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Abstract—This paper addresses the problem of the clutter
subspace projector estimation in the context of a disturbance
composed of a low rank heterogeneous (Compound Gaussian)
clutter and white Gaussian noise. In such a context, adaptive
processing based on an estimated orthogonal projector onto the
clutter subspace (instead of an estimated covariance matrix)
requires less samples than classical methods. The clutter subspace
estimate is usually derived from the eigenvalue decomposition of
a covariance matrix estimate. However, it has been previously
shown that a direct maximum likelihood estimator of the clutter
subspace projector can be obtained for the considered context.
In this paper, we derive two algorithms based on the block ma-
jorization-minimization framework to reach this estimator. These
algorithms are shown to be computationally faster than the state
of the art, with guaranteed convergence. Finally, the performance
of the related estimators is illustrated on realistic Space Time
Adaptive Processing for airborne radar simulations.

Index Terms—Covariance matrix and projector estimation,
maximum likelihood estimator, low rank structure, compound
Gaussian, majorization-minimization.

I. INTRODUCTION

I N array processing, many applications require the use of
the covariance matrix (CM) of the noise; these include

source localization techniques [1], [2], radar and sonar detection
methods [3], [4], and filters [5]. In practice, the CM is unknown
and has to be estimated from a set of samples

, which are signal-free independent realizations of
the noise. The CM estimate is then used to perform the so-called
adaptive process. In radar systems, the noise is composed of a
correlated noise, referred to as clutter (caused by the response
of the environment to the emitted signal), and White Gaussian
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Noise (WGN, the thermal noise due to electronics). The total
covariance of this disturbance is therefore

(1)

where is the clutter CM and is the CM of the WGN. In
most cases, the clutter belongs to a subspace of limited dimen-
sion, meaning that the clutter CM has rank . Conse-
quently, the total CM is structured as a Low Rank (LR) plus a
scaled identity matrix.
When the clutter corresponds to a strong interference con-

tained in a low dimensional subspace , one can use
the following LR approximation [6], [7]:

where , named clutter subspace projector, is the orthogonal
projector onto the clutter subspace. This subspace is spanned
by the eigenvectors associated with the largest eigen-
values of the matrix , i.e., . This approxi-
mation allows developing an adaptive process (e.g., filter or de-
tector) that relies on a clutter subspace projector estimate
rather than a total CM estimate . Note that in this paper, we
consider that the clutter rank is known or fixed from a prior
estimation step. There are several methods of rank estimation
present in the literature ( ., [8]–[10] and references therein).
Moreover, in some applications, the clutter rank can be directly
derived from the geometry of the system (such as in STAP [11]
thanks to the Brennan rule [12]).
The practical use of the LR approximation is that an adap-

tive LR process requires less samples to reach the equivalent
performance to the classical ones, which is valuable since the
number of available samples is often limited. For example, if
we consider the case of a Gaussian distributed clutter, the op-
timal adaptive filter is built from the Sample Covariance Matrix
(SCM), which is the Maximum Likelihood Estimator (MLE) in
that scenario. In this case, samples are required to en-
sure a 3 dB loss of the output Signal to Noise Ratio (SNR) com-
pared to the optimal non-adaptive filter [13]. If instead we use
the MLE of the clutter subspace projector, which corresponds to
the subspace spanned by the largest eigenvectors of the SCM
and can be obtained from its EigenValue Decomposition (EVD),
one can build an adaptive LR filter that reaches the equivalent
performance to the previous scheme with only
samples [14].
However, it is now well-known that most modern radar

clutter measurements are not Gaussian and behave hetero-
geneously. Therefore, the SCM may not provide the optimal
solution since it is not an accurate estimator of the CM for
heavy-tailed distributions or in the presence of outliers. To
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account for the heterogeneity of the clutter, one can model it
with a Compound Gaussian distribution, which is a sub-familly
of the Complex Elliptically Symmetric (CES) distribution
[15]. The Compound Gaussian family covers a large panel
of well-known and useful distributions, notably Gaussian,
Weibull, K-distribution, -distribution, etc. Moreover, it has a
well-founded physical interpretation and presents good agree-
ment with several real data sets [16]–[19]. Eventually, the total
disturbance will be modeled in this paper as an LR Compound
Gaussian clutter plus a WGN (as done in [7], [20]–[22]).
We point out that the sum of a Compound Gaussian and a

