problem, by majorizing cer-
tain terms in the objective function, we manage to substitute the
original non-convex and difficult problem with different convex
optimization problems. All these surrogate problems are de-
signed to share the same favorable property of having a simple
closed-form solution and only require basic matrix multiplica-
tions at every iteration. Different from the SDP approach, our
algorithms do not require matrix-lifting, and at every iteration
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yield a simple closed-form solution directly for the signal x.
Therefore our algorithms can be applied to very large scale
problems in big data systems.

The contributions of this paper are:
1) Numerical methods for two different objectives of the

phase retrieval problem (to recover the original signal
from either the modulus squared or modulus of its linear
measurements).

2) Monotonicity and provable convergence to a station-
ary point of the sequence of points generated by our
algorithms.

3) Much faster numerical convergence of our algorithms
compared to the Wirtinger Flow algorithm and the
Gerchberg-Saxton algorithm.

4) Low complexity per iteration of our algorithms (only
requiring basic matrix multiplication).

The remaining sections are organized as follows. In Section II,
we present two different problem formulations for the phase re-
trieval problem. In Section III, after a brief overview of the
general MM framework is introduced, we propose algorithms
for both problems via different majorization-minimization tech-
niques. An acceleration scheme is discussed in Section IV to fur-
ther increase the convergence speed of our algorithms. Finally,
in Section V, we provide the numerical results under various set-
tings, e.g., different measurement matrices, clean measurements
and noisy measurements.

Notation: Boldface upper case letters (e.g., X,A) denote
matrices, while boldface lower case letters (e.g., x,a) denote
column vectors, and italics (e.g., x, a,D) denote scalars. R and
C denote the real field and the complex field, respectively. For
any complex number x, |x| denotes the magnitude, and arg(x)
denotes the phase. As for vectors, |x| denotes the element-wise
magnitude and arg(x) denotes the element-wise phase. The
superscripts (·)T , (·) and (·)H denote the transpose, complex
conjugate and conjugate transpose, respectively. Xij or [X]ij
denotes the element at the i-th row and j-th column of a matrix
X, and xi or [x]i denotes the i-th element of a vector x. Tr(·)
is the trace of a matrix. diag(x) is a diagonal matrix formed
by setting vector x as its principal diagonal, while diag(X) is
a column vector consisting of all the elements in the principal
diagonal of matrix X. The column vector vec(X) is formed by
stacking all the columns of a matrix X. As usual, the Euclidean
norm of a vector x is denoted by ‖x‖. The curled inequality
symbol � (its reverse form �) is used to denote generalized
inequality; A � B (B � A) means that A − B is a Hermitian
positive semidefinite matrix. In is the n × n identity matrix, and
1 is a vector with all elements one.

II. PROBLEM FORMULATION AND EXISTING METHODS

As described previously, the phase retrieval problem is to
recover a complex signal from magnitudes of its linear mea-
surements. In general, it is difficult to solve the problem due to
the missing phase information. In this paper, we consider the
case in which we have multiple measurements. Usually these
measurements {yi}N

i=1 are corrupted with noise. When the noise
follows a Gaussian distribution, a general choice is to consider

the following least squares problem, which coincides with the
maximum likelihood estimation of the original signal [14], [15]:

minimize
x

f(x) :=
N∑

i=1

∣
∣
∣yi −

∣
∣aH

i x
∣
∣
2
∣
∣
∣

2
. (2)

Here, the measurement vectors {ai ∈ CK }N
i=1 are known be-

forehand and can be any vectors of interest. In this paper,
we consider two different cases. The first is the traditional
Fourier transform case, in which {aH

i }N
i=1 correspond to rows

of the DFT matrix; i.e., the k-th element in vector ai is
[ai ]k = ej2π (k−1)(i−1)/N . The second is the random matrix case,
in which {ai}N

i=1 are regarded as standard complex Gaussian
distributed. Specifically, every element in the measurement vec-
tors is a random variable in which both the real and imaginary
parts are drawn from the standard Gaussian distribution N (0, 1)
independently.

Defining the measurement matrix

A = [a1 ,a2 , . . . ,aN ] ∈ CK×N , (3)

and stacking the multiple measurements {yi}N
i=1 as a vector

y, we can formulate the phase retrieval problem (2) in a more
compact form:

minimize
x

∥
∥
∥y −

∣
∣AH x

∣
∣
2
∥
∥
∥

2

2
. (4)

Notice that here the operator | · | is applied element-wise when
the argument is a vector (similarly for (·)2).

The authors of [15] proposed the following Wirtinger Flow
algorithm based on the gradient descent method to solve prob-
lem (2). They chose the leading eigenvector of Adiag(y)AH as
the initial point because it would coincide with the optimal solu-
tion provided infinite samples (N → +∞) by the strong law of
large numbers. In the algorithm, μ is a scheduling term. Instead
of using the heuristic value in [15], we adopt the backtracking
method to find a suitable value.

Algorithm 1: The Wirtinger Flow Algorithm.
Input: A,y, t0 (maximum iteration number)
1: Initial x(0) ← leading eigenvector of Adiag(y)AH

2: Set constant λ2 ← K
N∑

i=1
yi

/
N∑

i=1
‖ai‖2

3: x(0) ← λx(0)

4: for k = 0, . . . , t0 − 1 do
5: ∇f = 4Adiag(|AH x(k) |2 − y)AH x(k)

6: μ = 1
7: x(k+1) = x(k) − μ∇f
8: while f(x(k+1)) > f(x(k)) − 0.01μ‖∇f‖2

2 do
9: μ ← μ/2

10: x(k+1) = x(k) − μ∇f
11: end while
12: end for
Output: x(t0 ) .

