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Efficient Algorithms on Robust Low-Rank Matrix
Completion Against Outliers
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Abstract—This paper considers robust low-rank matrix com-
pletion in the presence of outliers. The objective is to recover a
low-rank data matrix from a small number of noisy observations.
We exploit the bilinear factorization formulation and develop a
novel algorithm fully utilizing parallel computing resources. Our
main contributions are i) providing two smooth loss functions that
promote robustness against two types of outliers, namely, dense
outliers drawn from some elliptical distribution and sparse spike-
like outliers with small additive Gaussian noise; and ii) an efficient
algorithm with provable convergence to a stationary solution based
on a parallel update scheme. Numerical results show that the pro-
posed algorithm obtains a better solution with faster convergence
speed than the benchmark algorithms in both synthetic and real
data scenarios.

Index Terms—Matrix completion, factorization formulation,
parallel algorithm, robust loss functions.

I. INTRODUCTION

ROCESSING high-dimensional and incomplete data ma-
P trices plays an important role in big-data system analytics.
In real-life situations, datasets may contain numerous outliers
because the data collection process contains noise and errors
of different nature. A common problem faced in practice is the
reconstruction of the dataset from just a few noisy observations.
It is generally understood that in most engineering applications,
the effective information of a high-dimensional data matrix lies
in a low-dimensional subspace, which means the data matrix is
low-rank in nature [2]. Take the Netflix problem as an example
[3], [4]. The Netflix company wants to predict movie viewers’
preferences and make recommendations for these customers
based on an incomplete and inaccurate large dataset comprised
of movie ratings from 1 to 5 done by other customers. It is
known that people’s preference for movies is related to only a
few factors like the movie category, the starring cast, etc., which
translates into a low-rank dataset. The low-rank characteristic
lays a good foundation for the reconstruction task.

To formulate the matrix completion problem, we denote the
original data matrix by M € R™*", and assume only those
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entries from the set @ C {1,2,...,m} x {1,2,...,n} are ob-
served. Then, the data model for the observed matrix M is

M=0Q06(M+N), (1
where €2;; = { (1) 8:?; ; g , ® is the Hadamard product, and

N stands for the noise matrix that models numerous outliers.
Our objective is to find a low-rank matrix M to approximate
M, hoping to recover M.

A. Related Work

In classical works, PCA! (Principal Component Analysis)
[5]-[7] was proposed to recover M. PCA finds a low-rank matrix
that minimizes the squared estimation error to the given matrix
subject to a rank upper bound ! (I < min (m,n)). This enables
matrix factorization in ﬁ as ﬁ = X7Y, with X € RP™ and
Y € R"*", The factorization technique is advantageous in that it
not only removes the nonconvex rank constraint, but also reduces
the complexity of data storage from O (mn) to O (I (m + n)).
However, the formulation /rgmains nonconvex because of the
bilinear decomposition of M. Later, some research works add
regularization terms to the objective function. One commonly
used regularizer is of quadratic form in X and Y [8]-[10], and
the problem is given as

o ) m n ~ 2 9 9
minimize IR (Mi,]’ - X?Y,;) +7 <HXHF + HY”F>7
—_———

low-rank index

i=1j=1

error loss
(@)
where x; and y; denote the ith and jth column of X and Y,
respectively, and v > 0 is the regularization parameter. The
quadratic regularizer in (2) promotes the low-rank characteris-
tic [8]. The aforementioned problem is also named quadratically
regularized PCA [9], which minimizes the weighted sum of the
squared error loss and the low-rank index, indicating a tradeoff
between observation error and low-rank complexity.
In [9, Sec. 4.2], the authors indicated a similar formulation
with /5 error loss instead of /s:

m n

minimize ; J; Q;

The authors also pointed out that problem (3) is equivalent to
the robust PCA problem [2], [11]-[16] except for an additional
rank constraint. The robustness results from the #; loss, which

\ / T
Mij —X; y]'

+ (XI5 + Y1) - @

'PCA was originally designed for the full observation scenario, but can be
trivially extended to missing data situations. Here we use the terminology in the
general sense.
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is less sensitive to large-valued outliers. The robust PCA prob-
lem has a rich literature and many algorithms have been put
forward, such as APG (Accelerated Proximal Gradient) [17],
ALM (Augmented Lagrange Multiplier) [2], LRSD (Low Rank
and Sparse matrix Decomposition) [18], IALM (Inexact Aug-
mented Lagrangian Method), and EALM (Exact Augmented
Lagrangian Method) [19]. These algorithms adopt SVD (Sin-
gular Value Decomposition) operations or the like, which can
be computationally expensive for large-scale problems. Besides
that, the SVD operation is not friendly to multicore systems,
which means the cost of SVD cannot be spread out by using a
parallel computing machine.

Recently, several works [9], [8], [20] managed to handle these
limitations by adopting the factorized formulation (like (2) and
(3)). Moreover, they also considered general error loss functions.
They generalized the aforementioned loss functions (¢, and /1)
to any convex function f : R — R, . In terms of algorithm, [8]
proposed JELLYFISH with convergence guarantee to a local
minimum and [9] implemented Alternating Minimization. Both
of them are gradient-based and enjoy good performance on
multicore systems.

Understanding that outliers come from the additive noise ma-
trix, we propose to use some particular loss functions to promote
robustness. Previous works [9], [21], [22] showed that the loss
functions have a probabilistic interpretation. For example, prob-
lem (2) is equivalent to

maximize  exp (—VIIXH%) exp (—7||Y||fv)

. ﬁ ﬁ exp (—Qi]- (M” — xZ-Tyj)2> , @D

i=1j=1

which is the MAP (maximum a posteriori) estimator of [X, Y]
under a Gaussian distribution. The #5 loss function is sensitive to
outliers in that Gaussian distribution decays in an exponential
square manner when the random variable deviates from the
mean, which assumes low probability of far-away outliers. In
order to promote robustness, we could choose loss functions
from slowly-decaying or heavy-tailed distributions. However,
those robust loss functions may not be convex, and thus the
previously mentioned algorithms either are not applicable or
lose convergence guarantee.

B. Contribution

In this paper, we propose an effective framework to promote
robustness against two categories of outliers, namely dense out-
liers drawn from some elliptical distribution and sparse spike-
like outliers with small additive Gaussian noise. The major con-
tributions mainly lie in the following two aspects.

1) We provide two loss functions that promote robust-
ness against two types of outliers. For dense elliptical-
distributed outliers, we recommend the loss function
fi (z) =log (14 2?/v) with v > 0. For sparse spike-
like outliers, we recommend the loss function f5 (z) =
1/ - log ((eﬁng —|—e’ﬂl‘) /2) with (>0, which is a
smooth approximation of ¢; loss function.
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2) We develop an efficient algorithm on the basis of [23]
with provable convergence to a stationary solution, updat-
ing both factors X and Y in parallel instead of alternately.
Furthermore, the proposed algorithm can be free of param-
eter tuning issues (unlike [23]). The proposed algorithm
is simulated under synthetic and real data scenarios in
Section V. Both the error level and convergence speed are
more satisfactory than the benchmark algorithms. More
impressively, in the real data scenario, the proposed algo-
rithm improves the error level by 33.0% from the state-of-
the-art online algorithm GRASTA and by 12.6% from the
benchmark alternating minimization algorithm (intended
for quadratically regularized PCA).