WGN cannot be represented as a simple Compound Gaussian
vector with different distribution parameters (except for the
trivial Gaussian case). Nevertheless, most of the related works
consider the case of a full rank Compound Gaussian clutter
and neglect the possible LR plus WGN structure. Under this
framework, robust estimation1 of the CM can be performed
using the so-called -estimators [23]–[25] that are seen as
generalized MLEs for CES distributions. A detailed review of
this framework can be found in [15]. These estimators have
been studied in detail and successfully applied in modern
detection/estimation literature due to their interest both from a
theoretical and an application point of view [26]–[32]. To cope
with an under-sampled scenario, regularization of these estima-
tors has been studied intensively in the literature, and is still an
on-going cutting-edge topic. For example, shrinkage estimators
for the CES model have been considered in [33]–[36] that
shrink the estimator to the identity matrix. Regularization by
imposing constraints on the condition number of the covariance
matrix for the compound Gaussian model has been studied in
[37]. Another class of works tackle this problem by imposing
structural constraints, including group symmetry, Toeplitz,
Kronecker structures, on the covariance matrix, see [37]–[41]
for example. Instead of the SCM, it is possible to derive clutter
subspace projector estimators from the EVD of a (regularized or
not) -estimator. However, despite their robustness properties,
-estimators may not achieve the optimal clutter subspace

estimation performance as they do not take into account the
noise structure (1) that we consider in this work.
For this noise model, the seminal work [21] derived the MLE

of the clutter subspace projector under the assumptions that the
CM of the LR Compound Gaussian clutter has identical eigen-
values, and the Probability Density Function (PDF) of the tex-
ture is known. The assumption of known texture PDF has been
relaxed in [42] by treating the texture as an unknown determin-
istic parameter. The expression of the MLE of the clutter CM
parameters (eigenvectors and eigenvalues) was derived in [43],
which does not have a simple closed-form and therefore requires
an iterative algorithm to be reached. Initially, [43] focused on
the clutter subspace projector MLE and proposed an ad-hoc al-
gorithm to obtain it. This leads to an accurate clutter subspace
projector estimator, but a poor recovery of the total CM. In [44],
the high Clutter to Noise Ratio (CNR) assumption was made to
derive a general “2-Step MLE” algorithm (with several possible
adaptations) that was shown to provide accurate estimates of the
CM. Most algorithms developed [43], [44] require the use of a
gradient descent algorithm on the manifold proposed in [45],
which can be difficult to tune and computationally costly.

1i.e., not highly sensitive to the underlying distribution

In this paper, we propose to apply the block majorization-
minimizaton algorithm framework to the problem of computing
the considered MLE. We derive two new algorithms that enjoy
the following properties:
• They do not rely on any heuristic (as in [43]) or high CNR
assumption (as in [44]).

• They are computationally faster than the ones derived in
[43] and [44], hence more suitable for implementation.

• Compared to the gradient descent algorithm [45], which
requires many trials to find the descent step, the proposed
algorithms only require basic matrix operations or Singular
Value Decomposition (SVD).

The paper is organized as follows. Section II states the
problem formulation and briefly reviews the block ma-
jorization-minimizaton methodology. Then, Sections III and
IV derive the two new algorithms for computing the MLE of
the considered problem. The difference between the two algo-
rithms lies in the choice of the variables with respect to which
the likelihood function is cyclically optimized. In Section V,
we discuss possible methods for of estimating the clutter rank
and the white Gaussian noise power, which are assumed to
be known in this study. Section VI validates the performance
of the proposed algorithms with simulations. Moreover, the
proposed algorithms are applied to a realistic Space Time
Adaptive Processing (STAP) for airborne radar simulation.
Finally, Section VII draws the conclusions of this study.
Throughout the paper the following conventions are adopted:

italic indicates a scalar quantity, lower case boldface indicates
a vector quantity, and upper case boldface a matrix. denotes
the transpose conjugate operator or the simple conjugate oper-
ator for a scalar quantity. denotes the transpose operator.
denotes the differential operator. is a complex-valued
Gaussian distribution of mean and covariance matrix . is
the identity matrix of appropriate dimension. and
stand for the determinant and the trace of a matrix, respectively.
is an estimate of the parameter . denotes the set

of elements with , and will often be abbrevi-
ated to in the sequel. is the vector of the canonical
basis of appropriate dimension.

