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Design of PAR-Constrained Sequences for MIMO
Channel Estimation via Majorization–Minimization

Zhongju Wang, Prabhu Babu, and Daniel P. Palomar, Fellow, IEEE

Abstract—Communication systems and radars widely employ
sequences of low peak-to-average power ratio (PAR) or unimod-
ulus to meet the hardware constraints and maximize the power
efficiency. Numerous works have probed the unimodular sequence
design especially attempting to obtain good correlation properties.
Regarding channel estimation, however, sequences of such prop-
erties do not necessarily qualify for the mission. And tailored uni-
modular sequences for the specific criterion concerned are more
desirable when we have access to the prior knowledge of the chan-
nel impulse response. In this paper, we formulate the problem of
unimodular sequence design by optimizing minimum mean square
error and conditional mutual information, respectively. The prob-
lems turn out nonconvex and we develop efficient algorithms based
on the majorization–minimization framework with convergence
guaranteed. More general, we also examine optimal sequence de-
sign with low PAR constraints. Numerical examples demonstrate
the improved results of mean square error, signal-to-noise ratio,
and conditional mutual information by using our proposed training
sequences, with the efficiency of the derived algorithms illustrated.

Index Terms—Channel estimation, conditional mutual infor-
mation, majorization-minimization, minimum mean square error,
peak-to-average power ratio (PAR), unimodular sequence.

I. INTRODUCTION

S EQUENCES with the peak-to-average power ratio (PAR)
constraints find many applications in both single-input

single-output (SISO) and multi-input multi-output (MIMO)
communication systems. For example, the M -ary phase-shift
keying techniques allow only symbols of constant-modulus,
i.e., unimodulus, to be transmitted [1]. In MIMO radars
and code-division multiple-access (CDMA) applications, the
practical implementation demands of hardware such as radio
frequency power amplifiers and analog-to-digital converters re-
quire the transmitted sequences to be unimodular or of low PAR
[2]–[4]. In this paper, we consider the design of unimodular and
low PAR sequences for channel estimation.

There is an extensive literature on designing unimodu-
lar sequences with good correlation properties such that the
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autocorrelation of the sequence is zero at each nonzero lag.
Whereas such properties are usually difficult to achieve, alterna-
tive metrics of “goodness” have been suggested where autocor-
relation sidelobes are suppressed rather than exactly eliminated.
Minimizing integrated sidelobe level (ISL) and maximizing
ISL-related merit factor (MF) are put forward in [5] with cyclic
algorithms (CA) proposed to solve the formulated optimization
problems. In [6], a further computationally efficient algorithm
called MISL for minimizing ISL is proposed, reporting lower
autocorrelation sidelobes with less computational complexity.
The more general weighted ISL is addressed in [5], [7].

The good correlation properties of a single unimodular se-
quence are also extended to a set of sequences so that the spatial
diversity is further exploited. Apart from good autocorrelation
properties for each sequence, the good cross-correlation re-
quires each sequence to be nearly uncorrelated with time-shifted
versions of the other sequences [3]. Some other numerical
algorithms quest for refined sequence sets with enhanced good
correlation properties [8]. Similarly, [9] explores methods to
synthesize a desired beam pattern while maximally suppress-
ing both the autocorrelation and cross-correlation sidelobes
at/between given spacial angles.

The aforementioned ISL and ISL-related metrics indeed por-
tray no more than the impulse-like correlation characteristics.
Sequences with such properties enable matched filters at the
receiver side to easily extract the signals backscattered from the
range bin of interest and attenuate signals backscattered from
other range bins [3]. Nevertheless, matched filters take no ad-
vantage of prior information of the channel impulse response
as the unimodular low-ISL sequences are employed for the en-
suing estimation. Such prior information, however, is usually
available without incurring considerable expenses. Herein we
will harness the potential of the second order channel statistics
in the sequence design.

On the other hand, the unimodular constraint is a special case
of the low PAR constraint, i.e., unit-PAR. The low PAR con-
straint, as a structural requirement, has been well studied in the
design of tight frames [2]. Although we can adjust the individ-
ual vector norms of a frame to maximize, e.g., sum-capacity of
communications links, [2] has not established the optimality re-
garding specific performance measures. Furthermore, the algo-
rithm they proposed is based on alternating projection that often
suffers a slow convergence rate. General optimization problems
with quadratic objectives derived from, e.g., SNR maximization,
have also been studied in [10], [11].

Within the PAR constraints, rather than exploit only the spatial
diversity, we design sequences tailored for specific performance
measures with channel covariance incorporated and expectedly
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improve the quality of constructed estimators. As to sequence
design for channel estimation, many studies have been con-
ducted for both frequency-flat and frequency-selective fading
channels with minimum mean square error (MMSE) minimiza-
tion and conditional mutual information (CMI) maximization.
Those optimization problems, however, address only the en-
ergy constraint without addressing the unimodular or low PAR
constraints; see [12]–[19] and references therein on training se-
quence design for flat MIMO channels.

More related to our work is training sequence design for
frequency-selective fading channels as high-speed transmis-
sion applications entail [20]. Optimal sequences design for the
MMSE channel estimation has been studied; see, e.g., [21].
MIMO radar waveform design for extended target identifica-
tion is investigated in [22] based on MMSE and CMI criteria
assuming the covariance matrix of the target impulse response
is known. By a different approach, MIMO radar waveforms are
designed to maximize the SINR with statistics of target and/or
clutter impulse response [23]. The low PAR constraints, how-
ever, are not considered in those optimization problems, which
often results in a deteriorated performance compared with un-
optimized low PAR reference waveforms [24]. In addition, a
two-stage approach—obtaining an optimal waveform covari-
ance matrix followed by shaping PAR-constrained waveforms
accordingly—has been suggested [25]. Nevertheless, the opti-
mality of the designed waveforms with respect to the MMSE
or the CMI was not validated. Moreover, this approach is sus-
ceptible to the fact that the optimal waveform covariance matrix
is often unattainable. Some other heuristic methods are also
proposed to capitalize on, e.g., the similarity constraint given a
good reference sequence [24] or spectral containment restric-
tions with pre-specified amplitudes [26], [27].

