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Abstract—We present an approach to solve the nonconvex op-
timization problem that arises when designing the transmit co-
variance matrices in multiuser multiple-input multiple-output
(MIMO) broadcast networks implementing simultaneous wireless
information and power transfer (SWIPT). The MIMO SWIPT
problem is formulated as a general multiobjective optimization
problem, in which data rates and harvested powers are optimized
simultaneously. Two different approaches are applied to refor-
mulate the (nonconvex) multiobjective problem. In the first ap-
proach, the transmitter can control the specific amount of power
to be harvested by power transfer whereas in the second approach
the transmitter can only control the proportion of power to be
harvested among the different harvesting users. We solve the re-
sulting formulations using the majorization–minimization (MM)
approach. The solution obtained from the MM approach is com-
pared to the classical block-diagonalization (BD) strategy, typically
used to solve the nonconvex multiuser MIMO network by forcing
no interference among users. Simulation results show that the pro-
posed approach improves over the BD approach both the system
sum rate and the power harvested by users. Additionally, the com-
putational times needed for convergence of the proposed methods
are much lower than the ones required for classical gradient-based
approaches.

Index Terms—Energy harvesting, power transfer, SWIPT,
majorization minimization, MIMO, nonconvex optimization.

I. INTRODUCTION

S IMULTANEOUS wireless information and power transfer
(SWIPT) is a transmission technique in which a transmitter

actively feeds a receiver (or a set of receivers) power that is sent
through radio frequency (RF) signals and, simultaneously, com-
municates information to the same or different set of receivers
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[1]. Battery-constrained devices are able to recharge their bat-
teries by collecting the transmitted power and, thus, enhance
their operation time [2]. Currently, there are different energy
harvesting techniques that can be used to power devices, such
as wind or solar, but SWIPT technology represents an appeal-
ing solution as the transmitter is able to control explicitly the
amount of energy that the device will receive and, hence, keep
them alive. Historically, due to the high attenuation of signals
over distance, SWIPT techniques were only introduced in low-
power devices, such as RFID tags [3]. However, new advances
in hardware technologies have enabled power to be transferred
and harvested much more efficiently [1], [3].

The first paper in the literature that covered the concept of
SWIPT is the one by Varshney [4]. He showed that there exists
a nontrivial trade-off in maximizing the data rate with power
transmission constraints. Zhang and Ho [5] developed a SWIPT
technique for multiple-input multiple-output (MIMO) scenario,
composed of one transmitter capable of transmitting informa-
tion and power simultaneously to one receiver. Then, Rubio
and Pascual-Iserte [6], extended the work in [5] by consider-
ing that multiple users were present in the MIMO system. But
since the multi-stream transmit covariance optimization that
arises in SWIPT MIMO systems is a very difficult nonconvex
optimization problem, they considered a block-diagonalization
(BD) strategy [7] in which interference is pre-canceled at the
transmitter. The BD technique allows for a simple solution but
wastes some degrees of freedom and, thus, the performance
obtained may be lower than the one obtained by solving the
nonconvex problem. Works [8] and [9] considered a MIMO
network consisting of multiple transmitter-receiver pairs with
co-channel interference. The study in [8] focused on the case
with two transmitter-receiver pairs whereas in [9], the authors
generalized [8] by considering that k transmitter-receivers pairs
were present. The work in [10] considered a MIMO system
with single-stream transmission, with the objective of mini-
mizing the overall power consumption with per-user signal to
interference and noise ratio (SINR) constraints and harvesting
constraints. The design of multiuser broadcast networks under
the framework of multiple-input single-output (MISO) beam-
formimg optimization has also been addressed in works such as
[11] and [12].

There exist two approaches in the literature that deal with
the nonconvex optimization of the transmit covariance matri-
ces in multiuser multi-stream MIMO networks. The first is
based on the duality principle [13]. In [14], Gui et al. applied
that principle to obtain the beamforming optimization solution
for the multiuser MIMO SWIPT broadcast channel. However,
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that work considered an overall (sum) harvesting constraint in-
stead of individual per-user harvesting constraints. The second
approach is based on the minimization of the mean square er-
ror (MSE) [15]. However, this technique cannot be applied to
the SWIPT framework due to fact that the resulting problem
remains nonconvex.

The main difference of our work with respect to the previ-
ous works described above is that we assume a broadcast mul-
tiuser multi-stream (non BD-based) MIMO SWIPT network, in
which (per-user) harvested power and information transfer must
be optimized simultaneously. We model our transmitter design
as a multi-objective problem in which the scenarios studied in
[5] and [6] are shown to be particular solutions of the proposed
framework. Additionally, we assume that interference is not pre-
canceled (i.e., the BD approach is not applied) and, thus, both
larger information transfer and harvested power can be achieved
simultaneously. The resulting problem is nonconvex and very
difficult to solve. In order to obtain local solutions, we derive
different methods based on majorization-minimization (MM)
techniques. By means of this strategy, we are able to reformu-
late our original nonconvex problem into a series of convex
subproblems that are easily solved (i.e., through algorithms that
have a very low computational complexity) and whose solutions
converge to a locally optimal solution of the original nonconvex
problem.

The techniques based on MM that we propose in this jour-
nal paper are also compared in the simulations section with
other previous algorithms used as benchmarks and listed in
Section IV.C. Some of these algorithms used as benchmarks
were developed by the same authors and presented in the
conference paper [16].

The remainder of this paper is organized as follows. In
Section II, we introduce a summary of the mathematical tech-
niques employed in this paper. In Section III we present the
system and signal models and the problem formulation. In
Section IV we derive the mathematical modeling required
to reformulate the original nonconvex problem into convex
subproblems that are solved using the MM approach. In
Section V, we evaluate the performance of the proposed meth-
ods and, finally, in Section VI, we draw some conclusions.

Notation: We adopt the notation of using boldface lower case
for vectors x and upper case for matrices X. The transpose,
conjugate transpose (hermitian), and inverse operators are de-
noted by the superscripts (·)T , (·)H , and (·)−1 , respectively.
Tr(·) and det(·) denote the trace and the determinant of a ma-
trix, respectively. vec(X) is a column vector resulting from
stacking all columns of X. We use X to denote the N−tuple
X � (Xi)N

i=1 = (X1 , . . . ,XN ) and || · ||F to denote the matrix
Frobenius norm.

II. MATHEMATICAL PRELIMINARIES

A. Multi-Objective Optimization

Multi-objective optimization (also known as multi-criteria
optimization or vector optimization) is a type of optimization
that involves multiple objective functions that are optimized
simultaneously [17]. For a nontrivial multi-objective problem, in

general, there does not exist a single solution that simultaneously
optimizes each objective. In that case, the objective functions
are said to be conflicting, and there exists a (possibly infinite)
number of Pareto optimal solutions. A solution is called Pareto
optimal if none of the objective functions can be improved in
value without degrading some of the other objective values.

1) Definitions:
Definition 1 ([17]): A multi-objective problem can be for-

mally expressed as

maximize
x

f(x) = (f1(x), . . . , fK (x)) (1)

subject to x ∈ X ,

where fk : CN → R for k = 1, . . . , K and X is the feasible set
that represents the constraints. Let Y be the set of all attainable
points for all feasible solutions, i.e., Y = f(X ).

2) Efficient Solutions:
Definition 2 ([17], Definition 2.1): A point x ∈ X is called

Pareto optimal if there is no other x′ ∈ X such that f(x′) �
f(x), where � refers to the component-wise inequality, i.e.,
fi(x′) ≥ fi(x), i = 1, . . . ,K.

Sometimes, ensuring Pareto optimality for some problems is
difficult. Due to this, the condition of optimality can be relaxed
as follows.

Definition 3 ([17], Definition 2.24): A point x ∈ X is called
weakly Pareto optimal (or weakly efficient) if there is no other
x′ ∈ X such that f(x′) � f(x), where � refers to the strict
component-wise inequality, i.e., fi(x′) > fi(x), i = 1, . . . ,K.
All Pareto optimal solutions are also weakly Pareto optimal.

3) Finding Pareto Optimal Points: There are several meth-
ods for finding the Pareto points of a multi-objective problem. In
the sequel, we present three different (scalarization) techniques.

a) Weighted sum method: The simplest scalarization tech-
nique is the weighted sum method which collapses the vector-
objective into a single-objective component sum:

maximize
x ∈X

K∑

k=1

βkfk (x), (2)

where βk are real non-negative weights. The following results
present the relation between the optimal solutions of (2) and the
Pareto optimal points of the original problem (1).