Different from problem (2), an alternative is to solve the
following problem using the modulus, as opposed to the squared
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modulus, of the linear measurements of the signal [9]–[12]:

minimize
x

∥
∥
√

y −
∣
∣AH x

∣
∣
∥
∥

2
2 , (5)

where the operator
√· is applied element-wise when the argu-

ment is a vector. As pointed out in [11], [12], if we had access to
the phase information c ∈ CN of the linear measurements AH x
(i.e., ci = ej arg(aH

i x)) and N ≥ K, then problem (5) would
reduce to one of solving a system of linear equations

diag(
√

y)c = AH x, (6)

Of course we do not know this phase vectorc; hence one intuitive
approach is to solve the following problem by introducing a new
variable c ∈ CN representing the phase information:

minimize
x,c

∥
∥AH x − diag(

√
y)c

∥
∥

2
2

subject to |ci | = 1, i = 1, . . . , N. (7)

Note that the above problem (7) is not convex because the vector
c is restricted to be phases; i.e., all the elements are limited
to be of magnitude one. One classical approach is to use the
Gerchberg-Saxton algorithm [9], thus alternately updating x
and c so as to minimize problem (7). For a given c, problem
(7) reduces to a standard least squares problem, which can be
solved easily. For a fixed x, the optimal solution for c is c� =
ej arg(AH x) . Here both the operators e(·) and arg(·) are applied
element-wise.

Algorithm 2: The Gerchberg-Saxton Algorithm.
Input: A,y, t0
1: Initial x(0) ← leading eigenvector of Adiag(y)AH

2: for k = 0, . . . , t0 − 1 do
3: c(k+1) = ej arg(AH x(k ) )

4: x(k+1) ← argx min
∥
∥AH x − diag(

√
y)c(k+1)

∥
∥

2
2

5: end for
Output: x(t0 ) .

In the next section, we are going to develop three algorithms
using different MM techniques for both problems (2) and (5).
Experimental results show that our algorithms outperform the
benchmark algorithms (the Wirtinger Flow algorithm and the
Gerchberg-Saxton algorithm) in terms of successful recovery
probability and mean squared error.

III. PHASE RETRIEVAL VIA MAJORIZATION-MINIMIZATION

In this section, we first provide a concise introduction on the
general MM framework, after which we present our algorithms
for problems (2) and (5). In total, three different algorithms are
proposed, one for problem (2) and two for problem (5). For
problem (5), one of the algorithms turns out to be exactly the
same as the Gerchberg-Saxton algorithm. The other algorithm
turns out to have similar updating rules to those of the Wirtinger
Flow algorithm, but unlike in [15], where a heuristic step size is
used, our algorithm has a clearly specified step size. For prob-
lem (2), our algorithm formulates it as the leading eigenvector
problem.

A. The MM Algorithm

The majorization-minimization (MM) algorithm [18] is a
generalization of the well-known expectation-maximization
(EM) algorithm. Instead of dealing with the original difficult
optimization problem directly, an MM algorithm solves a series
of simple surrogate optimization problems, producing a series
of points that drive the original objective function downhill.

For a real valued function f(θ), any function g(θ | θ(m )) that
satisfies the following two conditions is said to be a majorization
function of f(θ) at the point θ(m ) :

g
(

θ | θ(m )) ≥ f(θ) for all θ,

g
(

θ(m ) | θ(m )) = f
(

θ(m )). (8)

That is to say, the function g(θ | θ(m )) is a global upper bound
of the function f(θ), and touches it at the point θ(m ) . Instead of
dealing with the original function f(θ) directly, which is usually
non-convex or non-differentiable, an MM algorithm optimizes
the sequence of majorization functions {g(θ | θ(m ))}. In gen-
eral, these majorization functions are chosen to be convex and
differentiable and much easier to solve, e.g., yielding a simple
closed-form solution. Initialized by any feasible point θ(0) , a
sequence of points {θ(m )} is generated by the MM algorithm
following the update rule:

θ(m+1) ∈ arg
θ

min g
(

θ | θ(m )). (9)

A favorable property of the MM algorithm is that the se-
quence of points {θ(m )} generated by minimizing the majoriza-
tion functions {g(θ | θ(m ))} drive f(θ) downhill:

f
(

θ(m+1)) ≤ g
(

θ(m+1) | θ(m )) ≤ g
(

θ(m ) | θ(m ))

= f
(

θ(m )). (10)

The first inequality and the third equality are a direct appli-
cation of the definition of the majorization function in (8).
The second inequality comes from (9) that θ(m+1) is a mini-
mizer of g(θ | θ(m )). Hence under the MM framework, one can
find a stationary point for the original function by solving the
majorization functions instead.

B. PRIME-Modulus-Single-Term

We first apply the MM techniques to problem (5). By expand-
ing the objective function

∥
∥
√

y − |AH x|
∥
∥

2
2 =

N∑

i=1

(∣
∣aH

i x
∣
∣
2 − 2

√
yi

∣
∣aH

i x
∣
∣ + yi

)

(11)

and discarding the constant term
∑N

i=1 yi , problem (5) is
equivalent to

minimize
x

N∑

i=1

(∣
∣aH

i x
∣
∣
2 − 2

√
yi

∣
∣aH

i x
∣
∣

)

. (12)

Here we keep the first term
∑N

i=1

∣
∣aH

i x
∣
∣
2

and only majorize

the (nonconvex) second term −
∑N

i=1 2
√

yi

∣
∣aH

i x
∣
∣. According
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to the Cauchy-Schwarz inequality

∣
∣aH

i x
∣
∣ ·

∣
∣
∣aH

i x(k)
∣
∣
∣ ≥ Re

(

aH
i x · (x(k))H ai

)

, (13)

the second term −
∑N

i=1 2
√

yi

∣
∣aH

i x
∣
∣ can be majorized as

−
N∑

i=1

2
√

yi

∣
∣aH

i x
∣
∣ ≤ −

N∑

i=1

2
√

yi

Re
(

aH
i x ·

(

x(k)
)H ai

)

∣
∣aH

i x(k)
∣
∣

.