We formulate the problem of designing optimal unimodular
sequences based on the MMSE and the CMI. Both problems are
non-convex with the bothersome unimodular constraint. With-
out assuming any amenable structures on the prior channel and
noise covariance matrices, the problems are also challenging
even if only the power constraint is imposed. To tackle those
issues, we employ the majorization-minimization (MM) tech-
nique to develop efficient algorithms. Note that [6]–[8] have
used the MM method to devise algorithms for unimodular
sequence design, yet the optimization problems addressed in
this paper are formulated by different criteria, which has de-
ployed the prior channel statistics to benefit the estimation. By
rewriting the objective functions in a more appropriate way, we
obtain the majorizing/minorizing functions for the minimiza-
tion/maximization objective. As a result, the original problems
are solved instead by a sequence of simple problems, each of
which turns out to have a closed-form solution. Convergence of
our proposed algorithms is guaranteed, and we provide an accel-
eration scheme to improve the convergence rate. For low PAR
constraints, similar problems can be formulated, and the devel-
oped algorithms need only a few modifications to be applied.
The numerical examples demonstrate the superior performance
of our proposed sequences in the resulting MSE and CMI; also,
the output SNR has been improved, which justifies our account
of prior channel information.

The rest of this paper is organized as follows. In Section II, we
describe the channel model and then formulate the problems of
optimal unimodular sequence design. In Section III, derivations
of algorithms for both the MMSE minimization and the CMI
maximization are presented, followed by a brief analysis of
convergence properties and an acceleration scheme. The optimal
design under the low PAR constraints is discussed in IV. We
present some numerical examples in Section V, and draw a
conclusion in Section VI.

Notation: Scalars are represented by italic letters. Boldface
uppercase and lowercase letters denote matrices and vectors,
respectively. C is the set of complex numbers. The identity
matrix is denoted by In , where the subscript n denotes the
size; in the cases where the subscript is undeclared, the size
is implicit in the context. The superscripts (·)T , (·)H , and (·)∗
denote respectively transpose, conjugate transpose, and com-
plex conjugate. By vec(X), the vector is formed by stack-
ing the columns of X. The Kronecker product is denoted
by ⊗. And E(·) takes the expectation of a random variable.
Tr(·) is the trace of a matrix. ‖ · ‖F is Frobenius norm of a
matrix.

II. CHANNEL MODEL AND PROBLEM FORMULATIONS

We consider a block-fading or quasistatic multi-input multi-
output (MIMO) channel. Assume the number of transmit an-
tennas and receive antennas are Nt and Nr , respectively, and
the channel impulse response is described as a length-(K + 1)
sequence of matrices H0 , . . . ,HK ∈ CNr ×Nt . In the train-
ing period, a length-N sequence is sent through the chan-
nel from each transmit antenna or, equivalently, a length-Nt

vector un from the set of transmit antennas at the time in-
stant n = 1, . . . , N . For simplicity, we still call this sequence
of vectors as a sequence, which is denoted by U = [un,m ] =
[u1 · · · uN ]T ∈ CN ×Nt . Considering the unimodular con-
straint with energy budget Tr(UH U) = α, we want to design
U ∈ U , where

U =
{
U

∣∣∣∣ |un,m | =
√

α

NNt
, n = 1, . . . , N ;m = 1, . . . , Nt

}
.

(1)
And the received sequence is given by

yn =
K∑

k=0

Hkun−k + vn , (2)

where un = 0 when n ≤ 0 or n > N , and vn is an Nr × 1
noise vector. Equation (2) can be written in a matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yT
1
...
...
...

yT
N +K

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

uT
1 0
...

. . . uT
1

...
. . .

...

uT
N

. . .
...

0 uT
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

HT
0

...
HT

K

⎤
⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vT
1
...
...
...

vT
N +K

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3)
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Let Y = [y1 · · · yN +K ]T ∈ C(N +K )×Nr be the received
matrix, and

S = T (U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

uT
1 0
...

. . . uT
1

...
. . .

...

uT
N

. . .
...

0 uT
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ C(N +K )×(K +1)Nt (4)

be a block Toeplitz convolution matrix with [UT 0 ]T being
the first block and remaining blocks are obtained by a downward
circular shift of the previous block. Note that since Tr(UH U) =
α, then Tr(SH S) = α(K + 1). H = [H0 · · · HK ]T ∈
C(K +1)Nt ×Nr is the channel impulse response with matrix-
form taps, and V is the noise matrix. Thus, we can write in a
compact way the received signal as

Y = SH + V. (5)

It can be easily seen that each column of Y corresponds to
a received sequence for one of the Nr receive antennas, i.e.,
a multi-input single-output (MISO) channel. Let y = vec(Y),
h = vec(H), and v = vec(V), and based on vec(XYZ) =
(ZT ⊗ X)vec(Y), we have

y = (INr
⊗ S)h + v. (6)

A. Heuristic Existing Methods

Most of the current works on unimodular sequence design
focus on good auto- and cross-correlation properties; see [3]
on MIMO radar unimodular codes and references therein. The
good correlation properties are particularly desired in that the
matched filter is employed in subsequent channel estimation.
As a matter of fact, the obtained channel estimate is closely
related to maximum likelihood estimation (MLE). Assume h in
the channel model (6) is a constant (thus no prior on the channel
imposed), and the vectorized noise follows a circularly complex
Gaussian distribution, v ∼ CN (0, σ2I). The MLE of channel
impulse is [28]

ĥML =
(
(INr

⊗ S)H (INr
⊗ S)

)−1
(INr

⊗ S)H y (7)

=
(
INr

⊗ SH S
)−1

(INr
⊗ S)H y, (8)

where the second equality is due to (X ⊗ Y)(M ⊗ N) =
XM ⊗ YN. And the corresponding MSE is given by

E = Tr
((

(INr
⊗ S)H (INr

⊗ S)
)−1

)
(9)

= Tr
((

INr
⊗ SH S

)−1
)

(10)

= NrTr
((

SH S
)−1

)
. (11)

To minimize the error of MLE, the training sequence should be
a solution to the optimization problem

minimize
U ,S

E subject to S = T (U) ,U ∈ U . (12)

Lemma 1 ([30]): Let X ∈ CM ×N be such that Tr(XH X) ≤
μ for some constant μ. The minimum of Tr((XH X)−1) is
achieved when XH X = μ

N I, provided that inverse of XH X
exists.

An approximation to problem (12) is as follows. According
to Lemma 1, the objective function (11) is minimized when
(Tr(SHS) = α(K + 1))

SH S =
α

Nt
I(K +1)Nt

, (13)

if only the energy constraint is considered. Therefore, a heuristic
approximation of the optimal sequence design for MLE could
be formulated as

minimize
U ,S

∥∥∥SH S − α
Nt

I
∥∥∥2

F

subject to S = T (U) ,U ∈ U .
(14)

The optimal S satisfying (13) portrays an impulse-like cor-
relation shape pursued in [3], [8], where the aperiodic cross-
correlation is defined as

rm 1 ,m 2 (k) =
N∑

n=k+1

un,m 1 u
∗
n−k,m 2

(15)

for m1 ,m2 = 1, . . . , Nt and lags k = 0, . . . , N − 1.
Equation (15) also defines the autocorrelation for the sequence
of each transmit antenna when m1 = m2 . Accordingly, the cor-
relation matrices for different lags k = −(N − 1), . . . , 0, . . . ,
(N − 1) are given by

Σk =

⎡
⎢⎢⎢⎣

r1,1 (k) r1,2 (k) · · · r1,Nt
(k)

r2,1 (k) r2,2 (k) · · · r2,Nt
(k)

...
...