Proposition 1 ([17], Proposition 3.9): Suppose that x� is an
optimal solution of (2). Then, x� is weakly efficient.

Proposition 2 ([17], Proposition 3.10): Let X be a convex
set, and let fk be concave functions, k = 1, . . . ,K. If x� is
weakly efficient, there are some βk ≥ 0 such that x� is an opti-
mal solution of (2).

As a result, convexity is apparently required for finding all
weakly Pareto optimal points with the weighted sum method,
which means that if the original problem is not convex, all the
Pareto optimal points may not be found by using the weighted
sum method. However, there are other weighted sum techniques
in the literature (see, for example, the adaptive weighted sum
method [18]) that are able to find all Pareto optimal points for
nonconvex problems at the expense of a higher computational
complexity.
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b) Epsilon-constraint method: In this method, only one
of the original objectives is maximized while the others are
transformed into constraints:

maximize
x ∈X

fj (x) (3)

subject to fk (x) ≥ εk , k = 1, . . . ,K, k �= j.

Let us introduce the following results.
Proposition 3 ([17], Proposition 4.3): Let x� be an optimal

solution of (3) for some j. Then x� is weakly Pareto optimal.
Proposition 4 ([17], Proposition 4.5): A feasible solution

x� ∈ X is Pareto optimal if, and only if, there exists a set of
ε̂k , k = 1, . . . ,K such that x� is an optimal solution of (3) for
all j = 1, . . . ,K.

Contrary to the weighted sum method, convexity is not needed
in the previous two propositions (but convexity is still typically
required to solve problems like (3)).

c) Hybrid method: This method combines the previous
two methods, i.e., the weighted sum method and the epsilon-
constraint method. In this case, the scalarized problem to be
solved has a weighted sum objective and constraints on all (or
some) objectives as follows:

maximize
x ∈X

∑

k∈K1

βkfk (x) (4)

subject to fk (x) ≥ εk , k ∈ K2 ,

where |K1 | ≤ K,f |K2 | ≤ K, for |A| the cardinality of set A,
and βk are real non-negative weights.

B. Majorization-Minimization Method

The MM is an approach to solve optimization problems that
are too difficult to solve in their original formulation. The prin-
ciple behind the MM method is to transform a difficult problem
into a sequence of simple problems. Interested readers may refer
to [19] and the references therein for more details.

The method works as follows. Suppose that we want to maxi-
mize f0(x) over X . In the MM approach, instead of maximizing
the cost function f0(x) directly, the algorithm optimizes a se-
quence of approximate objective functions that minorize f0(x),
producing a sequence {x(k)} according to the following update
rule:

x(k+1) = arg max
x ∈X

f̂0(x,x(k)), (5)

where x(k) is the point generated by the algorithm at iteration k
and f̂0(x,x(k)), known as a surrogate function, is the minoriza-
tion function of f0(x) at x(k) , i.e., it has to be a global lower
bound tight at x(k) . Problem (5) will be referred to as the sur-
rogate problem of the overall maximization problem (i.e., max-
imize f0(x) over X ). In addition, the surrogate function must
also be continuous in x and x(k) . The last condition that the
surrogate function must fulfill is that its directional derivatives1

and of the original objective function f0(x) must be equal at

1Let f : CN → R. Then, the directional derivative of f (x) in the direction

of vector d is given by f ′(x; d) � limλ→0
f (x+λd )−f (x )

λ
.

the point x(k) . All in all, the four conditions for the surrogate
function are as follows:

(A1) : f̂0(x(k) ,x(k)) = f0(x(k)), ∀x(k) ∈ X , (6)

(A2) : f̂0(x,x(k)) ≤ f0(x), ∀x,x(k) ∈ X , (7)

(A3) : f̂ ′
0(x,x(k) ;d)|x=x(k ) = f ′

0(x
(k) ;d),

∀d with x(k) + d ∈ X , (8)

(A4) : f̂0(x,x(k)) is continuous in x and x(k) . (9)

Under assumptions (A1)−(A4), every limit point of the se-
quence {x(k)} is a locally optimal point of the original problem
(globally optimal if the problem is convex) (see [19] for details).

III. PROBLEM FORMULATION

Let us consider a wireless broadcast multiuser system consist-
ing of one base station (BS) transmitter equipped with nT an-
tennas and a set of K receivers, denoted asUT = {1, 2, . . . ,K},
where the k-th receiver is equipped with nRk

antennas [20]. We
assume that a given user is not able to decode information and
to harvest energy simultaneously, and that a user being served
with information by the BS uses all the energy to decode the
signal. Thus, the set of users is partitioned into two disjoint
subsets. One that contains the information users, denoted as
UI ⊆ UT with |UI | = N , and the other subset that contains har-
vesting users, denoted as UE ⊆ UT with |UE | = M . Therefore,
UI ∩ UE = ∅ and |UI | + |UE | = N + M = K.2 Without loss
of generality (w.l.o.g.), let us index users as UI = {1, . . . , N}
and UE = {N + 1, . . . , N + M}.

The equivalent baseband channel from the BS to the k-th re-
ceiver is denoted by Hk ∈ CnR k

×nT . It is also assumed that the
set of matrices {Hk} is known to the BS and to the correspond-
ing receivers (the case of imperfect CSI is outside the scope of
the paper).

As far as the signal model is concerned, the received signal
for the i-th information receiver can be modeled as

yi = HiBixi + Hi

∑

k ∈UI
k �=i

Bkxk + ni , ∀i ∈ UI . (10)

In the previous notation, Bixi represents the transmitted sig-
nal for user i ∈ UI , where Bi ∈ CnT ×nS i is the precoder
matrix and xi ∈ CnS i

×1 represents the information symbol
vector. It is also assumed that the signals transmitted to dif-
ferent users are independent and zero mean. nSi

denotes the
number of streams assigned to user i ∈ UI and we assume that
nSi

= min{nRi
, nT } ∀i ∈ UI . The transmit covariance ma-

trix is Si = BiBH
i if we assume w.l.o.g. that E

[
xixH

i

]
=

InS i
. ni ∈ CnR i

×1 denotes the receiver noise vector, which is

2In this paper, we assume for simplicity in the formulation that a user belongs
to either the harvesting set or the information set and that both sets are known
and fixed. This assumption could be generalized by considering that some users
are not selected in either set as well as by defining which particular users are
scheduled in each particular set (i.e., user grouping strategies). However, this
falls out of the scope of this paper.
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considered Gaussian with E
[
ninH

i

]
= InR i

.3 Note that the
middle term of (10) is an interference term. The covariance
matrix of the interference plus noise is written as

Ωi(S−i) = HiS−iHH
i + I, ∀i ∈ UI , (11)

where S−i =
∑

k∈UI
k �=i

Sk . Let x̃ = Bx denote the signal vec-

tor transmitted by the BS, where the joint precoding ma-
trix is defined as B = [B1 . . . BN ] ∈ CnT ×nS , for nS =∑

i∈UI
nSi

the total number of streams of all information

users, and the data vector x =
[
xT

1 . . . xT
N

]T ∈ CnS ×1 ,
that must satisfy the power constraint formulated as E[‖x̃‖2 ] =∑

i∈UI
Tr(Si) ≤ PT , where PT represents the total available

transmission power at the BS.
The total RF-band power harvested by the j-th user from all

receiving antennas, denoted by Q̄j , is proportional to that of the
equivalent baseband signal4, i.e., ∀j ∈ UE , we have:

Q̄j = ζjE
[∥∥∥Hj

∑

i∈UI

Bixi

∥∥∥
2]

= ζj

∑

i∈UI

E[‖HjBixi‖2 ],

(12)
where ζj is a constant that accounts for the loss for converting
the harvested RF power to electrical power. Notice that, for
simplicity, in (12) we have omitted the harvested power due to
the noise term since it can be assumed negligible.