(14)
Thus the convex majorization problem for (12) is

minimize
x

N∑

i=1

⎛

⎝
∣
∣aH

i x
∣
∣
2 − 2

√
yi

Re
(

aH
i x ·

(

x(k)
)H ai

)

∣
∣aH

i x(k)
∣
∣

⎞

⎠ ,

(15)
which is equivalent to

minimize
x

N∑

i=1

∣
∣aH

i x − ci
√

yi

∣
∣
2
, (16)

where

ci :=
aH

i x(k)
∣
∣aH

i x(k)
∣
∣

= ej arg(aH
i x(k ) ). (17)

Note that ci actually stands for the phase information of the
linear measurement aH

i x(k) . Therefore, we introduce here the

vector c = ej arg(AH x(k ) ) and further can formulate problem
(16) in the following more compact form:

minimize
x

∥
∥AH x − diag(

√
y)c

∥
∥

2
2 , (18)

which is a simple least squares problem. And it has a sim-
ple closed-form solution x� = (AAH )−1Adiag(

√
y)c if the

measurement matrix A has full row rank. It is quite interest-
ing that we have managed to solve problem (5) deriving the
same Gerchberg-Saxton algorithm but from a totally different
majorization-minimization perspective.

C. PRIME-Modulus-Both-Terms

We now consider majorizing both terms in problem (12). In
principle, this is not necessary since after majorizing the second
term the problem becomes convex with a simple closed-form
solution. Also, in general, the fewer terms we majorize, the
better it tends to be in terms of convergence. Nevertheless, we
explore this option for the sake of an even simpler algorithm,
albeit with a potentially slower convergence.

Claim 1: Let L be a K × K Hermitian matrix and M be
another K × K Hermitian matrix such that M � L. Then for
any point x0 ∈ CK , the quadratic function xH Lx is majorized
by xH Mx + 2Re

(

xH (L − M)x0
)

+ xH
0 (M − L)x0 at x0 .

Proof: The result holds by simply rearranging the terms in
(x − x0)H (M − L)(x − x0) ≥ 0, cf. [19]. �

The above claim provides a method to majorize the first term
∑N

i=1

∣
∣aH

i x
∣
∣
2
.

N∑

i=1

∣
∣aH

i x
∣
∣
2

=
N∑

i=1

xH aiaH
i x = xH AAH x

≤ λmax(AAH )xH x

+ 2Re
[

xH
(

AAH − λmax(AAH )I
)

x(k)
]

+
(

x(k))H (

λmax(AAH )I − AAH
)

x(k) . (19)

Discarding the constant term, the new majorization problem for
(12) is

minimize
x

λmax(AAH )xH x + 2Re

×
[

xH

(

AAH − λmax(AAH )I −
N∑

i=1

√
yiaiaH

i
∣
∣aH

i x(k)
∣
∣

)

x(k)

]

, (20)

which is equivalent to the following problem:

minimize
x

‖x − b‖2
2 , (21)

and has a closed-form solution x� = b, where the constant

b := x(k) + λ−1
max(AAH )Adiag(p)AH x(k) , (22)

and pi =
√

yi/|aH
i x(k) | − 1. This algorithm is similar to the

steepest descent method proposed recently in [15], where the
authors chose a heuristic step size. Now we can see that one
suitable step size is λ−1

max(AAH ).
So far there is no preference between these two majorization

problems for problem (5). They both yield a simple closed-form
solution at every iteration and are preferable under different
problem settings. The procedure to solve the first majorization
problem (18) turns out to be the same as in the Gerchberg-
Saxton algorithm, in which at every iteration one only needs
to solve a standard least squares problem. As for the second
majorization problem (21), one needs to calculate the leading
eigenvalue λmax(AAH ), which is cumbersome when the signal
to be recovered is of a very large dimension. Fortunately, when
the measurement matrix A is from the DFT matrix, this largest
eigenvalue is as simple as λmax(AAH ) = N (see Appendix A
for the proof). Therefore, PRIME-Modulus-Both-Terms may
outperform PRIME-Modulus-Single-Term in the Fourier trans-
form case.

D. PRIME-Power

Now we are going to show step by step how we majorize prob-
lem (2) as a leading eigenvector problem using MM techniques.
By introducing two matrices Ai = aiaH

i and X = xxH , we
can rewrite problem (2) as

minimize
x,X

N∑

i=1

(yi − Tr(AiX))2

subject to X = xxH , (23)
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which is equivalent to

minimize
x,X

N∑

i=1

[

(Tr(AiX))2 − 2yiTr(AiX)
]

subject to X = xxH , (24)

by ignoring the constant term
∑N

i=1 y2
i . We choose to ma-

jorize the first term
∑N

i=1 (Tr(AiX))2 (note that this term is
already convex in X but the majorization will help in pro-
ducing a much simpler problem), and keep the second term
∑N

i=1(−2yiTr(AiX)) since it is linear in X.
Note that both matrices X and Ai are Hermitian. Thus we

can write the first term
∑N

i=1 (Tr(AiX))2 in problem (24) as

N∑

i=1

(Tr(AiX))2 =
N∑

i=1

vec(X)H vec(Ai)vec(Ai)H vec(X)

= vec(X)H Φvec(X), (25)

where we define the matrix

Φ :=
N∑

i=1

vec(Ai)vec(Ai)H . (26)