. . .
...

rNt ,1 (k) rNt ,2 (k) · · · rNt ,Nt
(k)

⎤
⎥⎥⎥⎦ , (16)

with rm 1 ,m 2 (−k) = r∗m 1 ,m 2
(k), and Σ−k = ΣH

k . Let us define
the correlation matrix for a sequence S as

Σ = SH S, (17)

and then we have

Σ =

⎡
⎢⎢⎢⎣

Σ0 Σ−1 · · · Σ−K

Σ1 Σ0 · · · Σ−(K−1)
...

...
. . .

...
ΣK ΣK−1 · · · Σ0

⎤
⎥⎥⎥⎦ . (18)

Note that Σ only describes correlations at lags of interest,
which in this case is determined by the length of the channel
impulse response. To achieve the optimality dictated by (13),
we can rewrite approximation problem (14) as

minimize
U

(K + 1)
∥∥∥Σ0 − α

Nt
I
∥∥∥2

F

+ 2
K∑

k=1
(K + 1 − k) ‖Σk‖2

F

subject to U ∈ U .

(19)

The objective function of (19) is indeed the weighted correlation
minimization criterion within the lag interval k = 0, . . . , K
[3], for which algorithms WeCan and CAD were proposed.
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Another formulation is also presented in a similar attempt to
procure the good correlation property as

minimize
U

∥∥∥Σ0 − α
Nt

I
∥∥∥2

F
+ 2

N −1∑
k=1

‖Σk‖2
F

subject to U ∈ U ,

(20)

for which an algorithm called CAN was developed in [5], and
WeCAN can be employed as well. In [8], both problems (19)
and (20) were studied by considering a more general weighted
formulation, and efficient algorithms were proposed.

We can see that sequences with good auto- and cross-
correlation properties are desirable in general as no prior in-
formation on the channel is taken into account in the ensuing
channel estimation task. Channel statistics, however, are often
available on both the transmitter sides and receiver sides, and
incorporating those priors into the design of the training se-
quence will improve the performance of channel estimator. In
the following subsections, we will formulate the unimodular se-
quence design problem based on the MMSE minimization and
the CMI maximization, both of which have been adopted as
criteria in various estimation problems. In order for the channel
model (6) to be general, we assume h ∼ CN (h0 ,R0), and the
noise v ∼ CN (0,W), where both the channel covariance R0
and the noise covariance W are arbitrary.

B. Optimal Sequence Design by Minimizing the MMSE
Criterion

Given the channel model (6), by minimizing the MSE
E{‖ĥMMSE − h‖2}, the MMSE estimator of the channel im-
pulse h is given by

ĥMMSE = R0 S̃H
(
S̃R0 S̃H + W

)−1 (
y − S̃h0

)
+ h0 ,

(21)
where S̃ = INr

⊗ S [28]. And the error covariance matrix is

R = E
{(

ĥMMSE − h
)(

ĥMMSE − h
)H

}
(22)

= R0 − R0 S̃H
(
S̃R0 S̃H + W

)−1
S̃R0 (23)

=
(
R−1

0 + S̃H W−1 S̃
)−1

, (24)

where the last equality is due to the matrix inversion lemma
[29]. The MMSE is thus given by

MMSE (S) = Tr (R) , (25)

and the following problem can be formulated

minimize
U ,S

MMSE (S) subject to S = T (U) ,U ∈ U ,

(26)
which gives the optimal unimodular training sequence for the
MMSE channel estimation.

C. Optimal Sequence Design by Maximizing the CMI
Criterion

Apart from the MMSE criterion, another popular statisti-
cal measure in channel estimation is the conditional mutual

information (CMI) between the channel impulse response and
the received sequence, e.g., [12]. The CMI is defined as

CMI (S) = I (h;y |S ) (27)

= H (h) − H (h |y,S ) , (28)

where H(·) is the differential entropy of a distribution [31].
Under the linear model (6) with Gaussian distributed channel
impulse and noise, we have the conditional distributionh|y,S ∼
CN (ĥ,R). Then CMI(S) can be written as

CMI (S) =
1
2

log
(
(2πe)(K +1)Nt Nr det (R0)

)

− 1
2

log
(
(2πe)(K +1)Nt Nr det (R)

)
(29)

=
1
2

log det
(
R0R−1) . (30)

By maximizing CMI(S) we reach the following optimization
problem

maximize
U ,S

CMI (S) subject to S = T (U) ,U ∈ U . (31)

Remark: It should be mentioned that channel model (6) in-
cludes the SISO channel as a special case. A lot of efforts have
been made to construct unimodular sequences for SISO chan-
nels via either analytical methods or computational approaches.
Apart from early works on binary sequences and polyphase se-
quences, e.g., [32], [33], numerical algorithms are provided to
design unimodular sequences of good correlation properties [5],
[6]. Let Nt = Nr = 1 and u denote the training sequence, then
S = T (u) is a Toeplitz convolution matrix and expression (16)
reduces to a scalar that gives autocorrelations at different lags for
the sequence u. And similar formulations as (19) and (20) are
proposed in order to obtain sequences of good autocorrelation
properties. However, as we have seen in the previous discussion,
the resulting channel estimate cannot benefit from the available
knowledge of channel statistics. Therefore, designing optimal
training sequences by minimizing the MMSE criterion or max-
imizing the CMI criterion will be beneficial in terms of final
estimation performances. Without any modifications, formula-
tions (26) and (31) can be deployed in the context of SISO
channels.

III. ALGORITHMS FOR UNIMODULAR SEQUENCE DESIGN

In this section, we develop efficient algorithms to solve prob-
lems (26) and (31). There is an extensive literature dealing with
optimization problems of similar objective functions with only
power constraint on S where, assuming some special struc-
ture for the prior covariance matrices of channel and noise, the
problems are reformulated as power allocation with waterfilling-
like solutions. In our formulations, however, it is not only the
Toeplitz structure of S but also the tough unimodular constraint
that prevents us from adopting the same approach.