II. BACKGROUND

A. Problem Formulation
We assume that samples are available. Each

of the data corresponds to a realization of a proper cir-
cular LR Compound Gaussian process plus an independent
additive zero-mean complex WGN :

(2)

The WGN follows the distribution

(3)

where the power of the WGN is assumed to be known2 and
fixed to be without loss of generality. The LR Com-
pound Gaussian [15] is an -dimensional zero-mean com-
plex Gaussian vector (the speckle) with CM , multiplied by

2This hypothesis is made for describing a valid theoretical framework. In
practice, presented results can be applied with an estimate of used as its
actual value.
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the square root of an independent positive random power factor
(the texture) . Each follows then, conditionally to :

(4)

where the Compound Gaussian clutter CM has a Low Rank
structure with . The rank is assumed
to be known and a discussion on this assumption will be pro-
vided in the remark below. In this work, we do not assume the
knowledge of the texture PDF, and treat each as an unknown
deterministic variable. The likelihood function is then

(5)

with .
The MLE of the clutter CM is therefore defined as the min-

imizer of the following problem (equivalent to the maximizer of
the log-likelihood function):

(A)

where is of size . Denote the objective function by
.

B. Block MM Principle
To solve Problem (A), we adopt the block majorization-min-

imization (MM) algorithm framework, which is briefly stated
below.
Consider the following optimization problem:

(6)

where the optimization variable can be partitioned into
blocks as , with each -dimensional
block and .
At the -th iteration, the -th block is updated by

solving the following problem:

(7)

with (so blocks are updated in cyclic order)
and the continuous surrogate function satisfying the
following properties:

where stands for the directional derivative at along
. In short, at each iteration, the block MM algorithm updates

the variables in one block by minimizing a tight upperbound of
the function while keeping the value of the other blocks fixed.
In practice, the surrogate functions are usually designed so

that each sub-problem (7) can be solved easily, for example in
closed-form.

III. DIRECT BLOCK MAJORIZATION-MINIMIZATION
ALGORITHM

As , the variable can be reparameterized
as with . Problem (A) can then be
written equivalently as

(B)

Following the block MMmethodology, we partition the vari-
ables as and derive an algorithm that updates the
blocks in cyclic order (note that variables are implicitly op-
timized at every iteration while optimizing either or ). In
each iteration, an upperbound of the objective function is min-
imized, which guarantees a monotonic decrement of the objec-
tive value.
To be precise, given a starting point , one

iteratively
• updates for fixed by minimizing a set
of surrogate functions for ,

• updates for fixed by minimizing a
surrogate function ,

until convergence, which will produce a stationary point of
Problem (B). This procedure is summed up in the box Algo-
rithm 1.

A. Update With Fixed
Let and . To lighten notation, we

omit the reference on for these variables in this part. The ob-
jective function is separable in the ’s, and for each of them,
the following problem should be solved:

(B1)

Eigendecompose as , with
and . The

objective function of (B1) can be simplified to

(8)

where . This function is the sum of quasi-
convex functions, which is not necessarily quasi-convex, and
has no closed-form minimizer.
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Applying the block MM algorithm, we find an upperbound
(surrogate function) of , with equality achieved at

, and minimize this surrogate function. The update of
is derived based on the following two propositions:
Proposition 1: The function in (8) can be upper-

bounded by the surrogate function defined as

(9)

where

(10)

and

(11)

The equality is achieved at .
Proof: See Appendix A.

Proposition 2: The surrogate function is quasi-
convex and has a unique minimizer given by

(12)

Proof: See Appendix B.