This matrix Φ is just a constant with regard to the variables x
and X since all the measurement vectors {ai}N

i=1 are known
beforehand. According to Claim 1, by treating the matrix Φ
as L and setting M = DIK 2 , where D ≥ λmax(Φ) guarantees
M � L, the expression vec(X)H Φvec(X) in (25) can be ma-
jorized by the following function (from now on and when no
misunderstanding is caused, the dimension in the identity matrix
will be omitted for the sake of notation):

u1
(

X | X(k)) = Dvec(X)H vec(X)

+ 2Re
[

vec(X)H (Φ − DI) vec
(

x(k))
]

+ vec
(

x(k))H (DI − Φ) vec
(

x(k))

= DTr(XX) + 2
N∑

i=1

Tr (XAi) Tr(X(k)Ai)

− 2DTr
(

XX(k)
)

+ const., (27)

where const. represents a constant term not dependent on X.
Combining this majorization function u1(X | X(k)) and the
second term

∑N
i=1(−2yiTr(AiX)) in problem (24) together,

and discarding the constant terms, we can get the majorization
problem for (24) as

minimize
x,X

DTr(XX) + 2
N∑

i=1

Tr(XAi)Tr
(

X(k)Ai

)

− 2DTr
(

XX(k)
)

− 2
N∑

i=1

yiTr(AiX)

subject to X = xxH , (28)

which is equivalent to the following leading eigenvector
problem:

minimize
x

‖xxH − W‖2
F , (29)

with the matrix

W := x(k)(x(k))H +
1
D

Adiag
(

y − |AH x(k) |2
)

AH . (30)

The solution to this leading eigenvector problem is

x� =
√

λmax(W)umax(W), (31)

where λmax(W) and umax(W) are the largest eigenvalue and
corresponding eigenvector of matrix W. The procedures are
summarized in Algorithm 3. A general choice is to conduct
eigen-decomposition to find this largest eigenvalue and corre-
sponding eigenvector, which unfortunately is usually compu-
tationally costly and time consuming. Therefore, we propose
to use the power iteration method instead without conduct-
ing the eigen-decomposition. The power iteration method is
a simple iterative algorithm to calculate the eigenvalue (the one
with the greatest absolute value) and corresponding eigenvec-
tor. Together with the following proposition, the power itera-
tion method will indeed produce the largest eigenvalue and the
corresponding eigenvector.

Algorithm 3: PRIME-Power.
Input: A,y, t0
1: Initial x(0) ← leading eigenvector of Adiag(y)AH

2: for k = 0, . . . , t0 − 1 do
3: W = x(k)(x(k))H + 1

D Adiag(y − |AH x(k) |2)AH

4: x(k+1) =
√

λmax(W)umax(W)
5: end for
Output: x(t0 ) .

Proposition 1: For the matrix W defined in (30), its largest
eigenvalue and smallest eigenvalue satisfy the inequality

λmax(W) > |λmin(W)|, (32)

provided that

D >
∑

i∈I

(∣
∣
∣aH

i x(k)
∣
∣
∣

2
− yi

)
‖ai‖2

‖x(k)‖2

+
N∑

i=1

(∣
∣
∣aH

i x(k)
∣
∣
∣

2
− yi

) ∣
∣aH

i x(k)
∣
∣
2

‖x(k)‖4 , (33)

where the set I := {i : yi <
∣
∣aH

i x(k)
∣
∣
2}.

Proof: Appendix B. �

E. Convergence Analysis

Inherited from the general majorization-minimization frame-
work, the non-increasing property (10) holds for any majoriza-
tion problem. And the objective value is bounded below by 0
either for problem (2) or for problem (5). Therefore the se-
quence {f(x(k))} generated by our algorithms is guaranteed
to converge to a finite point at least. Moreover, the authors of
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[20] proved that any sequence {x(k)} generated by the MM
algorithm converges to a stationary point when the constraint
set is closed and convex. Fortunately, our three majorization
problems, problem (18), problem (21), and problem (29), are
unconstrained optimization problems. Therefore, according to
Theorem 1 in [20]1, the sequence {x(k)} generated by our al-
gorithms is guaranteed to converge to a stationary point of their
corresponding original phase retrieval problem.

F. Computational Complexity

We now offer a short discussion on the computational com-
plexity of all the algorithms we have proposed so far. For a
general measurement matrix A, the two algorithms for prob-
lem (5), namely, PRIME-Modulus-Single-Term and PRIME-
Modulus-Both-Terms, both yield a simple closed-form solution
and only require basic matrix multiplication at every iteration.
The time complexities for these two algorithms are O(NK). For
problem (2), PRIME-Power needs the leading eigenvalue and
corresponding eigenvector of an intermediate matrix at every
iteration. The time complexity is also O(NK). When the mea-
surement matrix A is from the DFT matrix, the time complex-
ities can be reduced to O(N log N) by exploiting fast Fourier
transform and inverse fast Fourier transform.

IV. ACCELERATION SCHEME

The popularity of the MM framework is attributed to its sim-
plicity and monotonic decreasing property, at the expense of
a usually low convergence rate. This slow convergence may
jeopardize the performance of the MM algorithm for comput-
ing intensive tasks. In [21], the authors proposed a simple and
globally convergent method to accelerate any EM algorithms.
This accelerating algorithm, called the squared iterative meth-
ods (SQUAREM), generally achieves superlinear convergence,
and is especially attractive in high-dimensional problems as it
only requires parameter updating. Besides this, since the MM
algorithm is a generalization of the EM algorithm, SQUAREM
can be adopted to update the parameters in our MM-based al-
gorithms. At every iteration, instead of updating x(k+1) directly
from x(k) , SQUAREM seeks an intermediate point x′ from
x(k) , after which, it updates the next point x(k+1) based on this
intermediate point.