The transmitter design that we propose in this paper is mod-
eled as a nonconvex multi-objective optimization problem. The
goal is to maximize, simultaneously, the individual data rates
and the harvested powers of the information and harvesting
users, respectively. Given this and the previous system model,
the optimization problem is written as

maximize
{S i }

(
(Rn (S))n∈UI

, (Em (S))m∈UE

)
(13)

subject to C1 :
∑

i∈UI

Tr(Si) ≤ PT

C2 : Si � 0, ∀i ∈ UI ,

where S � (Si)∀i∈UI
, the data rate expression is given by

Rn (S) = log det
(
I + HnSnHH

n Ω−1
n (S−n )

)
(14)

= log det
(
Ωn (S−n ) + HnSnHH

n

)

− log det (Ωn (S−n )) (15)

= log det
(
I + Hn S̄HH

n

)
︸ ︷︷ ︸

� sn (S)

− log det (Ωn (S−n ))︸ ︷︷ ︸
� gn (Ωn (S−n ))

,

(16)

with S̄ =
∑

k∈UI
Sk , and the harvested power is given by

Em (S) =
∑

i∈UI

Tr(HmSiHH
m ). (17)

3We assume that noise power σ2 = 1 w.l.o.g., otherwise we could simply
apply a scale factor at the receiver and re-scale the channels accordingly.

4In this paper we assume that the harvested power is proportional to that of the
received baseband signal. However, in work [21] authors consider a nonlinear
model for the harvested power that better captures the practical energy harvesting
circuits. The application of nonlinear models is out of the scope of this paper
and is left as a future work.

The previous problem in (13) is not convex due the objective
functions (in fact, due to Ωi(S−i)) and is difficult to solve. In
order to find Pareto optimal points, we can reformulate it by
using any of the techniques presented in Section II-A. In the
following, we propose two approaches based on the weighted
sum method and on the hybrid method. For convenience, we
start with the hybrid method as it is the one that has received
the most attention in the literature [5], [22]. However in that
literature, the interference in (11) is assumed to be removed by
the transmission strategy. This assumption makes the problem
convex and hence easier to solve.

A. Hybrid-Based Formulation to Solve (13)

In the hybrid approach, some of the objective functions are
collapsed into a single objective by means of scalarization and
some of the objective functions are added as constraints. In par-
ticular, the data rates are left in the objective whereas the harvest-
ing constraints are included as individual harvesting constraints.
With this particular formulation, we are able to guarantee a mini-
mum value for the power to be harvested by the harvesting users.
Thus, problem (13) is formulated as

max
{S i }

∑

i∈UI

ωi log det
(
I + HiS̄HH

i

)
− ωi log det (Ωi(S−i))

s.t. C1 :
∑

i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE (18)

C2 :
∑

i∈UI

Tr(Si) ≤ PT

C3 : Si � 0, ∀i ∈ UI ,

where Qj =
Q̄m in

j

ζj
, being {Q̄min

j } the set of minimum power har-
vesting constraints, and ωi are some real non-negative weights.
For simplicity in the notation, let us define the feasible set S1 as

S1 �
{

S :
∑

i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE ,

∑

i∈UI

Tr(Si) ≤ PT , Si � 0,∀i ∈ UI

}
. (19)

For a set of fixed harvesting constraints, the convex hull of
the rate region can be obtained by varying the values of ωi . In
addition, we can use the values of the weights to assign priorities
to some users if user scheduling is to be implemented, following,
for example, the proportional fair criterion [23], [24]. Notice
that constraint C1 is associated with the minimum power to be
harvested for a given user. Note also the similarities of problem
(18) with the single user case presented in [5] and its extension
to the multiuser case presented in [6]. As commented before,
the novelty is that we do not force the transmitter to cancel the
interference generated among the information users (as opposed
to BD approaches [7]) and, thus, we allow the system to have
more degrees of freedom to improve the system throughput and
the harvested power simultaneously. Later in Section IV-A, we
will present a method based on MM to solve the nonconvex
problem in (18).
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B. Weighted Sum-Based Formulation to Solve (13)

In situations where the exact amount of power to be harvested
by harvesting users is not needed, we can also obtain Pareto
optimal points by means of the simpler weighted-sum method.
In this case, we can assign priorities so that some users tend
to harvest more power than others, although the exact amounts
cannot be controlled. As we will see later, the overall problem
based on this new formulation is much easier to solve. The
transmitter design is obtained through the following nonconvex
optimization problem:

max
{S i }

∑

i∈UI

ωi log det
(
I + HiS̄HH

i

)
− ωi log det (Ωi(S−i))

+
∑

j∈UE

∑

i∈UI

αj Tr(HjSiHH
j ) (20)

s.t. C1 :
∑

i∈UI

Tr(Si) ≤ PT

C2 : Si � 0, ∀i ∈ UI ,

where αj are some real non-negative weights. For simplicity in
the notation, let us define the feasible set S2 as

S2 �
{

S :
∑

i∈UI

Tr(Si) ≤ PT , Si � 0,∀i ∈ UI

}
. (21)

As we will show later in Section IV-B, the algorithm to solve
(20) is easier than the algorithm to solve (18). Hence, there is a
trade-off in terms of speed of convergence of the algorithms and
in terms of the harvested power control since, as we introduced
before, in (18) the transmitter can fully control the amount of
power to be harvested by the users whereas in (20) the transmit-
ter can only control the proportion of the power to be harvested
among the users.

IV. MM-BASED TECHNIQUES TO SOLVE PROBLEM (13)

In this section, we present a method based on the MM phi-
losophy to solve problems (18) and (20). Since the original
problems (18) and (20) are nonconvex, we reformulate them
and make them convex before applying the MM method. This
reformulation will follow two steps. In the first step, problems
(18) and (20) will be convexified by using a linear approxima-
tion of the nonconvex terms. This is the approach taken in papers
such as [25], [26], and [27]. Instead of solving the reformulated
(convex) problem, in the second step, we design a quadratic
approximation of the remaining convex terms in order to find
a surrogate problem easier to solve. Finally, we apply the MM
method to the quadratic reformulation.

As benchmarks for comparison, we will consider the case of
just convexifying the nonconvex terms, which is an approach
taken in the previous literature, and also consider a gradient
method applied directly to the nonconvex problems (18) and
(20).

Although the mathematical developments of the proposed
MM approaches are more tedious than the approaches usually
taken in the literature, the resulting algorithms are faster.

A. Approach to Solve the Hybrid-Based Formulation in (18)

As we introduced before, we need to reformulate the orig-
inal nonconvex problem (18) and make it convex. This will
be done in two steps. Motivated by the work in [26], in this
first step we derive a linear approximation for the nonconcave
(right-hand side) part of the objective function of (18), i.e.,
f0(S) =

∑
i∈UI

ωisi(S) − ωigi(Ωi(S−i)), in such a way that
the modified problem is convex5. In order to find a concave
lower bound of f0(S), gi(·) can be upper bounded linearly at
point Ω(0)

i =
∑

k∈UI
k �=i

HiS
(0)
k HH

i + I as

gi(Ωi(S−i))

≤ gi

(
Ω(0)

i

)
+ Tr

((
Ω(0)

i

)−1 (
Ωi(S−i) − Ω(0)

i

))

= constant + Tr
((

Ω(0)
i

)−1
Ωi(S−i)

)

� ĝi

(
Ωi(S−i),Ω

(0)
i

)
. (22)

Even though problem (18) reformulated with the previous upper
bound ĝi(Ωi(S−i),Ω

(0)
i ) is convex, we want to go one step

further and apply a quadratic lower bound for the left hand
side of f0(S), i.e., si(S), in a way that the overall lower bound
fulfills conditions (A1)−(A4) presented before in Section II-B
and hence the MM method can be invoked. Note that the upper
bound ĝi(Ωi(S−i),Ω

(0)
i ) already fulfills the four conditions

(A1) − (A4). The idea of implementing this quadratic bound is
to find a surrogate problem that is much simpler and easier to
solve than the one obtained by just considering the linear bound
ĝi(Ωi(S−i),Ω

(0)
i ).6

We now focus attention on deriving the surrogate function for
the left hand side of f0(S), i.e., si(S). In order for the surrogate
problem to be easily solved, we force the surrogate function
of si(S) around S̄(0) to be quadratic, where S̄(0) =

∑
k∈UI

S(0)
k

and S(0)
k is the solution of the algorithm at the previous iteration.

By doing this, as will be apparent later, the overall surrogate
problem can be formulated as an SDP optimization problem.

