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Overview Article

Abstract—This paper gives an overview of the majorization-
minimization (MM) algorithmic framework, which can provide
guidance in deriving problem-driven algorithms with low compu-
tational cost. A general introduction of MM is presented, including
a description of the basic principle and its convergence results. The
extensions, acceleration schemes, and connection to other algorith-
mic frameworks are also covered. To bridge the gap between theory
and practice, upperbounds for a large number of basic functions,
derived based on the Taylor expansion, convexity, and special in-
equalities, are provided as ingredients for constructing surrogate
functions. With the pre-requisites established, the way of applying
MM to solving specific problems is elaborated by a wide range of
applications in signal processing, communications, and machine
learning.

Index Terms—Majorization-minimization, upperbounds,
surrogate function, non-convex optimization.

I. INTRODUCTION

IN the era of big data, we are witnessing a fast development
in data acquisition techniques and a growth of computing

power. From an optimization perspective, these can result in
large-scale problems due to the tremendous amount of data and
variables, which cause challenges to traditional algorithms [1].
For example, apart from trivially parallelizable or convex prob-
lems where decomposition techniques can be employed, solving
a general problem with no structure to exploit calls for a large
amount of computational resources (time and storage). Diffi-
culties also arise when data is stored on different computers or
is acquired in real-time. In these cases, it can be inefficient or
even impossible to first collect the complete data set and then
perform centralized optimization. Besides the aforementioned
issues caused by the scale, a problem with a complicated form
may lead to numerical problems as well. For instance, the second
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Fig. 1. The MM procedure.

order derivatives, which are required by Newton-type nonlinear
programming algorithms, can be costly to compute under this
scenario. Facing these obstacles, devising problem-driven algo-
rithms that can take advantage of the problem structure may be
a better option than employing a general-purpose solver. This is
where MM comes into play.

The MM procedure consists of two steps. In the first majoriza-
tion step, we find a surrogate function that locally approximates
the objective function with their difference minimized at the
current point. In other words, the surrogate upperbounds the ob-
jective function up to a constant. Then in the minimization step,
we minimize the surrogate function. The procedure is shown
pictorially in Fig. 1. A parallel argument can be made for max-
imization problems by replacing the upperbound minimization
step by a lowerbound maximization step, and is referred to as
minorization-maximization.

MM has a long history that dates back to the 1970s [2], and is
closely related to the famous EM algorithm [3] intensively used
in computational statistics. As a special case of MM, EM is ap-
plied mainly in maximum likelihood (ML) estimation problems
with incomplete data, which was systematically introduced in
the seminal paper [4] by Dempster, Laird, and Rudin in 1977.
MM generalizes EM by replacing the E-step, which calculates
the conditional expectation of the log-likelihood of the complete
data set, by a minorization step that finds a surrogate function.
The surrogate function keeps the key property of the E-step
by being a lower bound of the objective function. As a con-
sequence, MM shares most of the convergence results of EM.
Compared to EM, which relies on a missing data interpretation
of the problem, MM is easier to understand and has a wider
scope of applications.

The idea of MM appears in statistics and image process-
ing in early works including [5]–[9], and started taking shape
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TABLE I
SUMMARY OF APPLICATIONS IN SECTION V AND THEIR CORRESPONDING SURROGATE FUNCTION CONSTRUCTION TECHNIQUES

as a general algorithmic framework in [10]–[12]. It has been
applied to a large number of problems since then [13], includ-
ing sparse regression with non-convex or discontinuous objec-
tive functions [14]–[18], sparse principal component analysis
(PCA) with cardinality constraint [19], canonical component
analysis (CCA) [20], [21], covariance estimation [22]–[25], and
matrix factorization [26], [27] with non-convex objective func-
tions and constraints. It has also been applied to higher level
applications such as image processing [28], [29], phase retrieval
[30], and design [31], [32], just to name a few.

The key to the success of MM lies in constructing a surro-
gate function. Generally speaking, surrogate functions with the
following features are desired [13]:

� Separability in variables (parallel computing);
� Convexity and smoothness;
� The existence of a closed-form minimizer.
Consequently, minimizing the surrogate function is efficient

and scalable, yielding a neat algorithm that is easy to implement.
Nevertheless, finding an appropriate surrogate function that

yields an algorithm with low computational complexity is not
an easy task. On one hand, to achieve a fast convergence rate, a
surrogate function that tries to follow the shape of the objective
function is preferable. On the other hand, it should be simple
to minimize so that the computational cost per iteration is low.
Finding the right trade-off between these two opposite goals re-
quires skills in applying inequalities to specific problems. As the
main purpose of this paper, we are devoted to presenting surro-
gate function construction techniques, elaborated by examples
in Section III and applications listed in Table I1.