B. Update With Fixed
Let now fix . To lighten the notation, we omit

the reference on for this set of variables in this part. To obtain
the update of , we need to solve

(B2)

Without loss of generality assume that , otherwise the
terms with can be deleted from the summation in the
objective function as they are constants.
Problem (B2) has no closed-form minimizer. As in the pre-

vious part, we are going to derive a tight upperbound of the ob-
jective function , with equality achieved at .
Proposition 3: The function

(13)

where , can be upperbounded by the convex
quadratic function

(14)

with equality achieved at , where the matrices and
are defined according to (41), (42), (46), and (47).

Proof: See Appendix C.
The matrix is positive definite by definition, hence the up-

perbound has a unique minimizer given by

To efficiently compute this solution, let the SVD of be
. Then

(15)

and

(16)

where (since is a real diagonal matrix). can
therefore be computed as

(17)

Algorithm 1: Direct Block Majorization-Minimization
Algorithm

1: Compute the sample covariance matrix
.

2: Eigendecompose as , where
with .

3: Initialize to be
, and to be

arbitrary positive real numbers.
4: repeat
5: Update with (10) and (12).
6: Update with (17).
7: until Some convergence criterion is met
8: Eigendecompose as .
9: .

C. Convergence Analysis
Proposition 4: Any limit point of the pair gen-

erated by Algorithm 1 is a stationary point of Problem (B).
Proof: We have proved the quasi-convexity and the

uniqueness of the minimizer of the surrogate functions
and in the previous subsections.

The algorithm convergence is a direct application of Theorem
2 (a) in [46].
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IV. EIGENSPACE BLOCK MAJORIZATION-MINIMIZATION
ALGORITHM

As , the variable can be reparameterized by
its eigendecomposition:

Problem (A) can then be rewritten as

’ (C)

Following the same methodology as in the previous section,
we partition the variables as and derive an
algorithm that updates the blocks in cyclic order by minimizing
an upperbound of the objective.
Given a starting point , one it-

eratively
• updates for fixed and

by minimizing a set of surrogates functions
for ,

• updates for fixed and
by minimizing a set of surrogates functions

for ,
• updates for fixed and

by minimizing the objective . under
orthonormality constraints. This step is done by iteratively
minimizing surrogate functions
(so there is an inner-loop in the block MM iterations).

This procedure is summed up in the box Algorithm 2.

A. Update with Fixed and
Let and . To lighten notation,

we omit the reference on for these variables in this part. The
objective function is separable in the ’s, and for each of them
the following problem (noticing that has zero eigen-
values) should be solved:

(C1)

with . Notice that the objective function of (C1)
has the same form as (8), therefore we can apply Propositions 1
and 2 to obtain the ’s updates as

(18)

where .

B. Update With Fixed and
Let and . As before we omit

the reference on for these variables in this part. The objective

function is separable in the ’s, and for each of them the fol-
lowing problem should be solved:

(C2)

with . Notice that the ’s in (C2) play a similar
role as the ’s in (C1). Similar to the update of , we can apply
Propositions 1 and 2 to obtain the ’s updates as

(19)

where .

C. Update With Fixed and
With and fixed, minimizing the objective .

is equivalent to solving the problem

’ (C3)

where

(20)

We start with the following proposition.
Proposition 5: The function

(21)

can be lowerbounded by the surrogate function

(22)

with equality achieved at .
Proof: As the matrices are Hermitian positive

semidefinite, the objective function is convex, and therefore is
minorized by its first order Taylor expansion at , which is the
considered surrogate function (22).
Maximizing , under orthonor-

mality constraints on the , is equivalent to solving

(23)

where

(24)
and

(25)
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i.e., is constructed by stacking the column vectors .
Problem (23) is equivalent to

(26)

Let the thin SVD of be , the optimal is
given by [45]

(27)

Note that in this step, we maximize the objective function
of (C3) by iteratively maximizing a series of surrogates (steps
7–11 in Algorithm 2). These iterations lead to a local solution of
(C3). While the block MM framework indicates a cyclic update
of the variables , our numerical tests reveal that
including this inner loop provides a faster decreasing rate of the
objective value than updating the ’s only once.

Algorithm 2: Eigenspace Block Majorization-Minimization
Algorithm

1: Compute the sample covariance matrix
.