V. NUMERICAL SIMULATIONS

In this section, we present the experimental results for both
problem (2) and problem (5) under various settings. Specifi-
cally, we consider that the measurement matrix is either stan-
dard complex Gaussian distributed or from the DFT matrix, and
the measurements are clean or corrupted with noise. All exper-
iments are conducted on a personal computer with a 3.20 GHz
Intel Core i5-4570 CPU and 8.00 GB RAM.

1The constraint set is limited to be in real space in [20] to guarantee dif-
ferentiability. In this paper, the functions are not complex-differentiable. By
introducing new variable x̃ = [Re(x)T , Im(x)T ]T ∈ R2K , it is easy to trans-
form the problems into equivalent problems with real variable.

For both problems, our MM-based algorithms outperform
the benchmark methods, the Wirtinger Flow algorithm and the
Gerchberg-Saxton algorithm, respectively, in terms of success-
ful recovery probability and convergence speed. Details of the
experiments and comparisons can be found in later subsections
under different settings.

A. Random Gaussian Matrix Setting

First we consider the case in which all the elements in the
measurement matrix A are independent random variables fol-
lowing a standard complex Gaussian distribution. Thus every
element is regarded as a random variable in which the real part
and the imaginary part are drawn from the standard Gaussian
distribution N (0, 1) independently.

We choose a random signal xo ∈ C100 (normalized as
xo/‖xo‖ without loss of generality) as the original signal,
and generate the measurements y = |AH xo |2 ∈ RN . Since the
measurement matrix A is a random matrix here, we repeat the
experiments 1000 times using different and independent mea-
surement matrices, with everything else fixed as the same. In
the PRIME-Power algorithm we use the power iteration method
to calculate the leading eigenvalue and corresponding eigenvec-
tor instead of eigen-decomposition. Experimental results indi-
cate that one step of the power iteration is sufficient enough
to considerably reduce the computations without degrading the
performance. As for the Wirtinger Flow algorithm, different
from the heuristic step size used in the original paper [15], here
we adopt a backtracking method to find a suitable step size.
We also use SQUAREM to accelerate our algorithms, which
leads to the names PRIME-Power-Acce, PRIME-Modulus-
Single-Term-Acce, and PRIME-Modulus-Both-Terms-Acce
accordingly.

As for the phase retrieval problem, more importance should
be placed on the successful recovery probability. Therefore,
as an example, we only show in Fig. 1 that our MM-based
algorithms converge faster than the corresponding benchmark
methods for both problems under clean measurements and the
random Gaussian measurement matrix setting.

As mentioned above, all the algorithms can only recover the
original signal xo up to a constant phase shift due to the loss of
phase information. Fortunately, we can easily find this constant
phase by the following procedure. For any solution x� returned
from the algorithms, we define a function

h(φ) =
∥
∥x� − xo · ejφ

∥
∥

2
2 . (34)

The derivative of this function h(φ) with respect to φ is

∇h(φ) = j
[

xH
o x�e−jφ − (x�)H xoe

jφ
]

. (35)

Setting this derivative to zero, we get

ejφ =
xH

o x�

|xH
o x� | . (36)

Therefore, we can compute the squared error between the solu-
tion x� returned from our algorithms and the original signal xo ,
taking into consideration this global phase shift as ‖x� − xo

ejφ‖2
2 . And we plot the mean squared error (MSE) between

x� and xo in Fig. 2. Besides this, for every single experiment
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Fig. 1. Objective function versus iteration under clean measurements and
random Gaussian matrix setting. x ∈ C100 , y ∈ R500 . (a) For problem (2).
(b) For problem (5).

Fig. 2. Mean squared error (MSE) versus number of clean measurements
under random Gaussian matrix setting. x ∈ C100 , y ∈ RN .

Fig. 3. Successful recovery probability versus number of clean measurements
under random Gaussian matrix setting. x ∈ C100 , y ∈ RN .

among these 1000 independent trials, we consider that an al-
gorithm successfully recovers the original signal if the squared
error is less than 10−4 . And in Fig. 3, we plot the probability of
successful recovery based on these 1000 independent trails for
all the algorithms.

From Figs. 2 and 3, we can see that all of our MM-
based algorithms have a higher successful recovery possi-
bility and less mean squared error than the two bench-
mark algorithms (PRIME-Power-Acce vs. Wirtinger Flow,
PRIME-Modulus-Single-Term-Acce and PRIME-Modulus-
Both-Terms-Acce vs. Gerchberg-Saxton) except PRIME-
Modulus-Single-Term-Acce, which can be formulated exactly
the same as the Gerchberg-Saxton algorithm when not accel-
erated. And it agrees with the conjecture in [8] that about 4K
measurements are needed for a successful recovery with high
probability.

B. Discrete Fourier Transform Matrix Setting

In traditional phase retrieval problems, the measurements are
the magnitude of the Fourier transform of the signal. Hence,
in this subsection, we consider that the measurement matrix A
is from the DFT matrix; i.e., AH is equal to the matrix that
consists of the first K columns of the N × N DFT matrix.
There are certain advantages to using the DFT properties in our
majorization problems. First of all, the leading eigenvalue of the
matrix Φ is as easy as λmax(Φ) = NK (proof in Appendix C).
And the leading eigenvalue needed in problem (21) also has a
simple form now λmax(AAH ) = N (proof in Appendix A).