Proposition 5: A valid surrogate function, ŝi(S̄, S̄(0)), for
the function si(S̄) = log det

(
I + Hn S̄HH

n

)
that satisfies con-

ditions (A1)−(A4) is

ŝi(S̄, S̄
(0)) � Tr

(
J iS̄

)
+ Tr

(
S̄

H
M iS̄

)

+ κ1 , ∀S̄, S̄
(0) ∈ SnT

+ , (23)

with matrices J i = Gi − S̄
(0),H

M i − M iS̄
(0) , Gi = HH

i

(I + H iS̄
(0)

HH
i )−1H i and M i = −γiI , being γi ≥ 1

2
λ2

max(H
H
i H i), κ1 contains some terms that do not depend

on S, and SnT
+ denotes the set of positive semidefinite matrices.

5In fact, by applying the approximation, the overall objective function be-
comes concave.

6The surrogate problem obtained by just applying the bound

ĝi (Ωi (S−i ), Ω
(0)
i ) will be used as benchmark. The specific mathematical

details of the optimization problem and the algorithm will be described in
Appendix A.
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Proof: See Appendix B. �
Let us now reformulate the optimization problem in (18) with

the surrogate function ŝi(S̄, S̄(0)) − ĝi(Ωi(S−i),Ω
(0)
i ):

Tr
(
EiS̄
)

+ Tr
(
S̄H MiS̄

)
+ Tr (RiSi) + κ2 , (24)

where Ri = HH
i (Ω(0)

i )−1Hi ∈ CnT ×nT , Ei = Ji − Ri , and
κ2 contains some terms that do not depend on S. Thus, problem
(18) can be reformulated as

max
{S i }

∑

i∈UI

ωi

(
Tr
(
EiS̄
)

+ Tr
(
S̄H MiS̄

)
+ Tr (RiSi)

)

− ρ
∥∥∥Si − S(0)

i

∥∥∥
2

F
(25)

s.t. S ∈ S1 ,

where we have added a proximal quadratic term to the surrogate
function in which ρ is any non-negative constant that can be
tuned by the algorithm. This term provides more flexibility in
the algorithm design stage and may help to speed up the con-
vergence. By performing some mathematical manipulations, we
are able to obtain the following result:

Proposition 6: The optimization problem presented in (18)
can be solved based on MM method by solving recursively the
following SDP problem:

min
{Si }, s, t

t (26)

s.t. C1 :

⎡

⎢⎣
tI C̃

1
2 s − c(

C̃
1
2 s − c

)H

1

⎤

⎥⎦ � 0

C2 : T is = vec (Si) , ∀i ∈ UI

C3 : S ∈ S1 ,

where s=[vec(S1)T vec(S2)T . . . vec(SN )T ]T ∈CnT nT |UI |×1 ,
t is a dummy variable, and C̃

1
2 , Ti , and c are some constant

matrices and vectors computed as shown in Appendix C. Vector
c depends on matrix S̄(0) .

Proof: See Appendix C. �
The final algorithm is presented in Algorithm 1.

B. Approach to Solve the Sum-Based Formulation in (20)

Let us start the development by reformulating problem (20):

max
{S i }

∑

i∈UI

ωi (si(S) − ωigi(Ωi(S−i))) +
∑

i∈UI

Tr(RH Si)

s.t. S ∈ S2 , (27)

where RH =
∑

j∈UE
αjHH

j Hj . The right hand side of the ob-
jective function of (27) is convex (in fact it is linear) whereas
the left hand side is not convex. Let us apply the same steps that
we applied before but with a slight modification. Previously
in (22), we found that gi(Ωi(S−i)) could be approximated by
ĝi(Ωi(S−i),Ω

(0)
i ) = Tr((Ω(0)

i )−1Ωi(S−i)) (omitting the con-
stant term). Now, as the objective function is different than the
one from problem (18), the goal is to find a surrogate function

Algorithm 1: Algorithm for Solving Problem (18).

1: Initialize S(0) ∈ S1 . Set k = 0
2: Repeat
3: Compute c with S(k) , given in (61)
4: Generate the (k + 1)-th tuple (S�

i )∀i∈UI
by solving

the SDP in (26)
5: Set S(k+1)

i = S�
i , ∀i ∈ UI , and set k = k + 1

6: Until convergence is reached

for the function si(S) that allows us to find efficiently a solution
for the surrogate problem.

Proposition 7: A valid surrogate function, ŝi(S,S(0)), for
the function si(S) that satisfies conditions (A1)−(A4) is

ŝi(S,S(0)) �
∑

�∈UI

Tr (J iS�) +
∑

�∈UI

Tr
(
SH

� M iS�

)
+ κ3 ,

∀S� , S
(0)
� ∈ SnT

+ , (28)

with matrices J i = Gi − S
(0),H
� M i − M iS

(0)
� , Gi = HH

i

(I + H i

∑
k∈UI

S
(0)
k HH

i )−1H i , and M i = −ξiI , with ξi ≥
1
2 |UI |2λ2

max(H
H
i H i) and κ3 containing the constant terms that

do not depend on S.
Proof: See Appendix D. �
Remark 1: Note that the two surrogate functions (23) and

(28) have the same form but with a difference in the quadratic
term. Notice that surrogate function (28) is tighter than (23) and
with cross-products. As will be shown later, this will allow us
to decouple the optimization problem for each information user
i and, thus, solve all problems in parallel. On the other hand,
thanks to the fact that surrogate function (23) is looser than (28),
a faster convergence can be obtained than if surrogate (28) were
to be applied in problem (18).

Let us now reformulate problem (27) with the lower bound
that we just found (omitting the constant terms):

max
{S i }

∑

i∈UI

Tr
(
J̌iSi

)
+
∑

i∈UI

Tr
(
SH

i M̌Si

)

−
∑

i∈UI

Tr

⎛

⎜⎜⎝Ri

∑

k∈UI
k �=i

Sk

⎞

⎟⎟⎠+
∑

i∈UI

Tr(RH Si) (29)

s.t. S ∈ S2 ,

where J̌i = Ǧ − S(0),H
i M̌ − M̌S(0)

i , with M̌ =
∑

k∈UI
ωk

Mk and Ǧ =
∑

k∈UI
ωkGk . Note that we have arranged the

indices to make the notation easier to follow and consistent with
the original notation. We can further simplify the objective func-
tion by grouping terms considering that matrix M̌ is diagonal,
i.e., M̌ = −βI, being β = 1

2 |UI |2
∑

k∈UI
ωkλ2

max(H
H
k Hk ):

min
{S i }

β
∑

i∈UI

Tr
(
SH

i Si

)
−
∑

i∈UI

Tr (FiSi) (30)

s.t. S ∈ S2 ,
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where

Fi = J̌i −
∑

k∈UI
k �=i

Rk + RH . (31)

Note that we have changed the sign of the objective and refor-
mulated the problem as a minimization one. The idea is to find
a closed-form expression for the optimum covariance matrices
{Si}. If we dualize constraint C1 and form a partial Lagrangian,
we obtain the following optimization problem:

min
{S i }

β
∑

i∈UI

Tr
(
SH

i Si

)
−
∑

i∈UI

Tr (Wi(μ)Si) (32)

s.t. Si � 0, ∀i ∈ UI ,

where Wi(μ) = Fi − μI, for μ ≥ 0 the Lagrange multiplier
associated with constraint C1 of problem (27). The previous
problem is clearly separable for each user i. Thus, for each
information user, problem (32) is equivalent to solving the fol-
lowing projection problem:

min
S i

∥∥∥
√

βSi − W̌i(μ)
∥∥∥

F
(33)

s.t. Si � 0,

where W̌i(μ) = 1
2
√

β
Wi(μ) = 1

2
√

β
(Fi − μI). The previous

result is very nice as the solution of (33) is simple and
elegant, thanks to the fact that problem (33) is a projec-
tion onto the semidefinite cone and has a closed-form solu-
tion [28]. Let the eigenvalue decomposition (EVD) of matrix
Fi be Fi = UFi

ΛFi
UH

Fi
. The expression of S�

i (μ) is, thus,
given by

S�
i (μ) =

1√
β

[W̌i(μ)]+ =
1
2β

UH
Fi

[ΛFi
− μI]+UFi

, ∀i ∈ UI ,

(34)
where λk ([X]+ ) = min(0, λk (X)), with λk (X) the k-th eigen-
value of matrix X. Now it remains to compute the optimal La-
grange multiplier μ. This can be found by means of the simple
bisection method fulfilling

∑
i∈UI

Tr ([ΛFi
− μI]+) = 2βPT .