C. Organization and Notation

The rest of the paper is organized as follows. In Section 1I,
we give the problem formulation and introduce the robust loss
functions. In Section III, we borrow the framework of [23] and
come up with the proposed Parallel Minimization algorithm. In
Section IV, we provide the convergence and complexity analy-
sis. Finally, Section V presents numerical simulations, and the
conclusions are given in Section V1.

The following notation is adopted. Boldface upper-case let-
ters represent matrices, boldface lower-case letters denote col-
umn vectors, and standard lower-case letters stand for scalars.
R (R.) denotes the real (nonnegative real) field. |-| denotes
the absolute value. log(-) is the logarithm operation with base
e. f"and f” represent the first and second order derivatives of
f, respectively, and ||-|| denotes a general norm of a vector or
a matrix. For the vector case, [|-||, denotes the p-norm of a
vector, with p = 1, 2 or 400 on most occasions. For the matrix
case, ||-||,, ||-||; and ||-|| stand for the nuclear, spectral and
Frobenius norm, respectively. V(-) represents the gradient of a
vector or matrix function. R”*™ represents the set of m x n
real-valued matrices. I stands for the identity matrix. X;; de-
notes the (7, j)th element of the matrix X. x; is the ith column
of the matrix X. X”', X~!, T (X), and vec (X) denote the
transpose, inverse, trace, and stacking vectorization of X, re-
spectively. Finally, ® and ® stand for the Hadamard product
and Kronecker product, respectively.

II. PROBLEM STATEMENT
A. Matrix Factorization Formulation

We consider the same formulation as has been proposed by
[91, [8], [20]:

m n

Z Z Qi f (M” - xiTyj)

i=1 j=1

+ (IXI5 + Y1) - 5)

minimize
XER[ xm 7Y ER[ xn
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For convenience, we denote

m n

JXY)EY S, (ﬁw - Xz»TyJ')

i=1j=1

+ (IXIE + Y1) ©)

whose value is always nonnegative due to the nonnegativity of
the loss function f. Note that f should promote robustness and
is suggested to be chosen as the negative logarithm of the pdf
of heavy-tailed distributions; hence, f may not be convex.

B. Robust Loss Functions

In this paper, we focus on two types of outliers: dense
outliers drawn from some elliptical distribution and sparse
spike-like outliers with small Gaussian noise. As for dense
elliptical-distributed outliers, we consider fitting them to a par-
ticular heavy-tailed distribution. As is shown in the literature,
heavy-tailed distributions yield formulations that enjoy more
robustness than convex formulations [24]. In the existing litera-
ture for robust statistical modeling [25], Student’s t distribution
is adopted because of its polynomial-decaying thick tail which
allows for high enough probability of outliers. It has been ap-
plied to a variety of statistical problems, like robust estimation
of the covariance matrix [26]-[28]. Taking the negative loga-
rithm of the pdf of Student’s t distribution and neglecting the
constant and scaling factor, we get the first considered robust
loss function:

fi (@) =log (1+2%/v) (7)

with v > 0. Note that f; is neither convex nor concave.

As for sparse spike-like outliers, we consider another distri-
bution with slightly thinner tail: Laplace distribution. Taking
the negative logarithm of its pdf, we get the absolute value loss
function, the ¢; loss. It is generally known that the ¢;-norm
heuristic promotes sparsity, thus promoting robustness against
sparse outliers. Note that these large sparse outliers are possibly
accompanied by small Gaussian noise, Huber loss [9], [13], [29]
is proposed in that it is robust both to large sparse outliers and
to small dense Gaussian perturbations. Huber loss can be inter-
preted as a smooth approximation of the #; loss. Observe that the
Huber loss function is only first-order differentiable. To exploit
higher-order properties in algorithm design, we need to further
smoothen the Huber loss (a similar approach is mentioned in
[30]) and hence we propose the second robust loss function:

fa(x) =1/ log (™ +¢777) /2) ®)

with 3 > 0, which is a smoothed ¢; loss function with arbitrary-
order derivatives. In Fig. 1, we illustrate some traditional robust
loss functions and the two proposed loss functions to provide
insight.

III. PARALLEL MINIMIZATION ALGORITHM

In this section, we put forward a novel algorithm to solve (5).
This algorithm can handle both proposed loss functions, i.e.,
f1 and f5, and we represent them with the general notation f.
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Fig. 1. Robust loss functions (traditional and proposed): |z|, Huber (z) =
2
(1/2)a" 2l <1 , fi(z) with v = 0.5, and f2 (x) with 3 = 4.
|z —-1/2 Jz|>1

Traditional algorithms either involve costly SVD-like opera-
tions or are gradient-based methods. Thus, they can suffer from
slow convergence in practice. Our proposed algorithm is based
on [23], with an improvement in the step size selection that
guarantees monotonicity and achieves notable progress at every
iteration. The highlight of our proposed algorithm is threefold.
First, we do a second-order convex approximation to J (X,Y)
[cf. (6)], exploiting higher-order information. Second, we pro-
pose a parallel update scheme on X and Y, utilizing parallel
computing resources. Third, we come up with a novel step size
rule which can avoid parameter tuning and guarantee monotonic
decrease, as opposed to [23].

We would like to regard X and Y as two separate agents
and iteratively update both in parallel. Suppose we are at it-
eration k; in every iteration, we are going to carry out a
two-step procedure. In the first step, we determine the de-
scent direction of J (X,Y) at [X(*) ' Y(¥)], For that we de-
rive a second-order convex approximation of J (X,Y) with
respect to X and Y around [X*), ' Y(*)], and minimize the ap-
proximation function with respect to the same variable. This
minimization problem is named the best-response problem,
whose solution is denoted as X*) and Y(*). The descent
direction is given as [X(*) — X(®) Y(*) —yY*)] In the sec-
ond step, we construct the variable update for the next it-
eration k + 1, denoted as [X#*+1) Y(*+1)] which takes the
form [X (%) + a(’f)(f((/f) — X)), Yy k) 4 a(’f)(\?(/f) — Y )]
where o#) is the update step size at iteration & satisfying some
step size rule. In the following, we elaborate on the two steps in
detail.

A. Descent Direction Computation

We observe that J (X,Y) takes on the same structure for
fixed X and for fixed Y. Thus, without loss of generality, we
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concentrate on the derivation of )A((’“), and Y*) can be analo-
gously obtained. If Y is fixed at Y(¥) the optimization problem
(5) reduces to (constant terms are removed for convenience)

minimize Z Zﬂzjf(

i=1 | j=1

)+l ©)

which can be readily decomposed into the following subprob-
lems: for each column of X,

n
minimize Y €, f (Mij — xTy®
X; e
= Jx,i (Xl) .