This paper is organized as follows. Section II serves as an in-
troduction to MM, including a description of the framework,

1The convergence column indicates the type of convergence discussed in each
problem. It should not be interpreted as the whole sequence generated by the
algorithm converges to the corresponding point, which is a strong conclusion.

its convergence results, extensions, as well as accelerators.
Section III presents the techniques and examples of constructing
surrogate functions. Section IV connects MM with some other
algorithmic frameworks. Section V demonstrates the way of ap-
plying the inequalities in Section III to devise MM algorithms
for real-world applications. Section VI concludes the overview.

A. Notation

Italic letters denote scalars, lower case boldface letters denote
vectors, and upper case boldface letters denote matrices.

The sequence of nonnegative integers is denoted N := {0,
1, . . .}. Real numbers are denoted R, and complex numbers are
denoted C. The Euclidean space of dimension n is denoted Rn .
The nonnegative (positive) orthant is denoted Rn

+ (Rn
++ ). The

set of symmetric matrices of size n × n is denoted Sn , and the
positive semidefinite (definite) cone is denoted Sn

+ (Sn
++ ).

The elements of vectors and matrices are denoted as follows:
scalar xi stands for the i-th element of vector x, vector xI stands
for a vector constructed by eliminating all the elements of x but
the xi’s with i ∈ I, vector X:,i stands for the i-th column of
matrix X, vector Xi,: stands for the i-th row of X, and scalar
Xij stands for the ij-th entry of X.

Superscripts (·)∗, (·)T , (·)H , (·)−1 , and (·)† denote the com-
plex conjugate, transpose, conjugate transpose, inverse, and
Moore-Penrose pseudoinverse, respectively. The trace and de-
terminant of a matrix X are denoted Tr (X) and det (X), respec-
tively. Vector vec (X) is constructed by stacking the columns of
X. The diagonal matrix diag (x) is constructed by setting its i-th
diagonal element to be xi . Notation A � (�)B stands for ma-
trix A − B is positive semidefinite (definite). The Hadamard
product of two vectors x and y is denoted x � y. Whenever
arithmetic operators such as √, /, and −1 are applied to vectors
we mean an element-wise operation.



796 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 3, FEBRUARY 1, 2017

The magnitude of a scalar x is denoted |x|. The �p -norm of
a vector x is denoted ‖x‖p . The nuclear norm and Frobenius
norm for a matrix X are denoted ‖X‖∗ and ‖X‖F , respectively.

Operator [·]+ : Rn → Rn
+ denotes the Euclidean projection of

a vector inRn toRn
+ . The gradient of a function f is denoted∇f .

The composition of functions f and g is denoted f ◦ g. The sign
function is denoted sgn. The expected value of a random vector
x is denotedE (x), and its covariance matrix is denoted Cov (x).
Unless otherwise specified, subscript (·) t in xt is reserved for
the algorithm iteration that stands for the value of x at the t-th
iteration, and xt

i stands for the value of the i-th element of xt ,
i.e., (xi)t , for notation simplicity (the same convention applies
to vector xi and matrix Xi).

II. ALGORITHMIC FRAMEWORK

A. The MM Algorithm

Consider the following optimization problem

minimize
x

f (x)

subject to x ∈ X ,
(1)

where X is a nonempty closed set in Rn and f : X → R is a
continuous function. We assume that f (x) goes to infinity when
x ∈ X and ‖x‖ → +∞.

Initialized as x0 ∈ X , MM generates a sequence of feasible
points (xt)t∈N by the following induction. At point xt , in the
majorization step we construct a continuous surrogate function
g (·|xt) : X → R satisfying the upperbound property that

g (x|xt) ≥ f (x) + ct , ∀x ∈ X , (2)

where ct = g (xt |xt) − f (xt). That is, the difference of g (·|xt)
and f is minimized at xt .

Then in the minimization step, we update x as

xt+1 ∈ arg min
x∈X

g (x|xt) . (3)

The sequence (f (xt))t∈N is non-increasing since

f (xt+1) ≤ g (xt+1 |xt) − ct ≤ g (xt |xt) − ct = f (xt) , (4)

where the first inequality follows from (2), and the second in-
equality follows from (3). We denote the algorithm mapping de-
fined by steps (2) and (3) that sends xt to xt+1 by M : Rn → Rn

in the rest of the paper.