It is worth mentioning that a possible approach to problem
(26) is a two-stage procedure [22] related to correlation shaping.
If the channel noise is independent and identically distributed,
i.e., W = σ2I for some power density σ2 , the objective function
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becomes

MMSE (S) = Tr

((
R−1

0 +
1
σ2 S̃H S̃

)−1
)

(32)

= Tr

((
R−1

0 +
1
σ2 INr

⊗ Σ
)−1

)
, (33)

where the second equality follows from substitution of the
correlation matrix Σ = SH S. Consider only the constraint
Tr(Σ) = (K + 1)α induced by the energy budget in (26), min-
imizing (33) with respect to Σ (instead of S) can be rewritten
as an SDP by resorting to the Schur-complement theorem [34],
which yields the optimal correlation matrix Σ� . Once Σ� is
obtained, the problem boils down to recovering sequences from
its correlation matrix, which is to solve the following approxi-
mation problem

minimize
U ,S

‖SH S − Σ�‖F

subject to S = T (U) ,U ∈ U ,
(34)

if zero error is achievable. For a single sequence and without the
unimodular constraint, problem (34) can be tackled by means of
filter design [35]. However, constructing a unimodular sequence
that presents a prescribed correlation shape is challenging. As
a special case, [3] and [8] have studied this problem only when
the correlation matrix is an identity. On the other hand, it is
not guaranteed that the objective in (34) can reach zero when
minimized. For example, when the number of sequences is rel-
atively large for the training length, it is impossible to design
sequences such that correlation matrix is an identity, i.e., auto-
and cross-correlation cannot be made small simultaneously [3].

Therefore, it is advisable to solve problems (26) and (31)
directly with the colored noise considered. In the following,
we will devise algorithms for both problems based on the
majorization-minimization framework.

A. Majorization-Minimization Framework

The majorization-minimization, or MM method is a general
framework for solving an optimization problem indirectly. In
this section, we will briefly introduce the idea of the MM method
for a minimization problem, and the details can be found in [36],
[37].

The MM method tackles a difficult optimization problem by
solving a series of simple approximation problems. Given a
minimization problem

minimize
x

f(x) subject to x ∈ X , (35)

and a feasible starting point x(0) ∈ X , the MM method mini-
mizes a sequence of surrogate functions g(x,x(t)), t = 0, 1, . . .
instead. Each surrogate function is a majorization function of
f(x) at x(t) that satisfies:

g
(
x(t) ,x(t)

)
= f

(
x(t)

)
, (36)

g
(
x,x(t)

)
≥ f (x) for every x ∈ X , (37)

and

x(t+1) ∈ arg min
x∈X

g
(
x,x(t)

)
. (38)

According to the rules (36) and (37), we have

f
(
x(t+1)

)
≤ g

(
x(t+1) ,x(t)

)
≤ g

(
x(t) ,x(t)

)
= f

(
x(t)

)
,

(39)
and consequently, the MM method produces a sequence of
points x(t) , for which the original objective function of (35)
is monotonically decreased. Provided that the objective func-
tion is bounded below, it is guaranteed that the MM algorithm
will converge to a stationary point.

The key question is then how to find a good majorization
function g(x,x(t)) such that the resulting problems (38) are
easy to solve. Although there is no universal rule to determine
the function g(x,x(t)), the structure of the problem at hand can
nevertheless provide helpful hints and some tricks are suggested
in [36].

B. MM-Based Algorithms

Let us introduce P = S̃R0 S̃H + W, and by (23) the objec-
tive function for the MMSE minimization problem (26) can be
written as

MMSE (S) = Tr
(
R0 − R0 S̃H P−1 S̃R0

)
. (40)

Lemma 2: The function f(X,Z) = Tr(XH Z−1X) is a ma-
trix fractional function and is jointly convex in Z 	 0 and X
[34, pp. 108–111].

By Lemma 2, MMSE(S) = Tr(R0 − R0 S̃H P−1 S̃R0) is
jointly concave in {S̃,P} (recall that S̃ = INr

⊗ S). Since a
concave function is upper-bounded by its supporting hyper-
plane, MMSE(S) can be majorized as follows:

MMSE (S) ≤ gMMSE

(
S,S(t)

)
(41)

= MMSE
(
S(t)

)
+Tr

( (
A(t)

)H

S̃R0 S̃H A(t)
)

− 2Re
{

Tr
(
R0

(
A(t)

)H

S̃
)}

, (42)

where S̃(t) = INr
⊗ S(t) with S(t) = T (U(t)), and A(t) =

(S̃(t)R0(S̃(t))H + W)−1 S̃(t)R0 . To solve problem (26), it suf-
fices to solve iteratively the following problem:

minimize
U ,S

gMMSE
(
S,S(t)

)
subject to S = T (U) ,U ∈ U ,

(43)

For problem (31), the objective function can be written as

CMI (S) =
1
2

log det
(
R0

(
R0 − R0 S̃H P−1 S̃R0

)−1
)

.

(44)
Lemma 3: Given a positive semidefinite matrix M, the func-

tion h(Z,X) = M − MXH Z−1XM is matrix concave over
X of an appropriate size and Z 	 0 [34, pp. 108–111]. Since
− log det(·) is matrix convex and decreasing over positive
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definite cone, − log det(M − MXH Z−1XM) is convex in
{Z,X}.

Owing to Lemma 3, CMI(S) is jointly convex in {S̃,P}, and
we can obtain the following minorization

CMI (S) ≥ gCMI

(
S,S(t)

)
(45)

= Re
{

Tr
(
R0

(
R(t)

)−1 (
A(t)

)H

S̃
)}

(46)

= − 1
2
Tr

((
R(t)

)−1 (
A(t)

)H

S̃R0 S̃H A(t)
)

+ CMI
(
S(t)

)
, (47)

where

R(t) = R0 − R0

(
S̃(t)

)H
(
S̃(t)R0

(
S̃(t)

)H

+ W
)−1

S̃(t)R0 (48)

= R−1
0 +

(
S̃(t)

)H

W−1 S̃(t) . (49)

As a result, solving the CMI maximization problem (31) is
equivalent to solving the series of minorized problems

maximize
U ,S

gCMI
(
S,S(t)

)
subject to S = T (U) ,U ∈ U .

(50)

Notice that problems (43) and (50) share a similar form of
objective function. Let

g
(
S;S(t) ,V(t)

)
= Tr

(
V(t)

(
A(t)

)H

S̃R0 S̃H A(t)
)

− 2Re
{

Tr
(
R0V(t)

(
A(t)

)H

S̃
)}

,

(51)

where V(t) = I for the MMSE minimization problem and
V(t) = (R(t))−1 for the CMI maximization problem. After re-
versing the sign of objective function of (50) and ignoring the
constants and the scaling factor, the following unified problem
is obtained

minimize
U ,S

g
(
S;S(t) ,V(t)

)
subject to S = T (U) ,U ∈ U .