We keep the convex term of Jy ; (x;) and approximate the rest

with its convex second-order Taylor expansion at ng).

k)T _ (k
—x{MTy >)

2
)+l

(10)

Jx.i (XL) ~ ’yx;frxi + Zﬂuf (MU
i=1

1 W\ T . .
R (e ) o) ()

(k ~ KT (k

Z] IQ,]gX Jijo 8x, L), = —f"(My; *XE )Ty; ))
(K k ey k)T

vy, H {Z xz)]j| H) = f"(M;; — x"

y](vk))y; ) ( )T and the operation [-], means taking the pos-
itive semldeﬁnite part of a matrix. The best-response problem
becomes the following QP (Quadratic Programming) (constant

terms are removed for convenience):

X; — (H}((}‘L)xf ) g)(fb)) X;.

where gX ;

1
minimize 2x

X

(271 + H“))

(12)
The optimal solution to (12) is
—1 . .
R0 = (2remt) ! (HO ). a)
Similarly, the best-response solution §§-k) is given as
~1
S (27I+H(k>) (Hy Iy~ g(’f}) . (4
m k)T _ (k
whereg = Qngy Logl) = 5 ) yj(- )
P ) = [ eun) | anan) - L, T

())()(A)

y; . With x(k) and ylgk) known, we get the descent
direction as [X(¥) — X(k)v?(k) —Y®).

B. Step Size Computation

Now we construct the variable update and decide on the step
size a'®). The value of a!*) measures how far we go along
the descent direction just computed. To guarantee progress in
every iteration, we require monotonic decrease in .J (X, Y) after
taking the update step. One natural choice is to adopt the Armijo
step size rule, i.e., the backtracking line search method. Another
choice is based on the minimization rule, i.e., the pseudo-exact
line search. The prefix “pseudo” is used in that we do line search
on the majorizing function (tight upper bound function) of the
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objective function. Although this line search method is not exact,
monotonic decrease is still guaranteed.

1) Backtracking Line Search Method: The idea of the back-
tracking line search method follows the Armijo rule: for k& > 0,

set of) = 1;

while J (X<k+1>,Y<k+1>) —J (XW,Y(’“’)) >

P 5)

where o) is the step size, p € (0,1) is the shrinkage param-
eter, and 7 > 0 is the descent parameter chosen from (0, 27)
controlling the descending progress of J (X,Y). More details
on 7 will be covered in the convergence analysis (Lemma 7 in
Appendix).

Remark 1: For the backtracking line search method, we have
to tune the parameter 7 and p so as to achieve good perfor-
mance. To avoid such trouble, we propose the following upper
bound line search method, which is completely free of parameter
tuning.

2) Upper Bound Line Search Method: To avoid the trouble
of parameter tuning, we design o*) from another line search
method. We could do exact line search on the objective function
in the descent direction and set o*) to be the global minimizer.
However, this approach can be costly due to lack of closed-form
solution. To reduce the computational cost, we can alternatively
do line search on an upper bound of the objective function.
This upper bound function has to be carefully chosen for the
sake of monotonic decrease, and the majorizing function in [31]
can serve the purpose. We denote the majorizing function of
f(z)atz ==z as f(z,20). f (x,0) is a majorizing function
of f(z)atx =g if 1) f(x,20) > f () for V2 € R and 2)
f(x0,20) = f (z9). We can at least yield a decrease in the
current function value f (zy) if we minimize f(z,z,) with
respect to x. The reason is shown as follows:

f (z0) = f (zo,20) > f (,20) > [ (2),

where T € arg min, f (z,20). To construct the majorizing
function of J (X,Y), the fundamental issue is to design a ma-
jorizing function for f (x). We introduce the following lemma
to specify f (x, ).

Lemma 2: Let f (z) denote either f1 (z) or fa (z). The ma-
jorizing function of f (x) at z = xg is f (z,70) = a (xo) 2% +
b (xo) where

(16)

I'(xo) x9 # 0
a(m) = { o) (17)
) Ty — 0
and
_ f'(=o) 0
b(mo) _ f(mo) 5 Lo To # (18)
0 Ty = 0.

Moreover, f' (2,20) |s=z, = f (o).
Proof: The proof is trivial and omitted for lack of space. W



ZHAO et al.: EFFICIENT ALGORITHMS ON ROBUST LOW-RANK MATRIX COMPLETION AGAINST OUTLIERS

It is not hard to verify that a (xy) > 0 for all xy; so, although
f (2) can be nonconvex, its majorizing function f (x, ) is al-
ways convex. With the help of f (z, x ), the majorizing function
of J(X,Y) is readily obtained:

J (X,Y;X<k>,Y<k>)

33 i (M,

i=1 j=1

~ KT _ (k
~xly;, M;; —x" y](' ))

o DA RN 21 (19)

i=1 j=1
We can also verify that Vi, J (X,Y; X% vY(*)) =v,,
J(X,Y), Vi and Vij(X,Y,X(),Y ) Vy, J(X,

Y), Vjat [X®) Y *)].
The minimization solution for a*) comes from the following
inequality: for £ > 0,

J (X(kJrl),Y(kJrl))

a

< j(X(k-«—l)?Y(k:-&-l);X(k),Y(k))
®) j(

erg(k)(a(k)>3 + b (a(k)>2 n
(© (X(k),Y(k)) +P4(k) (a(’“>)4 +P3(k) (a<;,)>3

+ P (a k>) + P ok,

—
=

Y<k>;X<k>,Y<k>> 4+ (a<k>)4

Pl(k:)a(k-)

(20)

where (a) is due to the definition of majorizing func-
tion; (b) comes from mathematical manipulation: recall
(X1 y k1)) = [X(F) 4 ok )(X(k) —X#)), Y#) 4 o)
(YH) —y(#)] and the expressions of
X® and Y*) [cf. (13) and (14)], expand .J(X!
Y#+1D, X () ¥ (k) reorganize the terms and introduce the
as defined in (21) at the bottom of

= Qjja (Mu - xl(.k)Ty;.k)), a (z) follows

the columns of
X (k+1)

parameters P(k) ~ P<k

k
the page: [Ag2 li; =

k k) by KT (k N
Lemma 2, [Bgz)] = = 2[Al) J;; (M —x! ys )), ¢ =
(X0 — XN (YR _y k) D) =X 0T (F*) _y k) 4

(X(*) —X(k))TY(k) and the matrix operator (-)> is an
elementwise operator; (c) J (X", YR X®) y*k)) =

4771

Algorithm 1: Parallel Minimization Algorithm.
Require: & = 0, initial value X(©), Y(0)

1: repeat
2:  Compute [ﬁm —X® Y*) —y® | ysing (13)
and (14);

3:  Compute the step size a(*) using backtracking line
search method (15) or upper bound line search
method (21) and (22);

4- [X(k+1)7y(k+1)} =
(X0, Y]+ alk) [fg(k) _ Xk

5. k=k+1;

6: until convergence

Y &)y k)|,

)

J (X(k7)7Y("’)), following the definition of majorizing
function. Now we set a'*) to be

alk) = arg mi}{g {P4(k>oz4 + P:,fk)oz3

[63S]

+ PQ(k>a2 + Pfk)oz} ,
(22)

(k1) y (k1)) < J(X (k) holds

because o*) is the global minimizer of P( >a + P<k)a3 +

and we claim that J(X

Pz(k)oz2 + P1( ) (P4(k) > 0), whose minimum is nonpositive.
The global minimizer a*) is obtained as follows: we derive all
the real zeros of its first order derivative (no more than three)
and check for the global minimizer of the polynomial expres-
sion. The validity for this practice is that the global minimizer
of a differentiable polynomial function must satisfy the zero
derivative condition.