Note that there are some differences between the DFT ma-
trix setting and the former random Gaussian matrix setting. The
measurement matrix A is now from the DFT matrix and is not
random anymore. The only randomness comes from the original
signal xo . Therefore we need to use different original signals in
the 1000 trials. Another difference is that there are more ambi-
guities under the DFT matrix setting, unlike under the random
Gaussian matrix setting where the global constant phase shift is
the only ambiguity. The authors of [14] pointed out that there are



QIU et al.: PRIME: PHASE RETRIEVAL VIA MAJORIZATION-MINIMIZATION 5181

Fig. 4. Mean squared error (MSE) of autocorrelation functions versus number
of clean measurements under DFT matrix setting. x ∈ C100 , y ∈ RN .

always trivial ambiguities and non-trivial ambiguities under the
DFT matrix setting for a one dimensional signal. For the triv-
ial ambiguities, any individual or combination of the following
three transformations conserve the Fourier magnitude:

1. Global constant phase shift: x → x · ejφ ,
2. Circular shift: [x]i → [x](i+i0 ) mod K ,

3. Conjugate inversion: [x]i → [x]K−i .
As for the non-trivial ambiguities, any two signals which have

the same autocorrelation function share the same Fourier mag-
nitude. Actually, any two signals within the trivial ambiguities
also yield the same autocorrelation function. Therefore under
the DFT matrix setting, we can only recover the signal up to the
same autocorrelation function without additional information.
We use the following autocorrelation function:

[r]m =
K∑

i=max{1,m+1}
[x]i [x]i−m , m = −(K − 1), . . . , K − 1.

(37)
First, we calculate the autocorrelation function of the original
signal ro and the autocorrelation function of the solution re-
turned from our algorithms r� . Later on, we compute the squared
error between these two autocorrelation functions ‖ro − r�‖2

2 .
We also repeat the experiment 1000 times with different and
independent original signals xo .

In Fig. 4, we plot the mean squared error of the autocor-
relation functions over these 1000 independent trials, and in
Fig. 5, we plot the probability for successful recovery based on
these 1000 experiments. In every experiment, an algorithm is
considered to successfully recover the signal if the squared error
‖ro − r�‖2

2 is less than 10−4 . As shown in Figs. 4 and 5, all of our
MM-based algorithms have less mean squared error of the au-
tocorrelation function and successfully recover the signal with
a higher probability than the corresponding benchmark algo-
rithms. Furthermore, the differences between our algorithms and
the corresponding benchmark algorithms are significantly larger
than those in the random Gaussian case. And it agrees with our

Fig. 5. Successful recovery probability of autocorrelation functions versus
number of clean measurements under DFT matrix setting. x ∈ C100 , y ∈ RN .

Fig. 6. Mean squared error (MSE) versus number of noisy measurements
under random Gaussian matrix setting. Add noise to y. x ∈ C100 , y ∈ RN .

former analysis that it is beneficial to majorize both terms for
problem (5) under the DFT matrix setting. PRIME-Modulus-
Both-Terms-Acce outperforms PRIME-Modulus-Single-Term-
Acce in terms of successful recovery probability and mean
squared error.

C. Robustness to Noise

Up to now the experimental results agree with our theoretic
analysis that our algorithms outperform the benchmark algo-
rithms under the clean measurements setting. However, in real
life the measurements are always corrupted with noise, and
usually noise will degrade the performance of an algorithm.
Therefore it is necessary to take the noise into consideration. In
this subsection, we present the results when the measurements
are corrupted with noise.

First, we consider adding random Gaussian noise to the mea-
surements y = |AH xo |2 + n. The same noisy measurements
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Fig. 7. Successful recovery probability versus number of noisy measurements
under random Gaussian matrix setting. Add noise to y. x ∈ C100 , y ∈ RN .

Fig. 8. Mean squared error (MSE) of autocorrelation functions versus num-
ber of noisy measurements under DFT matrix setting. Add noise to y.
x ∈ C100 , y ∈ RN .

y are provided for both problems (2) and (5). We repeat the
experiments 1000 times under the same settings as in the clean
measurements case. The signal-to-noise ratio (SNR) is about
23 dB for the random Gaussian matrix setting and 20 dB for
the DFT matrix setting. Results of the mean squared error and
successful recovery probability are presented in Figs. 6 and 7
for the random Gaussian matrix setting and Figs. 8 and 9 for the
DFT matrix setting.

Different from problem (2) where the modulus squared
measurements y are exploited, problem (5) uses the modu-
lus information

√
y instead. As a fair comparison, we also

need to consider adding noise to the modulus information√
y = |AH xo | + n. The same noisy modulus information

√
y

is provided for problems (2) and (5). Again, we repeat the ex-
periments 1000 times under the same rules as in the clean mea-
surements case. The SNR is also about 23 dB for the random

Fig. 9. Successful recovery probability of autocorrelation functions versus
number of noisy measurements under DFT matrix setting. Add noise to y.
x ∈ C100 , y ∈ RN .

Fig. 10. Mean squared error (MSE) versus number of noisy measurements
under random Gaussian matrix setting. Add noise to

√
y. x ∈ C100 , y ∈ RN .

Gaussian matrix setting and 20 dB for the DFT matrix setting.
Results are shown in Figs. 10, 11, 12 and 13, respectively.

Comparing the successful recovery probabilities (Figs. 3, 7,
and 11 for the random Gaussian matrix setting, and Figs. 5, 9,
and 13 for the DFT matrix setting), we find out that under the
Gaussian matrix setting, noisy measurements on y dramatically
decrease the performance of algorithms for problem (5) (Figs. 3
and 7). On the other hand, the performance of all algorithms is
almost the same as in the clean measurements case when noise
pollutes the modulus information

√
y (Figs. 3 and 11). Under

the DFT matrix setting, the performance is almost the same in
both noisy circumstances (Figs. 9 and 13). Surprisingly, while
the noise slightly decreases the performance of PRIME-Power-
Acce, Wirtinger Flow, and PRIME-Modulus-Both-Terms-Acce,
it significantly improves the recovery probability of the other
two algorithms for problem (5) (Figs. 5, 9, and 13). The reason is
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Fig. 11. Successful recovery probability versus number of noisy measure-
ments under random Gaussian matrix setting. Add noise to

√
y. x ∈ C100 , y ∈

RN .