2: Initialize to be the first leading eigenvalues of
to be the corresponding eigenvectors,

and to be arbitrary positive real numbers.
3: repeat
4: Update with (18).
5: Update with (19).
6: Compute with (20).
7: repeat (optional inner loop)
8: Compute with (25).
9: Decompose as (Thin SVD).
10: Update as .
11: until Some convergence criterion is met
12: until Some convergence criterion is met
13: .

D. Convergence Analysis

Since the constraint set of Problem (C) is non-convex, the
convergence result provided in [46] cannot be applied here. To
the best of our knowledge, there is no convergence result of gen-
eral block descent type algorithms with a non-convex constraint
set. The sequence of objective values generated by Algorithm 2
will converge because of monotonicity, but the convergence of
the points remains unknown. Neverthe-
less, Section VI will show that the numerical performance of
Algorithm 2 is satisfactory.

V. HYPER-PARAMETERS ESTIMATION

The clutter subspace estimation algorithms proposed in this
paper assume the prior knowledge of two hyper-parameters: the
clutter rank and the white Gaussian noise power . These
assumptions are made for deriving a valid and clear theoret-
ical framework, focusing on the core of the subspace estima-
tion problem. In practice, the proposed algorithms can be called
using plug-in estimates and .

To estimate the clutter rank, there are several methods present
in the literature ( ., [8]–[10] and references therein). More-
over, in some applications, the clutter rank can be derived from
the geometry of the system (such as in STAP [11] thanks to the
Brennan rule [12]).
Regarding the WGN power, the algorithms derived in this

paper can also be extended to estimate it by introducing one
more block for the parameter . The update of this block for

fixed can be obtained bymajorizing the objective function
. in a way similar to the parameters . To account for

possible knowledge on the lower and upper bounds of theWGN
power [47], [48] (denoted by and , respectively), one can
further impose the constraint that . For the sake
of simplicity and presentation clarity, we focused on the part
of estimating , which is the bottleneck of the considered
problem. Estimating jointly is therefore left as a potential
extension of this work.

VI. NUMERICAL RESULTS
This section is devoted to numerical simulations to illustrate

the performance of different CM estimators in the considered
context. In particular, we will study the following clutter sub-
space projector estimators:
• : the clutter subspace projector estimator
derived from the EVD of the SCM defined as

.
• : the clutter subspace projector estimator derived
from the EVD of the Shrinkage-FPE (SFPE) [34]–[36],
which is a regularized Tyler’s estimator [24] defined as the
unique solution of the following fixed-point equation:

for . This estimator can be
computed with the simple fixed point iterations provided
in [34]–[36]. Since there is no rule to adaptively select the
optimal shrinkage parameter for the considered problem,
we test the following values: ,
which is the lowest allowed for the under-sampled cases

and coincides with Tyler’s estimator (referred
to as FPE) for the over-sampled cases ;

; and . We set .
• : the clutter subspace projector MLE com-
puted with the direct block-MM Algorithm in Section III.

• : the clutter subspace projector MLE com-
puted with the Eigenspace block-MM Algorithm in
Section IV.

• : the clutter subspace projector MLE under high
CNR assumption, computed with Algorithm 1 provided in
[44]. This algorithm will be referred to as “Algorithm 3”
in the rest of the paper.

• : the clutter subspace projector Approached
MLE under high CNR assumption, computed with Algo-
rithm 2 provided in [44]. This algorithm will be referred
to as “Algorithm 4” in the rest of the paper.

A. Validation Simulations and Algorithm Complexity
Simulation Parameters: Samples are generated according

to the LR Compound Gaussian plus WGN model described in
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Fig. 1. Objective value versus number of iterations for different MLE algo-
rithms: Direct Block-MM (red), Eigenspace Block-MM (blue), “MLE” algo-
rithm of [44] (black), “A-MLE” algorithm of [44] (green).

dB.

Section II: . The WGN is distributed as
and . The LR Compound Gaussian clutter

is distributed as , with a random tex-
ture . generated for each sample. The texture PDF is a
Gamma distribution (leading to a K-distributed clutter) of shape
parameter and scale parameter , denoted ,
which satisfies . The rank clutter CM is con-
structed with the largest eigenvalues and the corresponding
eigenvectors of a Toeplitz matrix of correlation parameter

. This matrix is then scaled to set the CNR, defined as
, to a given value.