Remark 3: The upper bound line search method does not
need a while loop and parameter tuning, but its performance is
not guaranteed to be superior to the backtracking line search
method. One can always apply upper bound line search method
first and then do backtracking while tuning the parameters to
see if the improvement is significant enough to make a switch.

Finally, we summarize the parallel minimization method in
Algorithm 1.

IV. CONVERGENCE AND COMPLEXITY

A. Convergence Analysis

In this section, we provide some theoretical guarantee for our
proposed algorithm. Previous works [8], [20] enjoyed conver-
gence to a local minimum when the loss function f is convex
and twice differentiable. The same result does not hold any more

[I>

P4(k) 1T (Ag‘) ® C(k)2

92.17 (A“” oCch o

(1>

P

1
D<k>) 1

’—‘hg\ I\:g\
z =
> >

A 4T (Agzk) oDF2 _ Bglk) o C(k)) 1 JHVH {)A(W
A _1T (Bg) 0) D(k)) 1+ 2’YTI‘ ([X(k)7Y(k)]
= T (Vi (X9, Y0) - ([0, 70)] - [x, y9]))

_ X g® fyuc)] H2
F

— Y(k')}

21

T

[ﬁ(l«) " (OR0
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because our proposed robust loss function can be nonconvex. In
this case, only stationary solutions can be guaranteed, as can be
seen from the following theorem.

Theorem 4: Either Algorithm 1 converges to a stationary
solution of (5) within a ﬁnite number of iterations, or every limit
point of { [X( Y(k)] } , (assuming it exists) is a stationary
solution of (5). Moreover none of the limit-point stationary
solutions is a local maximum.

Proof: Following the nature of monotonic decrease
brought by both line search methods, we can see that
J (XD y D) < 7 (X Y (#)) holds for any iteration
k. Also due to the nonnegativity of J (X,Y), it is bounded
below. Therefore, the sequence of the objective function value
{7 (X, Y#))} converges. The rest of the proof is dedicated
to proving convergence to a stationary point; it consists of two
parts which are elaborated in Appendix. |

B. Computational Complexity

Now we discuss the computational complexity of
Algorithm 1. The per-iteration computational cost comes from
two sources: descent direction and step size. We analyze them
separately. Recall that the size of X and Y is [ x m and
[ X n, respectively. When computing the descent direction,
we need to solve m + n systems of linear equations, each
of size I. The cost of each is of complexity O (I*); the to-
tal cost is O (I* (m + n)). When computing the step size, we
analyze the cost of upper bound line search. The dominating
cost is (21): 1) computing Aglk ) and BST) requires complex-
ity O (Imn)+ O (mn): O (Imn) from matrix multiplication
and O (mn) from Hadamard product operations, and comput-
ing C*) and D) still requires O (Imn) + O (mn): O (Imn)
from matrix multiplication and O (mn) from matrix addition;
2) computing ijk) ~ Pfk) need additionally a few Hadamard
product operations and summations, of complexity O (mn),
and some other basic operations (norm, trace), of complex-
ity O ((m +n)1?) + O ((m+n)l). The overall per-iteration
costis O (I* (m + n)) + O (Imn), neglecting the lower-order
terms. Since [ is assumed to be much smaller than m and n,
O (1 (m+n)) + O (Imn) = O (Imn). If we allow for par-
allel computation in solving the linear equation systems, the
computational cost can be distributed and hence lowered to
O (1*) + O (Imn) ~ O (Imn). The complexity order cannot be
lowered further because we cannot avoid matrix multiplication
operations.

V. NUMERICAL SIMULATIONS

In this section, we do numerical simulations on both synthetic
data and real data. All simulations are performed on a PC with
a 3.20 GHz 15-4570 CPU and 8 GB RAM. Parallel computing
is realized by the “parfor” command in Matlab, with a total of
four workers.

A. Synthetic Data Experiments

We generate the true data matrix M (€ R™*") = MY M,
where M; € RP™ and M, € R™" have i.i.d. Gaussian en-
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tries drawn from N (0,1) and then normalized so that the
average squared magnitude of M is 1. The observation set
is €2, whose cardinality is some ratio of all the entries of
mn. The default ratio is 50%, unless otherwise specified.
With regard to outliers, i.e., noise matrix N, we generate two
types. The dense outliers are elliptically-distributed heavy-tailed
noise, whose entries are i.i.d. following N;; = VTij U;; with
Ti; ~ x> and U;; ~ N (0,1). The sparse outliers are large
spikes plus small Gaussian noise, whose entries are i.i.d. fol-
lowing N;; = ocU;; + 5 - Ind;; with o = 0.1, S = 80 >> 0.1,
Ind;; =0 or 1, and the cardinality of Ind is 0.15 mn, i.e.,
15% of all the entries. For convenience, we set n = m, and
vary m in {250, 300, ...,600} for different matrix sizes. The
true rank is set to be m/50. Our assumed rank upper bound

| = {%J ~ ’” [8], more than 4 times larger than the

true rank. As for the tuning parameters: v and, v or [3, we
do a grid search for each parameter on a particular range
and pick the tuple (vy,v) or (v,3) that yields the smallest
NMSE (normalized mean squared error, to be defined later).
This is to eliminate the effect of parameter tuning. For all
the iterative algorithms in the sirnulation the stopping crite-
rion is H[X(k‘“) — X )y k1) ]H ((m+n)l) <
Tol with Tol being the tolerant precision.