It turns out that, at each inner iteration, we need to compute a sin-
gle EVD per information user, that is, the EVD of Fi , and then a
few iterations are needed to find the optimal multiplier μ (using
for example the bisection method in step 5 of Algorithm 2).
Note that the surrogate problem can be solved straightforwardly
with the previous steps. The final algorithm is presented in
Algorithm 2.

C. Approaches Used as Benchmarks for Performance
Comparison

In this section, we propose some benchmark algorithms that
will be used in the simulations section to assess the performance
of the MM approaches proposed in the previous subsections.
These benchmarks have been derived from previous works and
are the following:

� Gradient-based algorithms based on [29, Sec. 7] applied
directly to the nonconvex problems (18) and (20). The
expressions of the gradients are not presented here due to

Algorithm 2: Algorithm for Solving Problem (20).

1: Initialize S(0) ∈ S2 . Set k = 0
2: Repeat
3: Compute Fi with matrix S(k)

i , ∀i ∈ UI , given in (31)
4: Compute EVD of Fi = UFi

ΛFi
UH

Fi
, ∀i ∈ UI

5: Compute μ� such that∑
i∈UI

Tr ([ΛFi
− μ�I]+) = 2βPT

6: Compute S�
i (μ

�) = 1
2β [Fi − μ�I]+ , ∀i ∈ UI

7: Set S(k+1)
i = S�

i (μ
�),∀i ∈ UI , and set k = k + 1

8: Until convergence is reached

space limitations but are developed in the detail by the
same authors in [16].

� MM approaches considering just the linear approximation
presented in (22), i.e., ĝi(Ωi(S−i),Ω

(0)
i ), applied to prob-

lems (18) and (20). The specific optimization problems
and algorithms (which were briefly addressed in [16]) can
be found in Appendix A.

� Optimization of the sum-rate based on its relation with
the MSE. This relation was exploited in [15] to deduce a
block-based alternating optimization algorithm; however,
no harvesting constraints were considered. The inclusion
of harvesting constraints was addressed in [30] by means
of an iterative method in which those constraints were
simplified through successive linear approximations. The
simulations section (Section V) presents as a benchmark
the method developed in [30] but adapted to a multiuser
system following the same approach as in [15].

V. NUMERICAL EVALUATION

In this section, we evaluate the performance of the previous
algorithms. In the first part of this section, we present some con-
vergence and computational time results. For the simulations,
we consider a system composed of 1 transmitter with 6 antennas
along with 3 information users and 3 harvesting users with 2
antennas each. In the second part of the section, we show the
performance of the proposed methods compared to the classical
BD approach. In this case, for ease of presenting the informa-
tion, we assume a system composed of 1 transmitter with 4
antennas, and 2 information users and 2 harvesting users with
2 antennas each. The simulation parameters common to both
scenarios are the following. The maximum radiated power is
PT = 1 W. The channel matrices are generated randomly with
i.i.d. entries distributed according to CN (0, 1). The weights ωi

are set to 1.

A. Convergence Evaluation

In this section, we evaluate the convergence behavior
and the computational time of the methods presented in
Sections IV-A and IV-B and the benchmark approach presented
in Appendix A. The benchmark method for problem (20) pre-
sented in Appendix A will not be evaluated as it is clearly worse7

7However, it was included in the paper for the sake of completeness.
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Fig. 1. Convergence of the system sum rate vs number of iterations for three
different approaches.

Fig. 2. Convergence of the system sum rate vs computational time for three
different approaches.

than the one presented in Section IV-B. In the figures, the legend
is interpreted as follows: ‘MM-L for (18)’ refers to the method
developed in Appendix A for problem (18), ‘MM-Q for (18)’
refers to the method in Section IV-A, and ‘MM-Q for (20)’ refers
to the method in Section IV-B. In order to compare all methods,
we set the values of αj and the values of Qj so that the same
system sum rate is achieved. These values are: α = [1, 5, 10],
and Q = [3.8, 7.2, 6.4] power units. Software package CVX is
used to solve problem (35) [31], and SeDuMi solver is used to
solve problem (26) [32].

Fig. 1 presents the sum rate convergence as a function of it-
erations. The three approaches converge to the same sum rate
value but require a different number of iterations. In fact, the
required number of iterations depends on how well the surrogate
function approximates the original function. Note that the sur-
rogate function used in the ‘MM-L for (18)’ approach is the one
that best approximates the objective function and, thus, fewer
iterations are needed.

Fig. 2 shows the computational time required by the
three previous methods and the benchmark based on the
‘MSE approach’ [30]. We see that the ‘MM-Q for (20)’
method converges much faster than the other two ap-
proaches, as expected. The ‘MM-Q for (18)’ approach re-
quires more iterations than the ‘MM-L for (18)’ approach
but each iteration is solved faster since a specific algorithm
can be employed to solve the convex optimization problem.

Fig. 3. Convergence of the system sum rate vs iterations for a gradient ap-
proach for constrained optimization.

Fig. 4. Convergence of the system sum rate vs computational time for a
gradient approach for constrained optimization.

Hence, the ‘MM-Q for (18)’ algorithm is the best option.
Additionally, we clearly see that the proposed MM method is
much faster than the method based on the MSE.

For the sake of comparison and completeness, we also show
in Figs. 3 and 4 the convergence and the computational time of a
gradient-like benchmark approach. The plot legend reads as fol-
lows: ‘GRAD for (18)’ and ‘GRAD for (20)’ refers to a gradient
approach applied to problems (18) and (20), respectively. ‘all
ones’ and ‘identity’ mean that covariance matrices are initial-
ized using an all ones matrix and the identity matrix, respec-
tively. Results show that the proposed MM approaches are
one to two orders of magnitude faster than the gradient-based
methods.

B. Performance Evaluation

In this section, we evaluate the performance of the MM ap-
proach as compared to the classical BD strategy considered in
the literature (see, for example, [6], [33]). In order to show how
harvesting users at different distances (and, hence, path loss)
affect the performance, we have generated the channel matrices
in a way that the there is a factor of 2 in the Frobenius norm of
those matrices. We would like to emphasize that, as the noise and
channels are normalized, we will refer to the powers harvested
by the receivers in terms of power units instead of Watts.
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Fig. 5. Rate-power surface for the MM method.

Fig. 6. Rate-power surface for the BD method.

Fig. 7. Contour of rate-power surface for the MM method.

Figs. 5 and 6 show the rate-power surface, that is, the multidi-
mensional trade-off between the system sum rate and the powers
to be collected by harvesting users (see [6] for a formal definition
of the rate-power surface). As we see, the MM approach out-
performs the BD strategy in both terms, sum rate and harvested
power. The maximum system sum rate obtained with the MM
approach when Q1 and Q2 are set to 0 is 4.5 bit/s/Hz, whereas
the sum rate obtained with the BD approach is 2.75 bit/s/Hz. The
rate-power surfaces are generated by varying the values of {Qj}
in problem (18) or, equivalently, by varying the values of {αj}
in problem (20). A way to reduce the computational complexity
associated with the generation of the rate-power surface is to
use as an initialization point the solution that was obtained for

Fig. 8. Contour of rate-power surface for the BD method.

Fig. 9. Rate region for different values of Qj (in power units).

Fig. 10. System sum rate as a function of the number of transmit antennas.

the previous values of {Qj} or {αj} to generate the new value
of the curve [34]. Note, however, that the whole rate-power sur-
face need not be generated for each transmission as it is just the
representation of the existing rate-power tradeoff.

In order to clearly see the benefits in terms of collected power,
Figs. 7 and 8 show the contour plots of the previous 3D plots.
We observe that users in the MM approach collect roughly 50%
more power than the power collected by users when applying
the BD strategy.

Finally, Fig. 9 presents the rate-region of the MM approach
for different values of {Qj}. The same value of Qj is set to the
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Fig. 11. System sum rate as a function of SNR.