Fig. 1 displays a typical realization of the objective value
versus the number of iterations of different algorithms. The ob-
jective value at each inner loop is also displayed for the pro-
posed algorithms. One can observe that the MLE and A-MLE
algorithms from [44] converge to a sub-optimal point of the
problem. This was to be expected since these algorithms are op-
timizing a modified likelihood (assuming High CNR, the WGN
is ignored over the clutter subspace). The MLE Algorithm pro-
vides a slightly better objective value than the A-MLE algo-
rithm, thanks to the use of the modified gradient descent algo-
rithm [45] instead of an EVD relaxation for updating the sub-
space estimate. Contrary to these algorithms, the Block MM
algorithm (Algorithm 1) converges to a critical point with a
smaller objective value. We also notice that Algorithm 2 con-
verges in practice to the same point as Algorithm 1, i.e., a crit-
ical point.
Fig. 2 displays a typical another realization of the objective

value versus the time of computation. It illustrates that despite
a fast convergence, Algorithm 3 has a slow computation due to
the use of the modified gradient descent [45]. It also shows that
Algorithm 2 is less computationally intensive than Algorithm 1
since it requires less time to converge. This can be explained by
the fact that constructing the update of (step 6) in Algorithm
1 has a complexity that grows linearly with the sample size. On
the contrary, the inner loops (steps 7–11) in Algorithm 2 involve

Fig. 2. Objective value versus computation time for different MLE algorithms:
Direct Block-MM (red), Eigenspace Block-MM (blue), “MLE” algorithm of
[44] (black), “A-MLE” algorithm of [44] (green).

dB.

Fig. 3. Mean NMSE of the estimators (magenta), (orange),
(green), (red), (blue), for

different (black), versus the number of samples .
dB.

the SVD of a matrix of fixed dimension, which is not costly in
comparison.
Fig. 3 displays the mean NMSE criterion (

for a given estimator ) versus of the estimators
(with and ),
and for a given configuration (computed over

100 Monte-Carlo simulations). It illustrates the performance of
the proposed methods: block MM Algorithms 1 and 2 reach
the identically lowest NMSE, and algorithms from [44] lead to
slightly higher NMSE, yet better than the SFPE with various ,
and the SCM.
Fig. 4 displays the mean computation time (over 100 Monte

Carlo simulations) of the algorithms for the same set of parame-
ters as in previous figures. The stop criterion for each algorithm
is when the minimum achievable objective value is reached up
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Fig. 4. Mean Computation time of each MLE algorithm over 100Monte-Carlo
Simulation, versus . Same parameters as Fig. 3. Algorithms stop criterion:
minimum achievable objective value is reached up to 1%. Stopping criterion
for Algorithm 2 inner loop: : . Computer specifics:
Intel(R) Core(TM) i5-3230M CPU @2.6 Ghz.

to 1% (The limit value is obtained by a prior run of the con-
sidered algorithm for a sufficiently long time until the objective
value stabilizes). This criterion is chosen to provide a fair com-
parison in terms of computational time for algorithms with dif-
ferent convergence rates. The computation time of MLE Algo-
rithm 3 is not displayed since this algorithm (relying on a costly
gradient descent) always reaches a maximum time stop crite-
rion, greatly larger than the presented values (as seen in Fig. 2).
One can observe that Algorithm 2 and 4 are the “fastest” al-
gorithms, which is due to their low computational cost at each
step. Algorithm 4 is the less computationally intensive since it
has a fast convergence, as observed in Figs. 1 and 2. Never-
theless, Algorithm 1 and 2 offer better performance (see Fig. 3).
We also point out that, although Algorithm 2 is computationally
faster than Algorithm 1, the latter has more theoretical guaran-
tees (convergence to a critical point). Both Figs. 3 and 4 illus-
trate the applicative interest of the two proposed computation
methods. Indeed, they reach the best estimation performance for
the considered model at a low computational cost.