1) NMSE of Various Loss Functions: First we justify why we
use fi and f> to handle the outliers. For performance evaluation,
we use NMSE, namely (ﬁ is the recovered matrix)

— 12
NMSE(M) = E [HM—MHF} /IMIA. (@23)
The expectation is approximated by 30 Monte Carlo re-
alizations. We compare the recommended loss function
with some other loss functions: 22, |z|, and Huber (z) =

(1/2)2* |a| <1
{m| 12 Jof > 10 The
recommended loss functions is either the alternating gradient
method, cf. [9, Sec. 7, Algorithm 2], or the parallel gradient
method, cf. [8] and [32, Algorithm 1]. To the best of our knowl-
edge, we do not have other methods available in the existing
literature, so we may as well choose the one that gives better
performance. In Fig. 2, we present the error level of different
loss functions under dense and sparse outliers. In the case of
dense outliers, the proposed function f; (z) = log (1 + 2% /v)
achieves the lowest NMSE at all matrix sizes; the error level
stays almost steady, below 0.3. The error levels of the other loss
functions are higher above: the quadratic loss obtains the highest
NMSE, above 0.9; the Huber loss and absolute value loss pro-
duce similar NMSE which falls in the range 0.3-0.4, still not as
good as the proposed function f;. This is because none of these
three loss functions are derived from the pdf’s of heavy-tailed
elliptical distributions; they are in nature non-robust to heavy-
tailed elliptical noise, i.e., dense outliers. In the case of sparse
outliers, the situation is slightly different. The proposed func-
tion f5 (z) = 1/3 - log ((€’” 4+ ¢77*) /2) achieves the second
lowest NMSE. The lowest NMSE is achieved by the absolute
value loss. However, the gap of performance loss is not so sig-
nificant and even shrinks as the matrix size increases. Besides

implementation for the non-
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Fig. 2. NMSE of different loss functions under 1) dense outliers (upper) and
2) sparse outliers (lower).

that, we find the computational cost of using the absolute value
loss is too high. In Fig. 3, we present the computational cost
of using different loss functions. We see that using the absolute
value loss and Huber loss is extremely costly; they need several
hundred seconds to converge. The proposed function f5 is much
more efficient; it is more than two orders of magnitude faster
than the absolute value loss. The proposed function f, achieves
a good tradeoff between the NMSE and computational cost, so
adopting f> makes more sense.

2) Computational Running Time: After having justified f;
and f,, we show the efficiency of our proposed algorithm. We
compare our proposed algorithms with some existing methods
under the same objective functions, and the performance evalu-
ation is the average running time on the CPU. All the algorithms
use the recommended loss function in the corresponding sce-
nario and there is no need to compare the NMSE because the er-
ror levels achieved by those algorithms are more or less the same.
There are two types of benchmark algorithms which can be ap-
plied to any general loss functions. One is the alternating gradi-
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Fig. 3. Average running time (in seconds) of different loss functions.

ent method, proposed by Udell et al. [9, Sec. 7, Algorithm 2].
The other type is the parallel gradient method, which is men-
tioned by Recht and Ré [8] and Sun and Luo [32, Algorithm 1].
In Fig. 4, we present the average running time of different al-
gorithms. Under either dense or sparse outliers, our proposed
algorithm converges faster than the benchmark algorithms; the
average running time of the proposed algorithm (with either step
size computation method) is more than one and a half orders
of magnitude less than that of the benchmark algorithms. It can
be ascribed to the nature of the benchmarks: they are first-order
algorithms. Our algorithm exploits second-order information in
computing descent direction and thus has faster convergence
speed, despite slightly higher per-iteration computational cost.
Another interesting fact is that the two line search methods pro-
duce very similar CPU time consumption, although in one case
the upper bound line search is always slightly better. In terms of
performance, either one is a good choice. But in view of parame-
ter tuning issues, we may recommend the parameter-tuning-free
upper bound line search method.

3) Miscellaneous Results: There are some other results
worth looking at. The first one is how NMSE changes with
the number of observed entries. We fix n = m = 400, and the
true rank is 8. In Fig. 5, we plot the NMSE versus observation
ratio from 0.2 to 0.9. Under dense outliers, we see at first a re-
markable decrease in error level for more observed entries, but
later on the NMSE stays almost steady. It indicates that within
a certain range, more observations can significantly bring down
NMSE; beyond a particular threshold, more observations will
not help to reduce NMSE much. Under sparse outliers, the same
situation also happens. So the message is, to achieve a satisfac-
tory level of NMSE, observing 60% to 70% percent of the full
matrix would be enough.

The second interesting result is how NMSE behaves as the
true rank increases (still no more than the assumed upper
bound /). We fix n = m = 400, the observation ratio is 50%,
and rank upper bound [ = 33. The true rank takes the range
{2,4,...,32}.InFig. 6, we plot the NMSE versus the true rank
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Fig. 6. NMSE versus the true rank of the original matrix.

of the original matrix. Under either dense or sparse outliers, we
can see an increase in error level as the true rank is increased.
When the true rank is no more than 8 (= 33 x 1/4), the NMSE
level grows moderately; when the true rank is larger than 8, the
NMSE level increases remarkably. This phenomenon indicates
that, if we are provided with some prior knowledge of the true
rank, we should set the rank upper bound [ to be at least 4 times
the true value so as to get a satisfactory error level.

B. Real Data Experiments

Now we move on to real data experiments. We consider the
MovieLens-100 K dataset [33]. This dataset consists of 100000
ratings (from 1 to 5) on 1 682 movies from 943 users. Each user
has rated at least 20 movies. We use 80% of the data for training
and the rest 20% for error testing. To ensure the existence of
outliers, we manually set 15% of the training data to be either
5 or 1 with equal probability. This practice can be justified as
malicious ratings in real life: a number of users may be hired
to promote some movie and blindly give a 5 to that movie, or
they are forced to give a 1 to its competitors. For performance
evaluation, we modify the evaluation measure to be RMSE (root
mean square error) of the available observations reserved for
error testing:

RMSE(M) = {/E [Hﬂf © (Mt _ ﬁ)Hi] Jeard (€,)

(24)
where €2; is an indication matrix showing whether a certain
entry is in the testing set or not, and M, is the testing data
matrix. The expectation is approximated by 10 Monte Carlo
realizations.

Besides our algorithm, we also compare performance with
the traditional Alternating Minimization algorithm (mentioned
in[9, Sec. 7, Algorithm 1], used for solving the quadratically reg-
ularized PCA), the SVD-based benchmark APG (Accelerated
Proximal Gradient) and the state-of-the-art online sequential al-
gorithm GRASTA by He er al. [34]. The benchmark APG deals
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TABLE I
RESULTS ON MOVIELENS-100 K DATASET. BOTH RMSE AND TIME (SEC) ARE AVERAGED FROM 10 MONTE CARLO REALIZATIONS. ALTERNATING MINIMIZATION
USES QUADRATIC LOSS, CF. [9]; APG USES QUADRATIC LOSS, CF. [17]; GRASTA USES THE /1 LOSS, CE. [34]; PARALLEL MINIMIZATION USES

fo(z)=1/8"log ((eﬂ"’ + e““”) /2), ONE OF THE PROPOSED LOSS FUNCTIONS

t1 to t3 ty ts
RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time
Alternating Minimization (benchmark) 1.1840 4.4201 1.1417 4.5505 1.1397 4.1816 1.1438 4.1339 1.1785 4.3450
APG (benchmark) 1.0492  203.4381 1.0358  203.2578 1.0342  202.7188 1.0348  202.6786  1.0489  203.3632
GRASTA (benchmark) 1.2540 9.1171 1.8371 9.3238 1.3967 9.7546 1.4611 9.1017 1.6053 9.8277
Parallel Minimization (proposed) 1.0261 9.2506 1.0092 9.6388 1.0029 9.7511 1.0046 9.6928 1.0182 9.2790