Fig. 12. Power harvested by all users as a function of the minimum powers to
be harvested Qj .

two harvesting users. In this case, we vary the values of ωi to
achieve the whole contour of the rate regions. We observe that,
the larger the harvesting constraints, the smaller the rate-region,
as expected. However, the relation between the harvesting con-
straints and the rate-region is not linear. As the harvesting con-
straints increase, a small change in the {Qj} produces a large
reduction of the rate-region. This is because the 3D rate-power
surfaces presented before are not planes. In the following, we
analyze the performance of both approaches, namely MM and
BD, as a function of several system parameters to obtain valu-
able insights into the proposed scheme. First, in Fig. 10, we
show the dependence of the system sum rate with respect to
the number of transmit antennas for both methods. As we see,
the proposed MM method outperforms the BD scheme for all
antenna configurations, specially for larger number of transmit
antennas, where we see that the sum rate of the BD approach
tends to saturate whereas the sum rate of the MM method in-
creases quite fast. In Fig. 11, we plot the system sum rate as a
function of the SNR, where the SNR is defined as PT /σ2 . In
this case, the difference between the two methods is not that
significant, but there is still an improvement of the sum rate
obtained with the MM method with respect to the BD method.

Finally, Fig. 12 shows the sum of the actual powers harvested
by all users in the system as a function of the minimum powers
to be harvested, Qj , introduced through constraints. If we focus
on the MM method, for values of Qj smaller than 2, the har-
vesting constraints are not active since the value of sum power

obtained with no constraints is 6 power units and there are 3
harvesting users (all of them configured with the same value
of Qj ). For larger values of Qj , the harvesting constraints start
to activate. In some cases, specially when the values of Qj are
high, the optimization problem may turn out to be not feasible
for some realizations and the sum power obtained is lower than
the one expected (since the obtained sum power is set to 0 in
the realizations in which the problem results to be non-feasible).
For example, for Qj = 3 a sum power of 9 units should be ob-
tained instead of 7. If we have a look at the BD method, we
see that the system behaves even worse. For larger values of Qj

the overall sum power is lower than the sum power obtained
for small values of Qj . This phenomenon is due to the fact the
problem corresponding to BD turns out to be non-feasible more
frequently than in the case of not applying the BD constraints.
Hence, from this figure we conclude that the MM method is
superior to the BD approach also in terms of actual harvested
powers.

VI. CONCLUSION

We have presented a method to solve the difficult noncon-
vex problem that arises in multiuser multi-stream broadcast
MIMO SWIPT networks. We formulated the general SWIPT
problem as a multi-objective optimization problem, in which
rates and harvested powers were to be optimized simultane-
ously. Then, we proposed two different formulations to obtain
solutions of the general multi-objective optimization problem
depending on the desired level of control of the power to be
harvested. In the first approach, the transmitter was able to con-
trol the specific amount of power to be harvested by each user
whereas in the second approach only the proportions of power
to be harvested among the different users could be controlled.
Both (nonconvex) formulations were solved based on the MM
approach. We derived a convex approximation for two noncon-
vex objectives and developed two different algorithms. Sim-
ulation results showed that the proposed methods outperform
the classical BD, in terms of both system sum rate and power
collected by users, by a factor of approximately 50%. More-
over, the computational time needed to achieve convergence was
shown to be really low for the approach in which the transmit-
ter could only control the proportion of powers to be harvested
(around two orders of magnitude lower than a gradient-like
approach).

There are some research lines that can be considered to further
extend the work presented in this paper. Firstly, nonlinear en-
ergy harvesting constraints could be considered as they model
nonlinearities found in practical energy harvesting receivers.
Having nonlinear harvesting constraints increases the complex-
ity of the overall solution and finding efficient algorithms is a
challenge. Secondly, it would be interesting to consider the case
of having imperfect CSI at the transmitter.

APPENDIX A
BENCHMARK FORMULATIONS AND ALGORITHMS

In this appendix, we are going to describe the benchmarks
based on the works in [25], [26], and [27]. We start with the
benchmark for problem (18).
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Algorithm 3: Algorithm for Solving Problem (18).

1: Initialize S(0) ∈ S1 . Set k = 0
2: Repeat
3: Generate the (k + 1)-th tuple (S�

i )∀i∈UI
by solving

(35)
4: Set S(k+1)

i = S�
i , ∀i ∈ UI , and set k = k + 1

5: Until convergence is reached

Note that the upper bound ĝi(Ωi(S−i),Ω
(0)
i ) can be used to

build a lower bound of f0(S̄) that fulfills the four conditions
(A1)−(A4) presented before in Section II-B.

By applying a successive approximation of f0(·) through
the application of the previous surrogate function, i.e.,
f̂0(S,S(k)) =

∑
i∈UI

ωisi(S) − ωiĝi(Ωi(S−i),Ω
(k)
i ) − ρ‖Si

− S(k)
i ‖2

F , where S(k) � (S(k)
i )∀i∈UI

, for different evaluation
points, we obtain an iterative algorithm based on the MM
approach that converges to a stationary point (or local optimum)
of the original problem (18). Note that we have considered
a proximal-like term. Given this, the convex optimization
problem to solve is

max
{S i }

∑

i∈UI

ωisi(S) − ωiĝi(Ωi(S−i),Ω
(k)
i ) − ρ

∥∥∥Si − S(k)
i

∥∥∥
2

F

s.t. S ∈ S1 . (35)

We must proceed iteratively until convergence is reached. The
procedure is presented in Algorithm 3.

Let us now continue with the benchmark for problem (20).
If we apply the bound from (22), i.e., ĝi(Ωi(S−i),Ω

(0)
i ), prob-

lem (20) can be solved by solving consecutively the following
problem:

max
{S i }

∑

i∈UI

ωisi(S) − ωiĝi(Ωi(S−i),Ω
(k)
i ) + Tr(RH Si)

− ρ
∥∥∥Si − S(k)

i

∥∥∥
2

F
(36)

s.t. S ∈ S2 .

As problem (36) is convex, the MM method can be invoked to
obtain a local optimum of problem (20), following the same
procedure as we did before for problem (35).

APPENDIX B
PROOF OF PROPOSITION 5

The proposed quadratic surrogate function of si(S̄) has the
following form:

ŝi(S̄, S̄(0)) � log det
(
I + HiS̄(0)HH

i

)

+ Re
{

Tr
(
Gi

(
S̄ − S̄(0)

))}

+ Tr
((

S̄ − S̄(0)
)H

Mi

(
S̄ − S̄(0)

))

≤ log det
(
I + HiS̄HH

i

)
, ∀S̄, S̄(0) ∈ SnT

+ ,

(37)

where matrices Gi ∈ CnT ×nT and Mi ∈ CnT ×nT need to be
found such that conditions (A1) through (A4) are satisfied, and
Re{x} denotes the real part of x. Note that (A1) and (A4) are
already satisfied. Only (A2) and (A3) must be ensured.

Let us start by proving condition (A3). Let S̄(0) and S̄(1) be
two positive semidefinite matrices, i.e, S̄(0) , S̄(1) ∈ SnT

+ . Then,
the directional derivative of the surrogate function ŝi(S̄, S̄(0))
in (37) at S̄(0) with direction S̄(1) − S̄(0) is given by:

Re
{

Tr
(
Gi

(
S̄(1) − S̄(0)

))}
. (38)

Now, let us compute the directional derivative of the term
log det

(
I + HiS̄HH

i

)
:

Tr
(
HH

i

(
I + HiS̄(0)HH

i

)−1
Hi

(
S̄(1) − S̄(0)

))
, (39)

where we have used d log det(X) = Tr(X−1dX) [35]. Hence,
by applying condition (A3), the two directional derivatives (38)
and (39) must be equal, from which we are able to identify
matrix Gi as

Gi = HH
i

(
I + HiS̄(0)HH

i

)−1
Hi , Gi = GH

i . (40)

equation (41), (42), (43), (44) as shown at the bottom of next
page.

Note that as matrix Gi is hermitian, the real operator is no
longer needed since the trace of the product of two hermitian ma-
trices is real. In order to prove condition (A2), it suffices to show
that for each linear cut in any direction, the surrogate function
is a lower bound. Let S̄ = S̄(0) + μ

(
S̄(1) − S̄(0)

)
, ∀μ ∈ [0, 1].