B. Extensions

The MM principle can be combined with other algorithmic
frameworks, leading to the following extensions.

Instead of computing a minimizer of g (·|xt), we can find a
point xt+1 that satisfies g (xt+1 |xt) ≤ g (xt |xt) (i.e., just mak-
ing an improvement). This leads to the generalized EM (GEM)
algorithm [4]. Point xt+1 can be found by taking a gradient,
Newton, or quasi-Newton step. GEM is also closely related to
MM acceleration schemes [64]–[66].

Combining with the block coordinate descent algorithm, we
can partition the variables into blocks and apply MM to one

block while keeping the value of the other blocks fixed. As a ben-
efit, it provides more flexibility in designing surrogate functions.
Moreover, in some cases the surrogate function can approximate
f better than using a single block, leading to a faster conver-
gence rate [67]. A simple update rule is sweeping the blocks
cyclically. It can be generalized to the “essential cyclic rule”
[68], where each block is updated at least once within a finite
number of iterations [57], [69], [70]. Other sweeping schemes
include the Gauss-Southwell update rule, maximum improve-
ment update rule, as well as the randomized update rule [70].

An incremental MM was proposed in [71] for minimizing an
objective function of the form f (x) = 1

N

∑N
i=1 fi (x), which

is related to stochastic optimization with f being the empirical
average. The algorithm assumes only one of the fi’s is observed
at each iteration, and the surrogate function is updated based on
the current fi and the algorithm history recursively.

In [69], the global upperbound requirement of the surrogate
function has been relaxed to just being a local upperbound.

In this paper, we restrict our scope to the standard MM with a
single block of variables2. For a comprehensive analysis of the
above-described extensions, we refer the reader to [69], [70],
[72], and [73].

C. Convergence of MM

We assume in preliminary that the MM conditions (2) and (3)
hold, andX is convex throughout this subsection. The convexity
of X and continuity of f are minimum assumptions for a unified
study of algorithm convergence. In some applications, MM is
derived for a problem with a discontinuous objective function
or a non-convex constraint set, see [17], [19] for examples. The
convergence of these algorithms deserves a case by case study.

In Eq. (4), we have shown that the objective value is non-
increasing and converges to a limit f� by the assumption that f
is bounded below. The next step is to establish the conditions that
guarantee f� being a stationary value and also the convergence
of the sequence (xt)t∈N .

1) Unconstrained Optimization: We make the following as-
sumptions on f and g:

(A1) The sublevel set lev≤f (x0 )f := {x ∈ X |f (x)
≤ f (x0)} is compact given that f (x0) < +∞;

(A2.1) f (x) and g (x|xt) are continuously differentiable with
respect to x;

(A3.1) g (x|xt) is continuous in x and xt .
For unconstrained problem (1), the set of stationary points of

f is defined as

X � = {x|∇f (x) = 0} . (5)

Under Assumptions (A1), (A2.1), (A3.1), the following state-
ments hold [74], [75]:

(C1) Any limit point x∞ of (xt)t∈N is a stationary point of f ;
(C2) f (xt) ↓ f� monotonically and f� = f (x�) with x� ∈

X � ;

2There are a few applications in this paper where MM is applied with block
alternation. For presentation clarity we only describe the update of one block
while treating the other blocks of variables as fixed parameters.
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(C3) If f (M (x)) = f (x), then x ∈ X � and x ∈
arg min g (·|x);

(C4) If x is a fixed point of M , then x is a convergent point
of MM and belongs to X � .

To establish to convergence of sequence (xt)t∈N to a station-
ary point, we further require one of the following assumptions:

(A4.1) Set X � is a singleton;
(A4.2) Set X � is discrete and ‖xt+1 − xt‖ → 0;
(A4.3) Set X � is discrete, and g (·|x) has a unique global

minimum for all x ∈ X � .
2) Constrained Optimization with Smooth Objective Func-

tion: With X convex and f continuously differentiable, the set
of stationary points is defined as

X � =
{
x|∇f (x)T (y − x) ≥ 0, ∀y ∈ X

}
. (6)

Conclusions (C1)–(C4) still hold under Assumptions (A1),
(A2.1) and (A3.1) [69]. Moreover, Assumption (A3.1) can be
replaced by (A3.2) stated next.

(A3.2) For all xt generated by the algorithm, there exists
γ ≥ 0 such that ∀x ∈ X , we have

(∇g (x|xt) −∇g (xt |xt))
T (x − xt) ≤ γ ‖x − xt‖2 .