with /5 loss, regularized by a nuclear norm term (no rank upper
bound is imposed). We find more than one version of online
algorithms; Balzano et al. [35] also proposed GROUSE before
GRASTA. The loss function of GROUSE is also quadratic loss,
which is not robust to outliers at all. In face of real dataset,
the sample code of GROUSE suffers from singularity issues,
possibly resulting from the highly incomplete nature of the data
matrix. As for GRASTA, the loss function is the ¢; loss. The al-
gorithm is a two-step procedure: the first step is to get a low-rank
subspace from the sequential training of online samples, i.e., the
matrix columns. After a few rounds of training, the first step ter-
minates with an output of a m x [ subspace. The second step is
to estimate the low-dimensional weight vectors with the output
subspace. There are n weight vectors, each of length /. Holding
all the weight vectors as columns, we get al x n weight matrix.
Multiplying the subspace with the weight matrix, we obtain the
low-rank matrix. The weakness of GRASTA is twofold. First,
this two-step algorithm does not have any convergence guar-
antee; the output result may not even be a stationary solution.
Second, the termination of the subspace estimation step is rather
tricky and involves a lot of parameter tuning work.

The results are shown as follows. We repeat the training-
testing procedure 5 times. We denote them as t1,%s,...,1%;5.
Since GRASTA uses the [; loss, we adopt the smoothened [;
loss fo () = 1/8 - log ((e”* 4+ e~*) /2) for fair comparison.
Parameter tuning follows the practice in the synthetic data ex-
periments. We fix the rank upper bound [ = 10 for the pro-
posed algorithm and the benchmark Alternating Minimization
and GRASTA; APG does not impose rank upper bound. In
Table I, we present the numerical results of the four algorithms.

The Alternating Minimization algorithm is superior to the
other three algorithms in average running time (almost twice
as fast as GRASTA and Parallel Minimization, almost two or-
ders of magnitude faster than APG), but cannot get the lowest
RMSE due to the non-robustness of quadratic error loss. The
APG algorithm achieves a satisfactory RMSE level (still not
the lowest) because its optimization problem adopts a convex
formulation without a rank upper bound, but the running time
is too long, at least one order of magnitude longer than the rest.
The state-of-the-art GRASTA and our proposed Parallel Mini-
mization spend almost the same amount of running time; their
convergence speed is comparable, within 10 seconds. However,
the proposed algorithm achieves lower RMSE than that pro-
vided by GRASTA. If we take the mean of the 5 procedures,
the proposed algorithm improves the RMSE level by 33.0%

10 T T T T T T T T T T
—— APG (benchmark)

O  GRASTA (benchmark)
Alternating Minimization, I2 loss (benchmark)
Parallel Minimization (proposed) sequential
Parallel Minimization (proposed) 4 workers
Parallel Minimization (proposed) fully parallel

RMSE

100
CPU time (sec)

120 140 160 180 200

10 T T T
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Alternating Minimization, |2 loss (benchmark)
Parallel Minimization (proposed) sequential
Parallel Minimization (proposed) 4 workers
Parallel Minimization (proposed) fully parallel

RMSE

CPU time (sec)

Fig. 7. RMSE versus CPU time (sec). [ = 10. The lower plot is zoomed in
from the upper plot within the time interval [0, 20] seconds.

from GRASTA, and by 12.6% from Alternating Minimization.
Moreover, among the two algorithms on robust loss functions,
the RMSE provided by GRASTA experiences more volatility,
with standard deviation 0.2219; the RMSE provided by Paral-
lel Minimization is much more stable, with standard deviation
0.0098.

In order to better support our claims, we show the result in
a particular training-testing procedure, e.g., to. In Fig. 7, we
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present the convergence curve of RMSE versus CPU time. Al-
ternating Minimization converges fast but eventually at a sub-
optimal error level. APG achieves a satisfactory RMSE in the
end, but needs 200 seconds to converge. GRASTA is not an
iterative algorithm, and we simply put a dot showing its final
RMSE and time. For detailed comparison, we look at the lower
plot of Fig. 7. By default, we use “parfor” connecting 4 workers,
and it reaches the dashed RMSE level in 2 seconds and the bot-
tom in 4.5 seconds. If we use the plain “for”, i.e., sequentially
executing the for loop, it reaches the dashed line in 4.2 seconds
(still better than GRASTA) and the bottom in 13 seconds (worse
than GRASTA). Lastly, if we are allowed to execute the for loop
fully in parallel, the dashed line can be reached in 0.8 second
and the bottom, in 2 seconds, which is far better than GRASTA.

For the algorithms that need to be assigned rank upper bound
I (all except APG), we vary it in {5,10,...,30}. In Fig. 8,
we present the RMSE versus rank upper bound. We observe
that the RMSE level of GRASTA increases remarkably as the
rank increases, which means GRASTA is sensitive to the choice
of parameter [. The other two algorithms each can provide a
stable level of RMSE, regardless of the choice of parameter (:
the proposed Parallel Minimization algorithm provides an error
level of about 1.01, while the Alternating Minimization reaches
about 1.14.

VI. CONCLUSION

We have considered robust low-rank matrix completion in
the presence of outliers. We have mainly focused on two types
of outliers and have provided two loss functions to promote
robustness. Then, we have solved the matrix completion prob-
lem using a parallel successive convex minimization algorithm.
The method requires i) the computation of the descent direction
via a convex second-order approximation and ii) the derivation
of the step size with two line search methods, both of which
enable monotonic decrease in the objective function value. We
have also provided the convergence and complexity analysis
for the proposed algorithm. Numerical simulations have shown
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that the proposed algorithm obtains a better solution with faster
convergence speed than the benchmark algorithms.

APPENDIX
SUPPLEMENT PROOF OF THEOREM 4

Proof: Here we prove convergence to a stationary point. For
clarity, the proof is divided into two parts:

Part 1) We introduce the following supporting lemma on
descent direction. R R

Lemma 5: For every given [X(*) Y] Xk y)] -
[X*), Y ®)] is a descent direction of .J(X,Y) at [X*), Y]
such that

Tr (v&’Y]J (XUc),Y(k)) .({xw)y(m} _ [X““),Y““)D)

R [ N A

(7 is the same value as that in (5)).
Proof: The idea of the proof originates from [23]. Given

[X®) Y B, for Vi, ﬁl(.k) is the unique solution of the problem
(12) and thus satisfies the minimum principle: for all x;,

(1) (2 ) 4 g 202) (3 - =7) 2 0

(26)

(k)

Choosing x; = x; ', we can get

T
o< (B (R = xM) +glf) +20x() " (M - %)

X,? i

T
— (R ) B (& X)) (x50

v

i i

T ) N
< —<g,(f,;) n 27X1(:k)) (;{fk) —xgk)) - QWHQEJSJ _ng)HF

2

3 3 3 T . .
_ 27<§§}‘) _x® +x<”> (;(5“ _Xgm)

’A(Ek) - X;

i i

= —VLJ (X, Y®) (R - xP) - 2]

(k) H .
F
(27
The same argument can be applied to y;, Vj. Combining the
summation over ¢ and j, we obtain (25). |
Now we are ready for the following proposition.
Proposition 6: For the backtracking line search method,
there exists a constant 7) > 0 such that .J (X(*+1) y(k+1)) —

J(X®, Y R) < —pl[X0), ¥®] = [XE) YO for k >
0; For the wupper bound line search method, either
[X<0>,Y(U)] is a stationary solution or there exists a con-
stant7) > 0 such that J (X#+1) Yy (k1) — g (XK®) y(*)) <

(X5, Y] (X0 YO for k > 1.