(52)

Lemma 4: Given Hermitian M ∈ Cn×n and Z ∈ Cm×m

and any X(t) ∈ Cm×n , the function Tr(ZXMXH ) can be ma-
jorized by −2Re{Tr((λX(t) − ZX(t)M)H X)} + λ‖X‖2

F +
const, where λI 
 MT ⊗ Z for some constant λ.

Proof: Given λI 
 MT ⊗ LLH for some constant λ, we
have

Tr
(
ZXMXH

)
= vecH (X) vec (ZXM) (53)

= vecH (X)
(
MT ⊗ Z

)
vec (X) (54)

≤ −2Re
{

vecH (X)
(
λI − MT ⊗ Z

)
vec

(
X(t)

)}

+ vecH
(
X(t)

) (
λI − MT ⊗ Z

)
vec

(
X(t)

)

+ λvecH (X) vec (X) (55)

= −2Re
{

Tr
(
λXH X(t) − ZX(t)MXH

)}

+ λ ‖X‖2
F + vecH

(
X(t)

) (
λI − MT ⊗ Z

)
vec

(
X(t)

)
.

(56)

Notice that the third term of the last equation is simply a con-
stant. And a scalar version of Lemma 4 can be found in [8,
Lemma 1]. �

To solve problem (52), yet a second majorization can be
applied with Lemma 4 (note that ‖S̃‖2 = Nr (K + 1)α):

g
(
S;S(t) ,V(t)

)

≤ −2Re
{

Tr
(

λ(t)S̃H S̃(t) − A(t)V(t)
(
A(t)

)H

S̃(t)R0 S̃H

)}

− 2Re
{

Tr
(
R0V(t)

(
A(t)

)H

S̃
)}

+ const (57)

= −2Re
{

Tr
((

λ(t)S̃(t) − A(t)V(t)
(
A(t)

)H

S̃(t)R0

+ A(t)V(t)R0
)H S̃

)}
+ const, (58)

where λ(t)I 
 RT
0 ⊗ A(t)V(t)(A(t))H . The tightest upper

bound will be λ(t) = λmax(RT
0 ⊗ A(t)V(t)(A(t))H ). But com-

puting the largest eigenvalue is costly especially when the size
of the matrix is large, and thus an alternative is advisable. Since
both R0 and A(t)V(t)(A(t))H are positive semidefinite matri-
ces, the largest eigenvalues are bounded as

λmax (R0) ≤ ‖R0‖1 , (59)

λmax

(
A(t)V(t)

(
A(t)

)H
)

≤
∥∥∥∥A(t)V(t)

(
A(t)

)H
∥∥∥∥

1
,

(60)

where ‖ · ‖1 is maximum column sum matrix norm [38]. With
λmax(X ⊗ Z) = λmax(X)λmax(Z), we propose

λ(t) = ‖R0‖1

∥∥∥∥A(t)V(t)
(
A(t)

)H
∥∥∥∥

1
. (61)

Let B(S̃(t) ,V(t)) = λ(t)S̃(t) − A(t)V(t)(A(t))H S̃(t)R0 +
A(t)V(t)R0 , and considering S̃ = INr

⊗ S with S = T (U),
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we have

U(t+1) ∈ arg min
|un , m |=

√
α

N N t

− 2Re

{
Tr

(( ∑
i,j

B[i, j]
)H

U
)}

,

(62)
where B[i, j] is a submatrix of B with rows from (N +
K)(i − 1) + j to (N + K)(i − 1) + N + j − 1 and columns
from Nt(K + 1)(i − 1) + Nt(j − 1) + 1 to Nt(K + 1)(i −
1) + Ntj, for i = 1, . . . , Nr , and j = 1, . . . , K + 1. To find
the next update U(t+1) , note that (62) can be equivalently
written as

U(t+1) ∈ arg min
|un , m |=

√
α

N N t

∥∥∥∥∥∥U −
∑
i,j

B[i, j]

∥∥∥∥∥∥
2

F

. (63)

And the minimum is achieved by projection onto a complex
circle, which is

U(t+1) =
√

α

NNt
ej arg(∑

i , j B [i,j ]), (64)

where arg(·) is taken element-wise.
The whole procedure is summarized in Algorithm 1. The

iterations are deemed to be converged, e.g., when the difference
between two consecutive updates for U is no larger than some
admitted threshold. The Algorithm 1 mainly involves a matrix
inverse operation and several matrix multiplications in each
iteration. We assume (N + K)Nr > (K + 1)NrNt , thus the
number of entries in the received sequences is greater than that
of channel coefficients. With the Gaussian eliminations, the per
iteration computational complexity is in the order of O((N +
K)3N 3

r ).

C. Convergence Analysis

Algorithm 1 is essentially based on the majorization-
minimization framework, which has been shown to converge
to a stationary point for bounded objective functions. The gen-
erated sequence of points U(t) , t = 0, 1, . . . , monotonically de-
creases or increases the objective function for minimization and
maximization problems, respectively. In this section, we give
a detailed analysis of the convergence for Algorithm 1. With-
out loss of generality, we only consider minimizing the MMSE
criterion.

For a constrained minimization problem with a smooth objec-
tive function, a stationary point is obtained when the following
first-order optimality condition is satisfied.

Proposition 1: Let f : RN → R be a smooth function. A
point x� is a local minimum of f within a subset X ⊂ RN if

∇f(x�)T y ≥ 0,∀y ∈ TX (x�), (65)

where TX (x�) is the tangent cone of X at x� .
Provided Proposition 1, the convergence of our proposed

algorithm is guaranteed as follows.
Theorem 1: By solving the series of problems (62) in

Algorithm 1, a sequence of points {U(t) , t = 0, . . . } is obtained,
of which every limit point is a stationary point of problem (26).

Proof: A similar proof has been given in [6]. For details
please refer to [6, Theorem 5]. �

Algorithm 1: Design of Unimodular Training Sequence for
the MMSE Minimization (26) or the CMI Maximization
(31).