Assumption (A3.2) is equivalent to stating that g (x|xt) can
be uniformly upperbounded by a quadratic function with the
Hessian matrix being γI, which is easier to verify than (A3.1)
when g (·|xt) has a complicated form3.

Convergence of sequence (xt)t∈N to a stationary point can
be proved by further requiring (A4.1) or (A4.2).

3) Constrained Optimization With Non-Smooth Objective
Function: Finally, we address the case that f and g (·|x) are
nonsmooth, but their directional derivatives exist for all feasible
directions [70]. The set of stationary points is defined as

X � = {x|f ′ (x;d) ≥ 0,∀x + d ∈ X} , (7)

where

f ′ (xt ;d) := lim inf
λ↓0

f (xt + λd) − f (xt)
λ

(8)

is the directional derivative of f at xt in direction d. Accord-
ingly, the gradient consistency assumption (A2.1) is modified
as follows:

(A2.2) f ′ (xt ;d) = g′ (xt ;d|xt) , ∀xt + d ∈ X .
Under Assumptions (A1), (A2.2), (A3.1), the sequence

(xt)t∈N converges to X � , i.e.,

lim
t→+∞

inf
x∈X �

‖xt − x‖2 = 0.

D. Acceleration Schemes

A drawback of MM is that it can suffer from a slow con-
vergence speed [3], [13], mainly because of the restrictive up-
perbound condition. To alleviate this shortcoming, MM accel-
erators are often employed. Various types of accelerators have

3Since the continuously differentiability of f and g (·|xt ) and the upper-
bound condition of MM (Eq. (2)) implies the directional derivative of f and
g (·|xt ) are equal along all feasible directions (Proposition 1, [70]), the first
order consistency condition (R2) in [69] holds automatically.

been proposed in the literature, including those derived based
on the multivariate Aitken’s method [76], conjugate gradient
acceleration [64], Newton and quasi-Newton type acceleration
[66], [77], [78], and over-relaxation [79]–[82], see [83, Chap. 4]
for an overview in the context of EM.

We begin with the idea of line search type algorithms. To
minimize a function f , at the current point xt one first deter-
mines a descent direction dt , then a step-size αt that decreases
the objective function. MM can be interpreted in this way by
identifying dt := M (xt) − xt and αt := 1.

The line search type accelerators modify the value of αt to
achieve a larger decrement of the objective value. For instance,
in [84] αt was determined by the two previous steps based
on Aitken’s method. This method may, however, destroy the
monotonicity of the algorithm. A constant step-size αt ≡ α was
adopted in over-relaxation methods [79]–[82], and the optimal
α was provided in [82]. Nevertheless, it is also pointed out that
computing the optimal α is generally a difficult problem. To
address these issues, αt was suggested to be computed using line
search so that f (xt+1) ≤ f (xt) is guaranteed [38], [82], [85].

Another class of accelerators also modifies the descent direc-
tion dt . To ensure the objective value is nonincreasing, xt+1
needs not be a global minimizer of g (·|xt). Instead, one can
solve (3) inexactly by taking a Newton step. This leads to the EM
gradient algorithm [65]. A quasi-Newton accelerator proposed
in [66] improves it by adding an approximate of the Hessian of
H (x|xt) � f (x) − g (x|xt) to ∇g2 (x|xt) in the Newton step
(assuming both ∇2H (x|xt) and ∇g2 (x|xt) exist). In [64], the
generalized gradient algorithm was applied to minimize f by
treating M (xt) − xt as the generalized gradient. See [85] for an
overview and comparison of the above-mentioned accelerators.

Finally, we introduce a class of accelerators based on the
idea of finding a fixed point of M , which is a stationary point
of f if Assumptions (A1), (A2), and (A3.1) hold. Assuming
that M is continuously differentiable, it is known that Newton’s
method enjoys a quadratic convergence rate in the vicinity of a
fixed point. Define F (x) = M (x) − x, a Newton step update
of finding a zero of F is given by4

x̃t+1 = x̃t − (∇F (x̃t))
−1 F (x̃t) ,

where ∇F is the Jacobian of F . While F (x̃t) can be evalu-
ated by the MM step, the Jacobian ∇F (x̃t) is hard to obtain
in general (unless M (x) has an explicit form) and is often
approximated based on the previous iterates (x̃t ′)0≤t ′≤t . The
STEM accelerator proposed in [86] approximates ∇F (x̃t) by a
scaled identity matrix. The Aitken [76] and SQUAREM acceler-
ators [86] approximate ∇F (x̃t) using the secant method. More
recently, an accelerator was proposed in [87] that approximates
∇F (x̃t) based on the quasi-Newton method.