Then, it suffices to show (41). Now, a sufficient condition for
(41) is that the second derivative of the left hand side of (41) is
lower than or equal to the second derivative of the right hand
side of (41) for any μ ∈ [0, 1] and any S̄(1) , S̄(0) ∈ SnT

+ , which
is formulated in (42).8

Let us compute the second derivative of the right hand side
of (42). The first derivative is given by (43) and the second
derivative is given by (44), where we have used the identity
dX−1 = −X−1dXX−1 [35] and matrix Ai ∈ CnR i

×nR i is de-
fined as Ai = I + Hi(S̄(0) + μ

(
S̄(1) − S̄(0)

)
)HH

i .
We need to manipulate the previous expressions. To this end,

let us define matrix Pi = HH
i A−1

i Hi ∈ CnT ×nT and let us
vectorize the result found in (44):

Tr

(
Pi

(
S̄(1) − S̄(0)

)
Pi

(
S̄(1) − S̄(0)

))

= vec

((
S̄(1) − S̄(0)

)T
)T (

I ⊗ PT
i Pi

)
vec
(
S̄(1) − S̄(0)

)
,

(45)

where we have used the following properties:
Tr(AB) = vec(AT )T vec(B), vec(AB)T = vec(A)T (I ⊗

8Expression (42) is equivalent to finding a constant (left hand side of (42))
such that this constant is lower than or equal to the second derivative of the logdet
function (right hand side of (42)). Then, If we take this inequality and apply a
definite integration at both sides twice between μ = 0 and a generic μ ∈ [0, 1],
then the inequality still holds. In fact equation (41) results from applying the
previous methodology. This proves that expression (42) is a sufficient condition
for (41).
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B), vec(AB) = (I ⊗ A)vec(B), and (A ⊗ B)(C ⊗ D) =
(AC) ⊗ (BD). Let us now vectorize the left hand side of (42):

2 Tr

((
S̄ − S̄(0)

)H

Mi

(
S̄ − S̄(0)

))

= 2vec

((
S̄(1) − S̄(0)

)T
)T

(I ⊗ Mi)vec
(
S̄(1) − S̄(0)

)
,

(46)

where in (46) we have used the fact that S̄(1) − S̄(0) is hermitian
and Tr(ABC) = vec(AT )T (I ⊗ B)vec(C). Finally, we end
up with the relation from forcing that (46) must be lower than
or equal to (45). This relation can be expressed as given by (47),
shown at the bottom of the page.

A sufficient condition for expression (47) is

(I ⊗ Mi) +
1
2
(
I ⊗ PT

i Pi

)
= I ⊗

(
Mi +

1
2
PT

i Pi

)
� 0,

(48)
which means that

Mi +
1
2
PT

i Pi � 0. (49)

Now, if we set Mi = αI (note that this is a particular simple
solution), we have that

α ≤ −1
2
λmax

(
PT

i Pi

)
, (50)

where λmax(X) is the maximum eigenvalue of matrix X. Now,
let us introduce the following result:

Theorem 1 ([36]): Let A, B ∈ Cn×n , assume that A is
positive definite, and assume that B is positive definite. Let

λi(A) be the i-th eigenvalue of matrix A such that λ1(A) ≥
λ2(A) ≥ . . . ≥ λn (A). Then, for all i, j, k ∈ {1, . . . , n} such
that j + k ≤ i + 1,

λi(AB) ≤ λj (A)λk (B). (51)

In particular, for all i = 1, . . . , n,

λi(A)λn (B) ≤ λi(AB) ≤ λi(A)λ1(B). (52)

Thanks to the previous result, α ≤ − 1
2 λ2

max (Pi). Now, let the
singular value decomposition of Hi be Hi = UiΣiVH

i . From
this, we can upper bound λmax (Pi) = λmax

(
HH

i A−1
i Hi

)
=

λmax
(
Σi VH

i A−1
i Vi Σi

)
≤ σ2

max(Hi) λ−1
min (Ai), where

σmax(X) is the maximum singular value of matrix X. Because
matrix A is positive definite with λmin(Ai) ≥ 1, we can con-
clude that

α ≤ −1
2
σ4

max(Hi), (53)

and thus, a possible matrix Mi satisfying conditions (A1)−
(A4) is finally

Mi = −1
2
σ4

max(Hi)I = −1
2
λ2

max(H
H
i Hi)I. (54)

APPENDIX C
PROOF OF PROPOSITION 6

Let us start by vectorizing the surrogate function in (24):

R̂i(S,S(0)) = ŝi(S̄, S̄(0)) − ĝi(Ωi(S−i),Ω
(0)
i )

= vec
(
S̄T
)T

(I ⊗ Mi) vec
(
S̄
)

+ eT
i vec

(
S̄
)

+ rT
i vec (Si) + κ2 , (55)

log det
(
I + HiS̄(0)HH

i

)
+ μTr

(
Gi

(
S̄(1) − S̄(0)

))
+ μ2 Tr

((
S̄(1) − S̄(0)

)H

Mi

(
S̄(1) − S̄(0)

))

≤ log det
(
I + Hi

(
S̄(0) + μ

(
S̄(1) − S̄(0)

))
HH

i

)
, ∀S̄(1) , S̄(0) ∈ SnT

+ , ∀μ ∈ [0, 1]. (41)

2Tr

((
S̄(1) − S̄(0)

)H

Mi

(
S̄(1) − S̄(0)

))
≤ ∂2

∂μ2 log det
(
I + Hi

(
S̄(0) + μ

(
S̄(1) − S̄(0)

))
HH

i

) ∣∣∣∣∣
∀S̄( 1 ) ,S̄( 0 )∈Sn T

+ , ∀μ∈[0,1]

.

(42)

∂

∂μ
log det

(
I + Hi

(
S̄(0) + μ

(
S̄(1) − S̄(0)

))
HH

i

)

= Tr
((

I + Hi

(
S̄(0) + μ

(
S̄(1) − S̄(0)

))
HH

i

)−1
Hi

(
S̄(1) − S̄(0)

)
HH

i

)
, (43)

∂2

∂μ2 log det
(
I + Hi

(
S̄(0) + μ

(
S̄(1) − S̄(0)

))
HH

i

)
= −Tr

(
A−1

i Hi

(
S̄(1) − S̄(0)

)
HH

i A−1
i Hi

(
S̄(1) − S̄(0)

)
HH

i

)
, (44)

2vec

((
S̄(1) − S̄(0)

)T
)T [

(I ⊗ Mi) +
1
2
(
I ⊗ PT

i Pi

)]
vec
(
S̄(1) − S̄(0)

)
≤ 0. (47)
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where ei = vec(ET
i ) ∈ CnT nT ×1 , ri = vec(RT

i ) ∈ CnT nT ×1 ,
and κ2 contains some constant terms that do not depend on {Si}.
Let s = [vec(S1)T vec(S2)T . . . vec(S|UI |)

T ]T ∈ CnT nT |UI |×1 .
Note that vec(S̄) = Ts, where T ∈ CnT nT ×nT nT |UI | is com-
posed of |UI | identity matrices of size nT nT × nT nT , i.e.,
T = [I I . . . I]. Now, we can rewrite (55) as (omitting the
constant terms)

R̂i(S,S(0)) = sH TH (I ⊗ Mi)Ts + eT
i Ts + rT

i vec (Si) .
(56)

We know proceed to formulate the objective function (de-
noted by f̄0(S,S(0)) of problem (18) but substituting the bound
that we just computed and considering the proximal term. If we
incorporate all the terms (but omitting the constant ones) we
have

f̄0 (S,S(0)) =

∑

i∈UI

ωi

(
sH TH (I ⊗ Mi)Ts + eT

i Ts + rT
i vec (Si)

)

− ρ
∥∥∥Si − S(0)

i

∥∥∥
2

F
(57)

= sH TH M̃Ts + ẽT Ts + r̂T s − ρsH s + ρs(0),H s

+ ρsH s(0) − ρs(0),H s(0) , (58)

where M̃ =
∑

i∈UI
ωi(I ⊗ Mi) ∈ CnT nT ×nT nT , ẽ =

∑
i∈UI

ωiei , r̂ = [rT
1 rT

2 . . . rT
|UI |]

T ∈ CnT nT |UI |×1 , and s(0) =

[vec(S(0)
1 )T vec(S(0)

2 )T . . . vec(S(0)
|UI |)

T ]T ∈ CnT nT |UI |×1 . Now

taking into account that the objective function f̄0(S,S(0)) must
be real and combining terms (omitting terms that do not depend
on s) we obtain

f̄0(S,S(0)) = sH Cs + bT s + sH b∗, (59)

where bT = 1
2 ẽ

T T + 1
2 r̂

T + ρs(0),H ∈ C1×nT nT |UI | and
matrix C is C = TH M̃T − ρI ∈ CnT nT |UI |×nT nT |UI |. For
convenient purposes, let us change the sign of f̄0(S,S(0)) such
that ¯̄f0(S,S(0)) = −f̄0(S,S(0)) = sH C̃s − bT s − sH b∗,
where C̃ = −C � 0. Finally, we can equivalently rewrite the
objective function as the following expression (with this new
reformulation, the objective is to minimize ¯̄f0(S,S(0)) instead
of maximizing it):