Proof: With Lemma 5, we can evaluate the decrease in ob-
jective function value. Our proof deals with the two line search
methods separately in two cases.

Case 1: We consider the backtracking line search method.
In this method, we aim to choose proper 7 so that for all k£ > 0,
the while loop is effective in gaining decrease. To proceed with
the proof, we give another supporting lemma as follows.

Lemma 7: For any k > 0, there exists alk) = p¥ e (0,1],
s, =0,1,2,..., with any given 7 € (0,2v), such that
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J(X(k+1)’Y(k+1))
— [X(/«)7y(k¢)]|‘%_

Proof: The proof follows the general idea of ([36],
Proposition 1.2.1) but we adapt it to this particular sce-
nario. Denote Z £ [X,Y], Z¥) £ [X(M Y]~ AZ*) £
[AX(k>,AY<k>],Where AX(E) = X(*) X (k) and AY®) =
Y*) — Y(*)_ Then we see (28) for ¢ € (0,1]

—J(X®) vy k) <~

ral | [R1D, 7]

J(ZW) 4t - AZR)) — 7 (23

t
:/ vee (Vg J (Z0) 4 & AZWY)) " de - vee (AZH)
0

t
:/ vee (VZJ(Z(k) +§~AZ(k)) *VZJ(Z(]")))ng
0

- vec (AZ“”) +t-vec (VZJ (Z(k)))T - vec (AZ“"))

e

W vec (AZ("‘))T/ / DL (VzJ @™ +¢ - AZM)) d¢de
0 Jo

- vec (AZ(k)) +t-vec (VZJ (Z(k)))T

()
< vec (AZ“"))T

- vec (AZ“"))
1

5MH&Q -vec (AZ™)
+t-(—27)vec (AZ“‘))T

-vee (AZM) = —t (27 - %Mt) |az® |2, (28)

where (a) Dz (V7 J(Z*) 4 ¢ - AZ"))) stands for the Jacobian
matrix of Vz J(Z*) + ¢ - AZ™)) with respect to Z; and (b) we
define M £ supCE[O,l][lInax(Dz(VzJ(WM + (- AZW)))]
and vec(Vyg J(Z““)))T -vec(AZM) < —2wvec(AZ(k))T-Vec
(AZ*)) according to Lemma 5. If M <0, then J(Z*) +
t-AZW) — J(ZW)) < —t(2y — SM)||AZP |3 < —t - 2y
|AZM |2, < —7 - || AZ™)||% holds for all ¢ € [0,1] and we
can choose al¥) = 1= p" € (0,1]. If M > 0, then J(Z*) +
t-AZW) — J(ZW)) < —t(2y = SMO||AZP |3 < —7 - ¢
|AZ®) |2 holds for te [0, rnln(4’ 27 1)] C [0,1],
it is always possible to choose some s, such that a(¥)
=p < rmn(4’ 2T 1), with p* € (0, 1] for sure. [ |
Now that the backtracking line search method has made
possible a strict decrease in every iteration, we can con-
clude for £ >0 with given descent parameter TE (O

and

2y), JXEFD, YEED) — (X, Y ) < —Ta ||[
Y- [X0, Y03 < —7-mingg (o) [[[XE), Y] -
[X*) Y®])2 and we can choose 7 =rT- minkzg

(a'®)) > 0 because a'*) > 0 for all k.

Case 2: We consider the upper bound line search method.
We introduce a sublevel set based on the initial value X(?) and
YO, given as S £ {[X,Y]|[J(X,Y) < J (X, YD)}
Then we present a third supporting lemma on Lipschitz con-
tinuity.

Lemma 8: For VZ =[X,Y] €S, VzJ(X,Y) =
VzJ (Z) is Lipschitz continuous; i.e., for VZ;,Z, € S
and Z; # Zo, there exists a constant [ < +o0o such that
IV2J (Z1) = V2] (Zo)llp < LIZy = Zs |-
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Proof: We denote x; = Zey, andy; = Zey,,and J(X,Y)
becomes  J(Z) =Y, YT 1 Qljf(ﬁij —el Z"Zey,) +
(o el ZT Zey, +>75 1ey Z'Zey ). We compute the
gradient of J(Z):VzJ(Z)=-3" >, Qijf’(lvlw —
ey, 2" Zey )Z(ey e}, + ey e )+ 27Z. Also, we get

IVzJ (Z1) = VzJ (Zs)|
= [[vec(VzJ (Z1)) — vec (VzJ (Z2))ll,

(1

H/ Dy (V2 (Zo + € (Z1 — zmmg}

- (vec (Zy) — vec (Zy))

2
1

Dy, (V7. J (Zo + € (Zy — Z»)))

<’
0

spectral norm

“|lvec (Z1) — vec (Zs)]],

<[/ D5 (Vo (2o + (20 - 22) e

NZy — Zs||F, (29)

where (a) is due to the mean value theorem, Dz (VzJ (Z))
stands for the Jacobian matrix of VzJ (Z) with respect
to Z and 0 < ¢ < 1. Then we must compute the Jacobian
matrix:

Dz (VzJ (Z))

m n

=35 {1 (M, - 272 )

i=1j=1

.K(ey,eX +ey € ) )
(e e recey, ) @T)vee }
| )

—|f <Mlj — el 72" Zey,

el Jo1)|}+291

and its spectral norm has an upper bound [cf. (31) at the
bottom of the next page], where (a) is because f” ()
and f'(x) are bounded; (b) is because |y el + e el |2

. ((ey}. ezi + ey, (30)

< lley,ex, Texey I, =v2, ey el +exe] ) @I
< [|(ey, el —|—ex7e;) I, = V2l (I is the rank upper

bound from rough estimation); and (c) is because ||Z||2F:
X5+ Y5 =2 (J (X, Y) =300 07 Qi (M — %]

y;)) < 2J(X0, Y )) in that f(z) > 0 and the assumption
J(X,Y) < J(x<0 Y). Therefore, |VzJ(Z)—VzJ