Fig. 12. Mean squared error (MSE) of autocorrelation functions versus num-
ber of noisy measurements under DFT matrix setting. Add noise to

√
y.

x ∈ C100 , y ∈ RN .

that the “dithering” effect of noise may help these two algorithms
get rid of some bad stationary points.

As for the mean squared error (Figs. 2, 6, and 10 for the
random Gaussian matrix setting, and Figs. 4, 8, and 12 for
the DFT matrix setting), the plots are almost the same. This is
because the values of the mean squared error are dominated by
those experiments with unsuccessful recoveries, which usually
have a significantly large squared error. And adding small noise
cannot change an unsuccessful recovery to a successful one in
most cases.

Among all these figures, our MM-based algorithms outper-
form their corresponding benchmark methods in terms of both
successful recovery probability and mean squared error un-
der various settings. And PRIME-Power-Acce turns out to be
the best algorithm since it has the highest successful recovery

Fig. 13. Successful recovery probability of autocorrelation functions versus
number of noisy measurements under DFT matrix setting. Add noise to

√
y.

x ∈ C100 , y ∈ RN .

Fig. 14. Average CPU time versus number of clean measurements under
random Gaussian matrix setting. x ∈ C100 , y ∈ RN .

probability under all different settings, and it is also more ro-
bust to noise. Its advantages over other algorithms are more
significant under DFT matrix setting.

In Fig. 14, we plot the average CPU time for all the algorithms
over 1000 Monte Carlo experiments under clean measurements
and the random Gaussian measurement matrix setting. For prob-
lem (2), PRIME-Power-Acce takes much less time than the
Wirtinger Flow algorithm. For problem (5), PRIME-Modulus-
Single-Term-Acce takes about same time as the Gerchberg-
Saxton algorithm. PRIME-Modulus-Both-Terms-Acce needs
more time because of its slow convergence, but it outperforms
the other two algorithms significantly under the DFT matrix
setting.

Finally in Fig. 15, we demonstrate practical image recov-
ery under noisy measurements and the random Gaussian ma-
trix setting. The modulus information

√
y are contaminated
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Fig. 15. Practical image recovery under noisy measurements and random Gaussian matrix setting. Add noise to
√

y, SNR = 12 dB. The original cameraman
image is of size 64× 64, i.e., K = 642 = 4096 and N = 4K . (a) Original, (b) Wirtinger Flow NMSE = −25.8 dB, t = 9557.1 s, (c) PRIME-Power-Acce NMSE
= −25.8 dB, t = 376.6 s, (d) Gerchberg-Saxton NMSE = −27.7 dB, t = 293.9 s, (e) PRIME-Modulus-Single-Term-Acce NMSE = −27.7 dB, t = 122.5 s,
(f) PRIME-Modulus-Both-Terms-Acce NMSE = −27.7 dB, t = 2532.1 s.

by random Gaussian noise with SNR about 12 dB. For prob-
lem (2), PRIME-Power-Acce is much faster than the Wirtinger
Flow algorithm (about 25 times faster). And they return the
same solution (same normalized mean squared error (NMSE)).
For problem (5), the corresponding three algorithms also yield
the same solution. PRIME-Modulus-Single-Term-Acce takes
less than half the time of the Gerchberg-Saxton algorithm. But
PRIME-Modulus-Both-Terms-Acce needs more time because
of its slow convergence.

VI. CONCLUSION

Phase retrieval is of great interest in physics and engineering.
It is not a linear recovery problem due to the loss of phase in-
formation. Algorithms based on semidefinite relaxation manage
to recover the original signal by solving a convex semidefinite
programming problem. But they are not applicable to large scale
problems because of the dimension increase in the matrix-lifting
procedure. The Wirtinger Flow algorithm recovers the original
signal from the modulus squared of its linear measurements
(problem (2)) using the gradient descent method, but the perfor-
mance is relatively poor. The classical Gerchberg-Saxton algo-
rithm recovers the original signal from the modulus of its linear
measurements (problem (5)) through alternating minimizations
by introducing a new variable representing phase information.
In this paper we have proposed three efficient algorithms un-
der the majorization-minimization framework that outperform
the existing methods in terms of successful recovery probability
and mean squared error. Instead of dealing with the cumbersome

phase retrieval problems directly, we have considered different
majorization problems which yield a simple closed-form solu-
tion via different majorization-minimization techniques. The-
oretic analysis as well as experimental results under various
settings are also presented in the paper to further validate the
efficiency of our algorithms.