B. Application to LR-STAP Filtering
STAP is a technique used in airborne phased array radar to

detect a moving target embedded in an interference background
such as jamming or strong clutter [11]. The radar receiver con-
sists of an array of antenna elements processing pulses
in a coherent processing interval. The received signal is

, where is the target power and is the so-called
STAP steering vector, is the heterogeneous ground clutter and
is the thermal noise. It is important to notice that the applica-

tion fits the model considered in this paper since in side looking
STAP, the clutter CM is known to be LR. Moreover, the rank
of the clutter CM can be evaluated thanks to the Brennan Rule
[12]. Since the clutter could behave heterogeneously, the total
interference can be modeled as LR Compound Gaussian (the
ground clutter) plus WGN (the thermal noise).
The theoretical optimal STAP filter is [11].

In the context of an LR clutter, it is well-known that a correct

sub-optimal filter [6], [14] is . In
practice, is unknown and has to be estimated using the sam-
ples to perform adaptive filtering. The adaptive LR filter is
then , with being an estimate of
the clutter subspace projector. Consequently, the performance
of the LR filters directly relies on the estimation accuracy of

. To evaluate the performance, we use the SINR-Loss cri-
terion [11], which is the expected ratio between the
computed for , and computed for the optimal
filter . For an estimate of the clutter subspace ,
the SINR-Loss expression is given by

(28)

We consider the following STAP configuration. The number
of sensors is 8 and the number of coherent pulses is also 8.

The center frequency and the bandwidth are equal to
MHz and MHz, respectively. The radar velocity is 100
m/s. The inter-element spacing is ( is the celerity
of light) and the pulse repetition frequency is Hz.
The clutter CM is computed according to the model described
in [11]. The rank of the clutter CM is evaluated from the
Brennan rule and is equal to , therefore, the LR
assumption is valid. The texture PDF is a Gamma distribution
of shape parameter and scale parameter , so the
clutter follows a K-distribution. The target has a celerity of

m/s and is at Azimuth. CNR is defined as CNR
, and we set .

Since the two proposed algorithms have been shown to reach
identical performance in Fig. 3, we only display the results
for the projector estimate computed with the fastest algorithm,
namely Algorithm 2 (Eigenspace Block MM), referred to
as in the following. Algorithm 3 and Algorithm 4
(respectively “MLE” and “A-MLE” of [44]) have also been
shown to reach identical performance, therefore we only dis-
play results for the projector estimate computed with Algorithm
3, referred to as .
Fig. 5 displays the SINR-Loss versus for various clutter

configurations: from average to high CNR (10 dB, 20 dB, and
30 dB) and for mildly and highly heteroge-
neous clutter. First, one can state that reaches the best
SINR-Loss for all configurations. Under standard conditions (20
dB and 30 dB of CNR and ), and pro-
vide a clutter subspace projector estimate that is close to the

, hence they have similar performances in terms of
SINR-Loss. One can observe that under these conditions, the
classical dB SINR-Loss of the filter built from is
reached with samples, as theoretically expected from
[14], [22]. also reaches a performance close to
but requires samples to be computed. can be
computed with a smaller , but its SINR-Loss decreases as
increases (which is expected since a larger implies a higher
bias). When standard conditions are not met (low/average CNR
or highly heterogeneous clutter), one can see that the perfor-
mance of and greatly drops compared to other
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Fig. 5. Mean SINR-Loss of the adaptive LR filters built from various clutter subspace projector estimators: (blue), (red), for (ma-
genta), (cyan) and (black), computed with Algorithm 2: EBMM (green), computed with algorithm “A-MLE” from [44] (orange). The
SINR-Loss is presented for various clutter configurations. Columns from the left to the right: dB, dB, dB. Up row:
(mildly heterogeneous clutter), Down row: (highly heterogeneous clutter).

estimators. On the contrary, offers a better resistance
to these conditions and also outperforms and .

C. Note on the Robustness to a Wrong Rank Evaluation

One can not directly study the estimation accuracy (NMSE)
on for estimators with various ranks since projectors on sub-
spaces of different dimension are not comparable objects. Such
a comparison in NMSE can be done, for example, in terms of
reconstructed total CM. For this criterion, [44] showed that the
proposed approach is robust to a misevaluated rank.
The robustness to a wrong rank evaluation can also be rele-

vantly studied through a criterion linked to the considered ap-
plication. For example, for the LR-filtering problem:
• If the rank is under-evaluated, then a portion of the interfer-
ence may not be completely canceled by the filter, leading
to poor performances in terms of output SINR.