1: Set t = 0, and initialize u
(0)
n,m , n = 1, . . . , N ; m = 1,

. . . , Nt .
2: repeat
3: S(t) = T

(
U(t)

)
, and S̃(t) = INr

⊗ S(t)

4: A(t) =
(
S̃(t)R0

(
S̃(t)

)H

+ W
)−1

S̃(t)R0

5: V(t) =
{

I, for the MMSE minimization
R(t) , for the CMI maximization

6: λ(t) = ‖R0‖1

∥∥∥A(t)V(t)
(
A(t)

)H
∥∥∥

1

7: B
(
S̃(t) ,V(t)

)
= λ(t)S̃(t) − A(t)V(t)

(
A(t)

)H

S̃(t)R0 + A(t)V(t)R0

8: U(t+1) =
√

α
N Nt

ej arg(∑
i , j B [i,j ])

9: t ← t + 1
10: until convergence

D. Accelerated Algorithm

To develop Algorithm 1 for solving problems (26) and (31),
the original function was majorized/minorized twice, which
may result in a loose surrogate function; see (41), (45) and
(57). And the performance of the MM method is susceptible to
the slow convergence as EM-like algorithms. Then following
the same idea in [6], [8], we employ an off-the-shelf method,
called squared iterative method (SQUAREM) [39], to accelerate
Algorithm 1. SQUAREM was originally proposed to improve
the convergence of EM-type algorithms and simultaneously
keep its simplicity and stability. It can be easily applied to
accelerate the MM algorithms as well. For details of conver-
gence analysis, also refer to [39]. Without loss of generality,
we only consider acceleration of Algorithm 1 for the MMSE
minimization problem. For the CMI maximization problem, a
similar procedure can be followed.

Given the current point U(t) , we call iterative steps 3 to 8
of Algorithm 1 collectively as one MM update, denoted by
MMupdate(U(t)). The accelerated computing scheme is given
by Algorithm 2. The step length is chosen by the Cauchy-
Barzilai-Borwein (CBB) method. And the back-tracking step
is adopted to maintain the monotone property of generated it-
erates. To guarantee its feasibility, projection to the constrained
set U in steps 8 and 9 are applied. The main computational
cost comes from the two MM updates in each iteration, whose
complexity is in the order of O((N + K)3N 3

r ). Empirically,
the accelerated algorithm converges to an acceptable solution
within ten iterations, which is much faster than Algorithm 1.

IV. ALGORITHMS FOR SEQUENCE DESIGN UNDER

PAR CONSTRAINTS

The unimodular constraint on the training sequence originates
partly from the low peak-to-average power ratio (PAR) demand,
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Algorithm 2: Accelerated Scheme for Designing Optimal
Unimodular Training Sequence for the MMSE Estimation.

1: Set t = 0, and initialize u
(0)
n,m , n = 1, . . . , N ; m = 1,

. . . , Nt .
2: repeat
3: U1 = MMupdate

(
U(t)

)
4: U2 = MMupdate (U1)
5: L1 = U1 − U(t)

6: L2 = U2 − U1 − L1
7: Step length l = −‖L1 ‖F

‖L2 ‖F

8: U(t+1) =
√

α
N Nt

ej arg(U ( t )−2lL1 + l2 L2 )

9: while MMSE
(
S(t+1)

)
> MMSE

(
S(t)

)
do

10: l ← l−1
2 , and go to step 2

11: t ← t + 1
12: until convergence

e.g., in MIMO radar systems. Low PAR sequences have found
many applications in practice because they can mitigate the
non-linear effects at the transmitter side while enabling more
flexibility of the designed sequences compared with unimodular
ones; see [2], [29] and references therein. In this section, we
consider the problem of designing optimal sequences with low
PAR.

For a sequence of vectors U ∈ CN ×Nt , U:,m denotes the
length-N sequence sent from the mth antenna, for m = 1,
. . . , Nt . And PAR is usually defined for each sequence trans-
mitted by a single antenna as

PAR(U:,m ) =
max

n
{|un,m |2}
1
N αm

, (66)

provided that the training energy for the mth antenna is
‖U:,m‖2 = αm . Determining training energy for each transmit
antenna may depend on power distribution among antennas sat-
isfying

∑Nt

m=1 αm = α. And it follows that 1 ≤ PAR(U:,m ) ≤
N . When PAR(U:,m ) = 1, PAR constraint reduces to the uni-
modular constraint. Given the PAR constraints for each transmit
antenna

PAR(U:,m ) ≤ ξm ,m = 1, . . . , Nt (67)

the optimal sequence design problem for minimizing MMSE is
then formulated as

minimize
U ,S

MMSE (S)

subject to S = T (U) ,
‖U:,m‖2 = αm ,

max
n

{|un,m |} ≤
√

αm ξm

N ,m = 1, . . . , Nt

(68)

where MMSE(S) is given by (40). For the CMI maximization,
an optimization problem can be similarly formulated, which
maximizes CMI(S) (44) under the same constraints as that of
(68).

Following the same procedure of applying the MM frame-
work in Section III-B, the following majorized (minorized)
problems can be obtained for problem (68) for the MMSE

Algorithm 3: Design of Optimal Training Sequence for the
MMSE Minimization (26) or the CMI Maximization (31)
under the PAR Constraint.

1: Set t = 0, and initialize U(0) such that max
n

{|u(0)
n,m |}

≤
√

αm

N ,m = 1, . . . , Nt .
2: repeat
3: S(t) = T

(
U(t)

)
, and S̃(t) = INr

⊗ S(t)

4: A(t) =
(
S̃(t)R0

(
S̃(t)

)H

+ W
)−1

S̃(t)R0

5: V(t) =
{

I, for the MMSE minimization
R(t) , for the CMI maximization

6: λ(t) = ‖R0‖1

∥∥∥A(t)V(t)
(
A(t)

)H
∥∥∥

1

7: B
(
S̃(t) ,V(t)

)
= λ(t)S̃(t) − A(t)V(t)

(
A(t)

)H

S̃(t)R0 + A(t)V(t)R0

8: U(t+1)
:,m ∈ arg min

maxn {|u n , m |}≤
√

α m ξ m
N

‖U : , m ‖2 = α m

‖U:,m − cm‖2 ,

m = 1, . . . , Nt

9: t ← t + 1
10: until convergence

minimization (CMI maximization)

minimize
U

∥∥∥U −
∑

i,j Bi,j

∥∥∥2

F

subject to ‖U:,m‖2 = αm ,

max
n

{|un,m |} ≤
√

αm ξm

N ,m = 1, . . . , Nt

(69)

It is obvious that problem (69) can be separated into Nt

problems as

minimize
U : , m

‖U:,m − cm‖2

subject to ‖U:,m‖2 = αm ,

max
n

{|un,m |} ≤
√

αm ξm

N ,

(70)

for m = 1, . . . , Nt , where cm is the mth column of
∑

i,j Bi,j .
Problem (70) is a nearest vector problem with low PAR con-
straint and has been well studied in [2] via Karush-Kuhn-Tucker
(KKT) conditions. By using the well-developed algorithms in
[2] to solve each problem (70), the overall algorithm is sum-
marized in Algorithm 3. Note that Algorithm 3 shares the same
convergence property as that of Algorithm 1. Furthermore, the
acceleration scheme based on the SQUAREM method is also
applicable here, and the procedure is similar to Algorithm 2.
The additional computational cost of Algorithm 3 is incurred by
solving Nt nearest vector problems in each iteration. Specifi-
cally, solving each problem requires a sorting operation of com-
putational complexity O(N log N) and inner loops with worst
case computational complexity O(N 2); and the number of in-
ner loops varies from a few dozens to one hundred. For details,
please refer to [2].