(Zo)lr < Uy 1D2(V2d (Zs + E(Z = 25)))|2€]- | Z1 — Zs
lr <L||Zy — Zs||F is obtained. [ |
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We already know that J(X(1), Y1) < J(X(®) Y(0)), Now
we look into two poss1b111tles J(X My = J(X< ,Y(0))
and J(XM, Y1) < J(X© ¥(©), When J(X®, Y1) =
J(XO,Y©), it means 1n]§{P4(0)a4 + P§°>a3 +PY

ac

o +P”a} =0 and () =0 must be among the global
minimizers, which indicates a(®) =0 satisfies the zero
derivative property, giving Pl(o) = 0. Recalling the expression
of Pl(o> in (21) and following Lemma 5, we can deduce
P(O) < —29|[X© ?<0)] — X, YO]|%, which indicates
0=P < —2y|[XO, Y] - [XO YOI} <0, result
ing in [X<O) , Y<0)] = [X(), Y], Putting it back to the mini-
mum principle mentioned in Lemma 5, we have for V[X, Y],
Tr(Vh v /(X Y0) - (X, Y] - X0, YO])) >0,
indicating [X(?),Y(9)] is a stationary solution already and
no extra iteration is needed. We should note that because
XO, Y] = [xO, O, BY =Y = " = " =0
[cf. (21)], implying that o?) can be any real value. This will
not cause any trouble because [X(?) Y ()] will not drift away
with a zero-valued descent direction. Also note, this argument
for zero-valued descent direction (thus stationary solution)
actually holds for any £ > 0.

When J (X1, Y1) < J (X, Y (), we provide the fol-
lowing argument [cf. (32)] for k > 1

J (X(k+l> , Y(k+l))

Yz (X + a9 (X9~ X)), YW

(e) , 1
< min {J (X“’),Y(k)) — <20/y — 2La2>

aes{”

. H {f{u«)’?(k)} _

: : 1.
=J (X(k>,Y(k)> — | max <2a’y — 2Loz2>

T a® (we) _ Y(k)) ;x<’f),Y<k‘>) a€s
~ ~ 2
— minJ (X(k,) Ta (i(k:) _ X(k)) Y H [X(k)’Y(k:)} _ X<‘>,Y(’“)] HF (32)
aeR
Dz (VzJ (Z))]],
m n N 2
< Z;Z;QU { Iz (Mij — el ZTZeyj)‘ H ((eyJ el + ex,eg) ® I) vec (Z)H2
i=1 j=
|7 (M — el 27 Zey, )| | (ey ek +excer, ) 21} +29
m n N 9
=330 |1 (M - L 270y )| [2 (e o 4ol )|
i=1j=1 o
+1f (Mu —ef szeyj)‘ H (ey‘}. ey, +exfe§J) ® IHQ} +2y
<[ (M, -l 20z, )| e el +enel |, 212
=1 ——
(a) bounded (b) bounded (¢) bounded
|1 (M - e, 27 Zey, )| [ (ey, ek, +exel, ) 21| f+2v<E 31)

(@) bounded

(b) bounded



ZHAO et al.: EFFICIENT ALGORITHMS ON ROBUST LOW-RANK MATRIX COMPLETION AGAINST OUTLIERS

where (a) J(X,Y)<J (X,Y;X(’f),Y(k)); (b) we de-
note S\ 2 {a|[X*) + a(x(k) — X)),y 4 a(?(}‘") —
Y(k))] € S8} for k>0; (c) with supporting Lemma 8,
descent lemma in [36] is applied; (d) J (X*), Y®) =
J (X, Y; XM Y ®) and Vix vy J (XHP, YR) = Vix yJ
(X(]c ),y (k )); and (e) supporting Lemma 5 is applied. Combin-
ing the conclusion in Step 1 and the assumption for this case,
we get J (XM, Y®) < g(XW YI) < J (X0, ¥"),
which tells us that there exists some «q such that og > 0 and
o € ﬂ S 7é (). Moreover, we denote c, to be one element
of the nonempty set [;>S51 N (0, 2%) (nonemptiness is be-

cause [N 81N (0,%2) 2 (0, min (@, 22)) # 0), and we

get (continuing from (32))

J (X(k+1>7Y<k+1))

< (x3) s (30 g20)
Jfxo 2] -]
<J(x®, v )(204(7;&%?)
&3] - [x©,y®]|. (33)

We can choose 17 = 2a.y — %La? because when o, € (0, 4%) ,
N = O (27 — fLaf) > (. Note that the positive scalar 7 can
be very small, but it does not mean that it will cause slow
convergence to our proposed algorithm; it is merely a worst-
case guarantee. At this point, we have completed the proof of
Proposition 6. |

Part 2) Recall that the sequence {J (X(k ), Y(k)) } converges,
e, limy_yoo[J (XEHD yEHD) — g (X Y (*))] =0,
which means lim inf) ., [J (XD YD) — j(XH),
Y#))] = 0. Also, assuming [X(*), Y(®)] is not a stationary
solution, we recall Proposition 6: J (X(+1) YD)

J (X5 YR) < —p[XE), YO [XF) Y OT|5 holds for
both line search methods when &k is large. Tak-
ing the limit inferior of both sides, we have

0 = lim infy 4 oo [J (XEHD YD) — g (XR) ¥y (R))] <

lim infy . o —n||[A BLY M) — (XE) Y B2, < —p - lim

supy_ o [|[X*#), Y®)] — [x(* ),Y(’f)]H2F <0 so we can
infer lim supy,_, ., [|[X*), ¥ )] — [X( UC)]H; =0
Because O<hm1nf;H+OCH[)A( k>,?< ] — [ <> YR <

hmsupkﬁ+oo||[ ’>,XA’ )] — X)) Y k]HF—O we can
see  lim infr_ o X, Y0 — X, YO =0 and
thus  limy_s o0 | [X®), Y®] = [X®), Y®))|% = 0. This

indicates that the difference [X*), Y(*)] — [X(*) Y (#)] even-
tually vanishes as k goes to infinity, and [X(*+1) Y (F+1)] =
[X®) | Y0 4 k) (XK YE)] - (X y#)]) - Xk
Y(k)] holds when k — 400, which means the sequence
{[X®), Y®1} also converges.

4779

Now we still have to check whether {[X(*), Y(*)]} con-
verges to a stationary point. We denote the limit point of the
sequence {[X"), Y(¥)]} as {[X(+>) Y(+>)]} and it has the

property of [X(T°0) Y (+)] = [X () y(+)] Take one col-
umn of [X(+°°) Y (+°9] e.g. x\ "™ wherei € {1,2,...,m},
for analysis. Recall the minimum principle: for all x;,
0< (H(+:>c ( (o) X§+x>)
+ gl r 2Rt ) : (XL —iﬂo))
_ (H)(jioc) (X§+oo) £+oo))
T
+ g)(:r?oc) + 2’7X7(+OO)) (xi - XZ(-+OO))
=vlyJ (X<+O°),Y<+°O>) : (x - x§+°°>) LG4
Similarly, V2 J (X%, Y+ (y; —y ") >0, vj.
Combining the summation over i and j, we obtain
Tr(Vix vy (X, YO) (X, Y] = (X, Y o)) >
0, and therefore the limit point of the sequence {[X*) Y(*)]}
is a stationary point. Also note that {J(X*) Y} is a

nonincreasing sequence, which entails that no limit point of
{[X*), Y*)]} can be a local maximum. The whole proof is
thus completed. |
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