¯̄f0(S,S(0)) = ‖C̃ 1
2 s − c‖2

2 , (60)

where

c = C̃− 1
2 b∗ ∈ CnT nT |UI |×1 . (61)

Note that the term cH c does not affect the optimum value of
the optimization variables as this term does not depend on s.
Now, we can reformulate the optimization problem presented in
(18) as

minimize
{S i }, s

‖C̃ 1
2 s − c‖2

2 (62)

subject to C1 : Tis = vec (Si) , ∀i ∈ UI

C2 : S ∈ S1 ,

where Ti = [0,0, . . . ,0︸ ︷︷ ︸
i−1

, I,0, . . . ,0] ∈ RnT nT ×nT nT |UI | is

composed of zero matrices of dimension nT nT × nT nT with an
identity matrix at the i-th position. Problem (62) can be further
reformulated as

minimize
{S i }, s, t

t (63)

subject to C1 : ‖C̃ 1
2 s − c‖2 ≤ t

C2 : Tis = vec (Si) , ∀i ∈ UI

C3 : S ∈ S1 ,

and, finally, as the following standard SDP optimization problem
that can be solved fast with specific SDP solvers [32]:

minimize
{S i }, s, t

t (64)

subject to C1 :

[
tI C̃

1
2 s − c(

C̃
1
2 s − c

)H

1

]
� 0

C2 : Tis = vec (Si), ∀i ∈ UI

C3 : S ∈ S1 .

APPENDIX D
PROOF OF PROPOSITION 7

The proposed quadratic surrogate function of si(S) has the
following form:

ŝi(S, S(0)) � log det

(
I + Hi

∑

k∈UI

S(0)
k HH

i

)
(65)

+
∑

�∈UI

Re
{

Tr
(
G�i

(
S� − S(0)

�

))}

+
∑

�∈UI

Tr
((

S� − S(0)
�

)H

M�i

(
S� − S(0)

�

))

≤ log det

(
I + Hi

∑

k∈UI

SkHH
i

)
, ∀S� , S(0)

� ∈ SnT
+ ,

where matrices Gi ∈ CnT ×nT and Mi ∈ CnT ×nT need to be
found such that conditions (A1) through (A4) are satisfied.
Note that (A1) and (A4) are already satisfied. Only (A2) and
(A3) must be ensured. Let us start with condition (A3). Let S(0)

� ,

S(1)
� ∈ SnT

+ , ∀�. Then, the directional derivative of the surrogate

function ŝi(S,S(0)) in (65) at S(0)
� with direction S(1)

� − S(0)
� is

given by

∑

�∈UI

Re
{

Tr
(
G�i

(
S(1)

� − S(0)
�

))}
, (66)

equation (67) as shown at the bottom of next page and the
directional derivative of the right hand side of (65) at S(0)

� with

direction S(1)
� − S(0)

� is given by (67). From (66) and (67), we
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identify the matrices G�i as

G�i = HH
i

(
I + Hi

∑

k∈UI

S(0)
k HH

i

)−1

Hi , G�i = GH
�i ,

(68)
where we find that all matrices G�i for a given user i can be the
same, Gi = G�i (i.e., they do not depend on �).

Now, we seek to find matrices {M�i} based on condition
(A2). To this end, we follow the same procedure presented
before. We make linear cuts in each possible direction and apply
the condition over the second derivative (see (42)). The second
derivative of the left hand side of (65) is given by

2
∑

�∈UI

Tr
((

S(1)
� − S(0)

�

)H

M�i

(
S(1)

� − S(0)
�

))
= (69)

2
∑

�∈UI

vec

((
S(1)

� − S(0)
�

)T
)T

(I ⊗ M�i) vec
(
S(1)

� − S(0)
�

)
,

equation (70) as shown at the bottom of this page and
the second derivative of the right hand side is given
by (70), where Pi = HH

i (I + Hi(
∑

�∈UI
(S(0)

� + μ(S(1)
� −

S(0)
� )))HH

i )−1Hi , being constant μ ∈ [0, 1]. Now, let s =
[vec(S(1)

1 − S(0)
1 )T · · · vec(S(1)

|UI | − S(0)
|UI |)

T ]T and let us intro-
duce the following block diagonal matrix

M̃i =

⎡

⎢⎢⎢⎢⎣

I ⊗ M1i 0 . . . 0

0 I ⊗ M2i

...
...

. . . 0
0 . . . 0 I ⊗ M|UI |i

⎤

⎥⎥⎥⎥⎦
. (71)

Then we have that the following condition should be fulfilled:

2sH M̃is + sH TH
(
I ⊗ PT

i Pi

)
Ts ≤ 0, (72)

which means that

M̃i +
1
2
TH
(
I ⊗ PT

i Pi

)
T � 0. (73)

Note that the particular structure of matrix TH
(
I ⊗ PT

i Pi

)
T

is given by

TH
(
I ⊗ PT

i Pi

)
T =

⎡

⎢⎢⎢⎣

I ⊗ PT
i Pi . . . I ⊗ PT

i Pi

I ⊗ PT
i Pi

...
. . .

...
I ⊗ PT

i Pi . . . I ⊗ PT
i Pi

⎤

⎥⎥⎥⎦ , (74)

From the previous conditions we can see that all matrices
M�i will be the same for user i, i.e., M�i = Mi , ∀�. Now if we
choose the particular structure Mi = αiI, then condition (73)
is equivalent to

αiI +
1
2
TH
(
I ⊗ PT

i Pi

)
T � 0. (75)

Now, condition (75) is equivalent to

αigH g ≤ −1
2
gH TH

(
I ⊗ PT

i Pi

)
Tg, ∀g. (76)

If we propose a value of α such that

αigH g ≤ −1
2
‖Tg‖2

2λmax
(
I ⊗ PT

i Pi

)
, ∀g, (77)

αigH g ≤ −1
2
‖Tg‖2

2λmax
(
PT

i Pi

)
, ∀g. (78)

are fulfilled, this ensures that (76) is fulfilled. Therefore, the
condition over α shown in (77) and (78) are sufficient conditions
to fulfilled (75). Now, the term ‖Tg‖2

2 can be further simplified.
Based on the structure of matrix T, we have that

‖ Tg‖2
2 =

nT nT∑

i=1

|gi + gi+nT nT +1 + . . . + gi+nT nT (|UI |−1)+1 |2 (79)

≤
nT nT∑

i=1

||UI |max{gi , . . . ,gi+nT nT (|UI |−1)+1}|2 (80)

≤
nT nT∑

i=1

|UI |2
(
|gi |2 + . . . + |gi+nT nT (|UI |−1)+1 |2

)
(81)

= |UI |2
nT nT |UI |∑

i=1

|gi |2 = |UI |2‖g‖2
2 . (82)

Tr

(
HH

i

(
I + Hi

∑

k∈UI

S(0)
k HH

i

)−1

Hi

(
∑

�∈UI

(
S(1)

� − S(0)
�

)))

=
∑

�∈UI

Tr

⎛

⎝HH
i

(
I + Hi

∑

k∈UI

S(0)
k HH

i

)−1

Hi

(
S(1)

� − S(0)
�

)
⎞

⎠ (67)

vec

⎛

⎝
(
∑

�∈UI

(
S(1)

� − S(0)
�

))T
⎞

⎠
T

(
I ⊗ PT

i Pi

)
vec

(
∑

�∈UI

(
S(1)

� − S(0)
�

))
, (70)
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Thus, a sufficient condition to fulfill (78) is

αi‖g‖2
2 ≤ −1

2
|UI |2‖g‖2

2λmax
(
PT

i Pi

)
, ∀g, (83)

and, finally,

αi ≤ −1
2
|UI |2λmax

(
PT

i Pi

)
≤ −1

2
|UI |2λ2

max(H
H
i Hi).

(84)
Hence, a possible matrix Mi satisfying assumptions
(A1)−(A4) is, finally,

Mi = −1
2
|UI |2λ2

max(H
H
i Hi)I. (85)
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