6140 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, 2016

V. NUMERICAL EXAMPLES

In this section, we employ proposed algorithms to design
unimodular and low PAR sequences for channel estimation. For
SISO channels, we compare the MSE, output SNR, and the
CMI of our proposed sequences with that of low sidelobes or
random phases. For MIMO channel estimation, the MSE and
CMI are compared among proposed sequences, sequences of
good auto- and cross-correlation properties, and sequences of
random phases. Then we show the advantage of optimal low
PAR sequences over unimodular ones in the MIMO channel
estimation.

A. Unimodular Sequences for SISO Channel Estimation

In this subsection, numerical results are presented to illustrate
the advantage of considering the prior information in the design
of unimodular sequences for channel estimation and CMI maxi-
mization. Let Nt = Nr = 1, and we can apply Algorithm 1 and
Algorithm 2 to design optimal unimodular training sequences
for a SISO channel. We compute the MMSE estimates with
our proposed sequences, sequences of low sidelobes, and se-
quences of random phase, and then compare the resulting MSE
with matched filtering (MF) using low sidelobes sequences.

The true channel impulse response is chosen by htrue ∼
CN (0K +1 ,Rtrue) with length K + 1 = 20, and (Rtrue)i,j =
0.9|i−j |0.9

i−1
2 0.9

j −1
2 for i, j = 1, . . . ,K + 1. The channel is

thus correlated with exponentially decreasing power with re-
spect to time delay, which corresponds to the correlated scat-
tering environment with multipath fading in wireless commu-
nications [40]. The length of training sequence is N = 10.
The channel noise is set to be v ∼ CN (0N +K ,W) with
(W)i,j = 0.2|i−j | for i, j = 1, . . . , N + K. Considering the in-
accuracy of channel covariance matrix in hand, the optimal
unimodular sequence u is designed under the assumed prior
h0 ∼ CN (0K +1 ,R0) and (R0)i,j = 0.8|i−j |0.8

i−1
2 0.8

j −1
2 . The

mean square error (MSE) of the channel estimator is then

MSE(ĥMMSE) = ‖ĥMMSE − htrue‖2
2 , (71)

where ĥMMSE is given by (21) and S = T (u). Based on the true
channel covariance matrix, the conditional mutual information
obtained with training sequence u is

CMI (u) =
1
2

log det
(
I + RtrueSH W−1S

)
. (72)

The signal-to-noise ratio (SNR) of transmit sequences is
defined as

SNR = 10 log10
‖u‖2 /N

Tr (W) /(N + K)
(dB) . (73)

The output SNR by MMSE estimation is given by

SNRout = 10 log10
‖ĥMMSE − Fv‖2

‖Fv‖2 (dB), (74)

where F = R0 S̃H (S̃R0 S̃H + W)−1 . For different values of
SNR, the resulting MSE and CMI are approximated by running
200 times Monte Carlo simulations. In our simulations, both
Algorithm 1 and Algorithm 2 are initialized with unimodular
sequences of random phases uniformly distributed in [0, 2π].

Fig. 1. MSE of SISO channel estimates with different unimodular training
sequences. The results are averaged over 200 Monte Carlo simulations.

And the algorithms are considered to be converged when the
difference between two consecutive updates is no larger than
10−6 , i.e., ‖u(t+1) − u(t)‖2 ≤ 10−6 .

Fig. 1 shows the MSE of different channel estimates by
training with different unimodular sequences. Both CAP and
CAN were proposed to design sequences with low sidelobes,
or good correlation properties, and sequences designed by CAP
was employed to estimate channel impulse response with the
matched filter [5]. It was claimed that MISL could further reduce
the sidelobes of the designed unimodular sequences [6], with
which channel estimate by matched filtering was also compared.
The resulting MSE of MMSE-optimal accel. by the accelerated
scheme Algorithm 2 is lower than that of low sidelobes and
that of random phases, especially in the low SNR scenarios.
Therefore, the good correlation properties do not guarantee a
good channel estimate when the length of the training sequence
is limited with respect to the length of the channel impulse
response. Note that sequence MMSE-optimal by Algorithm 1
achieves almost the same performance as that of MMSE-optimal
accel., but the resulting MSE degrades a little bit in the high SNR
case as it needs more iterations to converge. The convergence of
Algorithm 1 and Algorithm 2 will be illustrated in Section V-D.
The output SNR with MMSE estimation and matched filters
are also compared in Fig. 2, showing the improvement of our
proposed sequences.

The obtained CMI for different unimodular sequences are
shown in Fig. 3. Although by definition (72), the resulting CMI
only depends on the channel statistics without being affected
by the channel realizations, Monte Carlo simulations are still
conducted for 200 times to avoid the effects from local minima.
Expectedly, sequences obtained by CAN and MISL produces
almost the same CMI. By incorporating the prior channel infor-
mation into the sequence design, however, the CMI obtained is
improved.

B. Unimodular Sequences for MIMO Channel Estimation

In this subsection, we compare the optimal unimodular se-
quences with those of good correlation properties [8] or random
phases for MIMO channels. As in the case of SISO channels,
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Fig. 2. Output SNR of SISO channel estimates with different unimodular
training sequences. The results are averaged over 200 Monte Carlo simulations.

Fig. 3. The CMI with different unimodular training sequences for SISO
channels. The results are averaged over 200 Monte Carlo simulations.

two performance metrics are considered, namely the channel
MSE and CMI.