APPENDIX A
PROOF OF λmax(AAH ) = N FOR DFT MATRIX

The elements in the DFT measurement matrix A ∈ CK×N

(K ≤ N) are

Aki = ej
2 π (k −1 ) ( i−1 )

N , k = 1, . . . ,K, and i = 1, . . . , N. (38)

Hence the element at the m-th row and n-th column of the
square matrix AAH ∈ CK×K is

[AAH ]mn =
N∑

k=1

AmkAnk

=
N∑

k=1

ej
2 π (m −1 ) (k −1 )

N e−j
2 π (n −1 ) (k −1 )

N

=
N∑

k=1

ej
2 π (m −n ) (k −1 )

N =

{

N, m = n,

0, otherwise.
(39)

Thus AAH = NIK . Therefore λmax(AAH ) = N .
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APPENDIX B
PROOF OF PROPOSITION 1

First,

λmax(W) ≥ (x(k))H

‖x(k)‖ W
x(k)

‖x(k)‖ =
∥
∥
∥x(k)

∥
∥
∥

2

+
1
D

N∑

i=1

(

yi −
∣
∣
∣aH

i x(k)
∣
∣
∣

2
) ∣

∣aH
i x(k)

∣
∣
2

‖x(k)‖2 . (40)

If I = ∅, W is positive semidefinite, and it is trivial that
λmax(W) > λmin(W) ≥ 0. When I �= ∅ and W is not pos-
itive semidefinite, defining matrix

Z := Adiag

(

y −
∣
∣
∣AH x(k)

∣
∣
∣

2
)

A, (41)

then

1
D

λmin(Z) ≤ λmin(W) < 0. (42)

Therefore, λmax(W) > |λmin(W)| will hold if

∥
∥
∥x(k)

∥
∥
∥

2
+

1
D

N∑

i=1

(

yi −
∣
∣
∣aH

i x(k)
∣
∣
∣

2
) ∣

∣aH
i x(k)

∣
∣
2

∥
∥x(k)

∥
∥

2

> −λmin(Z)
D

, (43)

which is equivalent to

D > −λmin(Z)
∥
∥x(k)

∥
∥

2 +
N∑

i=1

(∣
∣
∣aH

i x(k)
∣
∣
∣

2
− yi

) ∣
∣aH

i x(k)
∣
∣
2

∥
∥x(k)

∥
∥

4 . (44)

Note that

−λmin(Z) = λmax(−Z) ≤
∑

i∈I

(∣
∣
∣aH

i x(k)
∣
∣
∣

2
− yi

)

‖ai‖2 .

(45)
Therefore, λmax(W) > |λmin(W)| will hold if

D >
∑

i∈I

(∣
∣
∣aH

i x(k)
∣
∣
∣

2
− yi

)
‖ai‖2

∥
∥x(k)

∥
∥

2

+
N∑

i=1

(∣
∣
∣aH

i x(k)
∣
∣
∣

2
− yi

) ∣
∣aH

i x(k)
∣
∣
2

∥
∥x(k)

∥
∥

4 . (46)

APPENDIX C
PROOF OF λmax(Φ) = NK FOR DFT MATRIX

Recall the definition of the Hermitian matrix

Ai = aiaH
i ∈ CK×K , i = 1, . . . , N, K ≤ N. (47)

Hence the element at the m-th row and n-th column of this
square matrix is

[Ai ]mn = [ai ]m · [ai ]n = ej
2 π ( i−1 ) (m −1 )

N e−j
2 π ( i−1 ) (n −1 )

N

= ej
2 π ( i−1 ) (m −n )

N , i = 1, . . . , N, and m,n

= 1, . . . ,K. (48)

So the ((s − 1)K + t)-th element in the vector vec(Ai) is

[vec(Ai)](s−1)K +t = [Ai ]ts

= ej
2 π ( i−1 ) ( t−s )

N , t, s = 1, . . . , K. (49)

Also recall the definition of the Hermitian matrix

Φ =
N∑

i=1

vec(Ai)vec(Ai)H ∈ CK 2 ×K 2
. (50)

Thus the element at the ((s1 − 1)K + t1)-th row and ((s2 −
1)K + t2)-th column of matrix Φ is

[Φ](s1 −1)K +t1 ,(s2 −1)K +t2

=
N∑

i=1

ej
2 π ( i−1 ) ( t 1 −s 1 )

N e−j
2 π ( i−1 ) ( t 2 −s 2 )

N

=
N∑

i=1

ej
2 π ( i−1 ) ( t 1 −s 1 −t 2 + s 2 )

N

=

{

N, t1 − s1 = t2 − s2 ,

0, otherwise,

t1 , t2 , s1 , s2 = 1, . . . , K. (51)

The summation of all the elements at the ((s1 − 1)K + t1)-th
row of the matrix Φ is

[Φ · 1](s1 −1)K +t1 =
K∑

s2 =1

∑

t2 =t1 −s1 +s2

N ≤ NK, (52)

where equality is achieved when s1 = t1 .
Note that the matrix Φ is a symmetric matrix with each ele-

ment either N or 0. And it is also positive semidefinite by the
definition. Therefore all the eigenvalues of the matrix Φ are
nonnegative real numbers. For any vector x ∈ CK 2

,

xH (NKI − Φ)x ≥ xH (diag(Φ · 1) − Φ)x

=
K 2
∑

m=1

xm xm

K 2
∑

n=1

[Φ]mn −
K 2
∑

m=1

K 2
∑

n=1

xm [Φ]mnxn

=
K 2
∑

m=1

K 2
∑

n=1

[Φ]mnxm (xm − xn )

=
1
2

K 2
∑

m=1

K 2
∑

n=1

[Φ]mn [xm (xm − xn ) + xn (xn − xm )]

=
1
2

K 2
∑

m=1

K 2
∑

n=1

[Φ]mn |xm − xn |2 ≥ 0, (53)

where the third equality comes from the fact that Φ is a sym-
metric real matrix. Therefore,

λmax(Φ) ≤ NK. (54)



5186 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

Now we choose x = vec(IK ). Then

xH Φx
xH x

=
N∑

i=1

vec(IK )H vec(Ai)vec(Ai)H vec(IK )
vec(IK )H vec(IK )

=
N∑

i=1

(Tr(Ai))
2

Tr
(IK ) = N

K2

K
= NK. (55)

Therefore the leading eigenvalue λmax(Φ) = NK.
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