• If the rank is over-evaluated, the interference may be com-
pletely canceled, but the filter can also cancel a part of the
target response, also leading to a lower output SINR.

However, these phenomena depend highly on the clutter and
target parameters, which is why a corresponding study goes be-
yond the scope of this paper, as it is more a problem related to
a process design rather than a subspace estimation accuracy.

VII. CONCLUSION

In this paper, we derived two algorithms based on the block
MM framework for computing the MLE of the CM parameter
when the samples are modeled as the sum of an LR Compound
Gaussian (with known rank) and aWGN. This complex problem

was initially considered in [43] and [44], where several algo-
rithms were proposed. The new algorithms proposed in this
paper enjoy two major advantages: firstly, they do not rely on
any heuristic (as in [43]) or high CNR assumption (as in [44]),
thus they reach the exact MLE (at least locally) of the consid-
ered problem with no approximation; secondly, they are compu-
tationally faster and easier to implement than the ones derived
in [43] and [44], as they do not require the use of the modified
gradient descent algorithm [45], which can be computationally
expensive. The performance of the related estimators was illus-
trated on Space Time Adaptive Processing filtering for airborne
radar simulations.
As a side benefit of this study, we emphasize that the pro-

posed algorithms allow a full estimation of the CM parameters,
while presented simulations only focus on the clutter subspace
projector estimation. They could therefore be suitable for other
applications that involve the estimation of Low Rank structured
Covariance Matrices.

APPENDIX A
PROOF OF PROPOSITION 1

Before going to the formal proof of Proposition 1, we need to
first state the two following lemmas:
Lemma 6 ((5) of [49]): For and , the function

can be lower bounded by
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where is some arbitrary positive real number. The equality is
achieved at . More specifically, in the uni-dimensional
case and for , one has

(29)

Lemma 7: The function with can

be upperbounded by

(30)

where is some arbitrary real number such that
. The equality is achieved at
Proof: The function is concave, and Jensen’s in-

equality states that

(31)

for and , and equality is achieved if the ’s are
equal. Let , we have

(32)

Rearranging the terms leads to the inequality (30), with equality
achieved at , which corresponds to

.
We can now turn to the proof of Proposition 1:
Proof: Ignoring the constant term, can be written

as:

(33)

First, applying (29) of Lemma 6 to the second term of (33) (with
parameterized as ) yields

(34)

where the equality is achieved at . This upperbound is
convex in , but the minimizer cannot be computed
in closed-form. Denote

and

We now apply (30) of Lemma 7 to the first term of the upper-
bound in (34), which leads to:

(35)

Ignoring the constant term, we arrive at the surrogate function
defined in Proposition 1. Note that the equality

still holds at .

APPENDIX B
PROOF OF PROPOSITION 2

Proof: The surrogate function, ignoring the constant term,
has the form

The gradient of this surrogate function is

and a zero of the gradient can be solved in closed-form as

Since

and

we have . Therefore,
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It remains to be shown that is the unique minimizer of
on .

First assume that . Since is positive,
as . Besides, as

as . Since
is finite, is the unique minimizer by the continuity
of . If , then . Function

is monotonically increasing on , therefore
is the unique minimizer. Moreover, as

is a one-dimensional function, it has to be quasi-convex [50].

APPENDIX C
PROOF OF PROPOSITION 3

Proof: By the matrix inversion lemma we have the fol-
lowing equality:

(36)

where . Therefore, the second term of
can be written as

(37)

which is jointly concave in . The differential of (37) can
be computed according to (38).

(38)

The concavity of (37) implies that it can be upperbounded by
its first order Taylor expansion around the pair , i.e.,

(39)

Substituting into (39) leads to the following
quadratic upperbound for :

(40)

where

(41)
and

(42)

As for the term in , we can apply the
Sylvester’s determinant theorem

(43)

and get the upperbound

(44)

by linearization over .
Together with (40) we have an upperbound (ignoring the con-

stant terms) for at as

(45)

where

(46)

and

(47)
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