Suppose the MIMO channel has Nt = 3 transmit antennas
and Nr = 3 receive antennas, with the length of the chan-
nel impulse K + 1 = 20. The vectorized channel impulse
response htrue is drawn from a circular complex Gaussian
distribution CN (0Nt Nr (K +1) ,Rtrue). Each channel coefficient
(htrue)i , i = 1, . . . , NtNr (K + 1) is associated with a triple
set (nt, nr , k), where nt = 1, . . . , Nt and nr = 1, . . . , Nr

are indices of transmit and receive antenna, respectively, and
k = 0, . . . ,K is the channel delay. And each entry (Rtrue)i,j

of the covariance matrix describes the correlation between
the channel coefficient of the triple set (nt1 , nr1 , k1) and
(nt2 , nr2 , k2). Without loss of generality, consider

Rtrue = Rr ⊗ Rd ⊗ Rt (75)

Fig. 4. MSE of MIMO channel estimates with different unimodular training
sequences. The results are averaged over 100 Monte Carlo simulations.

where (Rr )nr 1 ,nr 2 = ρ
|nr 1 −nr 2 |
1 and (Rt)nt 1 ,n t 2 = ρ

|nt 1 −nt 2 |
3

characterizes, respectively, the correlation between transmit
antennas and the correlation between receive antennas, and
(Rd)k1 ,k2 = ρ

|k1 −k2 |
2 is an exponentially decaying correlation

with respect to the channel delay. For the true channel impulse
response htrue , we set ρ1 = ρ3 = 0.9 and ρ2 = 0.7. In the opti-
mal unimodular training sequence design, the channel prior h0
is assumed to follow a circularly complex Gaussian distribution
with zero mean and covariance matrix R0 of the same corre-
lation structure as (75) and ρ1 = ρ3 = 0.8 and ρ2 = 0.6. Each
column of noise matrix V in model (5) corresponds to a MISO
channel, and the vectorized noise is assumed to be colored
with a Toeplitz correlation and vec(V) ∼ CN (0(N +K )Nt

,W),
with Wi,j = 0.2|i−j |, i, j = 1, . . . , (N + K)Nr . The optimal
unimodular training sequences, sequences of good auto- and
cross-correlations properties, and sequences of random phases
are transmitted and then the corresponding MMSE channel
estimators can be obtained. The MSE for each estimate is
calculated by (71) with S = T (U). The CMI is similarly
defined by (72). The SNR is defined as

SNR = 10 log10
‖U‖2

F /(NNt)
Tr (W) /((N + K)Nr )

(dB) . (76)

The setting for algorithm initialization and convergence are
the same as the unimodular case. And the MSE and CMI are
averaged over 100 times Monte Carlo simulations for different
values of SNR.

Fig. 4 shows the MSE of MMSE channel estimates with
different unimodular training sequences and SNR’s. The length
of sequence for each transmit antenna is N = 10. It is obvious
that the optimal unimodular sequences, both MMSE-optimal by
Algorithm 1 and MMSE-optimal accel. by Algorithm 2, produce
smaller MSE than that of random phases or good auto- and cross-
correlation properties (Good-Corr). Also notice that there is a
gap between two curves of MSE of MMSE-optimal and MMSE-
optimal accel. This is because Algorithm 1 needs much more
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Fig. 5. The CMI with different unimodular training sequences for MIMO
channels. The results are averaged over 100 Monte Carlo simulations.

Fig. 6. MSE with different low PAR training sequences for MIMO channels.
PAR = {5, 5, 5} with equal power for three antennas. The results are averaged
over 100 Monte Carlo simulations.

iterations to be converged for MIMO channel training sequence
design than that of the SISO case. The convergence properties
are shown in Section V-D.

In the CMI maximization for MIMO channels, the perfor-
mances of different unimodular sequences are shown in Fig. 5
with N = 10. For different SNR, the optimal unimodular train-
ing sequences can achieve larger CMI than sequences of either
random phase or good correlation properties.

C. Low PAR Sequences for MIMO Channel Estimation

Consider the MIMO channel of the same conditions described
in Section V-B. We employ Algorithm 3 and its accelerated
scheme to design low PAR sequences for MMSE channel es-
timation. In Fig. 6, MMSE-optimal and MMSE-optimal accel.

Fig. 7. MSE for SISO channel estimation with PAR-constrained sequences
or unimodular sequences. The results are averaged over 100 Monte Carlo
simulations.

Fig. 8. Convergence of algorithms for optimal unimodular sequence design
for SISO channel estimation, SNR = −5 dB.

are obtained by Algorithm 3 and its accelerated scheme, re-
spectively. It is demonstrated that both optimal training se-
quences achieve much smaller MSE than unimodular sequences.
Like the results for Algorithm 1 and 2 in the previous sub-
sections, MMSE-optimal renders an larger MSE than MMSE-
optimal accel. especially in the high SNR cases. An example
of convergence of both algorithms are shown in Section V-D.
Fig. 7 shows resulting MSE of sequences with different values
of PAR.

D. Convergence of Proposed Algorithms

Experimental results are given to show the convergence
properties of proposed algorithms for the MMSE minimization
problem and the CMI maximization problem with unimodular
constraints or low PAR constraints. The setting for algorithm
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Fig. 9. Convergence of algorithms for optimal unimodular sequence design
for MIMO channel estimation, Nt = 3, Nr = 3, and SNR = −5 dB.

Fig. 10. Convergence of algorithms for optimal low PAR sequence design for
MIMO channel estimation, Nt = 3, Nr = 3, and SNR = −5 dB.

initialization and convergence criteria are the same as previous
subsections. First, we experiment with Algorithm 1 and
Algorithm 2 for both MMSE minimization and CMI maximiza-
tion in SISO channel unimodular training sequence design.
Fig. 8 shows the objective values with respect to algorithm itera-
tions. In both problems, Algorithm 1 converge monotonically to
a stationary point though slowly. With acceleration techniques,
however, Algorithm 2 renders an very fast convergence. The
same convergence properties can be seen in Fig. 9, where
unimodular sequences for MIMO channel estimation are con-
sidered with Nt = 3, Nr = 3. Within the same MIMO channel
setting, Algorithm 3 and its accelerated scheme are applied to
design low PAR sequences. The convergence of both algorithms
are shown in Fig. 10. Note that in those three examples, the
algorithms Algorithm 1 and Algorithm 3 converge slower than
the accelerated scheme especially in designing sequences for

MIMO channels with large values of SNR. This is due to suc-
cessive majorizations or minorizations applied in the derivation
of algorithms and thus explains the difference between two
training sequences in terms of the resulting MSE and CMI.

VI. CONCLUSION

In this paper, optimal training sequences with unimodular and
low PAR constraints are considered. The optimal sequence de-
sign problem is formulated by minimizing the MMSE criterion
or maximizing the CMI criterion. The formulated problems are
nonconvex and efficient algorithms are developed based on the
majorization-minimization framework. Furthermore, the accel-
eration scheme is derived using the SQUAREM method. All the
proposed algorithms are guaranteed to monotonically converge
to a stationary point. Numerical results show that the optimal
unimodular sequences can improve either the accuracy of chan-
nel estimate or the CMI compared with those sequences with
good correlation properties or random phases. Under the same
criteria, the optimal sequence design with low PAR constraint
is also studied, for which the similar algorithms to unimodular
case are derived. Numerical examples show that the optimal low
PAR sequences can improve on the unimodular sequences.
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