We point out that Newton type algorithms converge only in
the vicinity of a stationary point, therefore accelerators based
on Newton’s iteration are often executed after a few MM steps
so that xt falls into the convergence region. It is also worth
mentioning that the MM acceleration schemes are developed for

4The sequence (x̃t )t∈N should be distinguished from the MM sequence
(xt )t∈N .
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unconstrained optimization problems (except the cases where
the constraint can be eliminated by reparameterization). For a
constrained optimization problem, it is generally not true that
the point returned by accelerators will be feasible. In this case,
heuristic manipulations such as projection to the feasible set can
be employed.

III. SURROGATE FUNCTION CONSTRUCTION

The key step of applying MM is constructing a surrogate func-
tion. While there is no concrete step to follow, some commonly
adopted rules that can provide guidance exist. In this section,
techniques to find surrogate functions, along with a number of il-
lustrating examples, will be presented. The inequalities provided
here will serve as building blocks in finding surrogate functions
for more sophisticated objective functions in Section V.

A. First Order Taylor Expansion

Suppose f can be decomposed as

f (x) = f0 (x) + fccv (x) , (9)

where fccv is a differentiable concave function.
Linearizing fccv at x = xt yields the following inequality:

fccv (x) ≤ fccv (xt) + ∇fccv (xt)
T (x − xt) , (10)

thus f can be upperbounded as

f (x) ≤ f0 (x) + ∇fccv (xt)
T x + const.

Example 1: Function log (x) can be upperbounded as

log (x) ≤ log (xt) +
1
xt

(x − xt) (11)

with equality achieved at x = xt .
Example 2: Function log det (Σ) can be upperbounded as

log det (Σ) ≤ log det (Σt) + Tr
(
Σ−1

t (Σ − Σt)
)

(12)

with equality achieved at Σ = Σt .
Example 3: Function Tr

(
SX−1

)
with both S and X in S++

can be lowerbounded as

Tr
(
SX−1) ≥ Tr

(
SX−1

t

)
− Tr

(
X−1

t SX−1
t (X − Xt)

)
(13)

with equality achieved at X = Xt .
Example 4 [88]: Function Tr

(
XT Y−1X

)
with Y ∈ S++

can be lowerbounded as

Tr
(
XT Y−1X

)

≥ 2Tr
(
XT

t Y−1
t X

)
− Tr

(
Y−1

t XtXT
t Y−1

t Y
)

+ const.
(14)

with equality achieved at (X,Y) = (Xt ,Yt).
Proof: Function Tr

(
XT Y−1X

)
is jointly convex in X and

Y, therefore lowerbounded by its linear expansion around
(Xt ,Yt), which implies (14). �

Remark 5: We emphasize that the upperbounds derived
based on linearizing a concave function are not necessarily lin-
ear in the variables, see Eq. (51) for example.

Fig. 2. Surrogate function construction technique by first order Taylor ex-
pansion: a concave function can upperbound a linear function, which can be
upperbounded by a convex function.

More generally, given a convex, a linear, and a concave func-
tion, fcvx , flin , and fccv , respectively, if their values and gradi-
ents are equal at some xt , then, for any x,

fccv (x) ≤ flin (x) ≤ fcvx (x) , (15)

as illustrated in Fig. 2.
Example 6: Function |x|p , 0 < p ≤ 1, which is concave on

(−∞, 0] and [0,+∞), can be upperbounded as5

|x|p ≤ p

2
|xt |p−2 x2 + const., (16)

providing that xt �= 0.
Inequality (16) plays an important role in iteratively

reweighted least squares (IRLS) algorithms, where a quadratic
upperbound is preferred to a tighter linear one in the majoriza-
tion step, with the benefit that the minimization step admits a
solution that is easy to compute.

In the last example, we show that inequality (15) can be used
to construct lowerbounds for maximization problems.

Example 7 [54]: A monomial
∏n

i=1 xαi
i , where xi ≥ 0,

∀i, can be lowerbounded as

n∏

i=1

xαi
i ≥

n∏

i=1

(
xt

i

)αi

(

1 +
n∑

i=1

αi log xi −
n∑

i=1

αi log xt
i

)

(17)
with equality achieved at xi = xt

i .
Proof: Inequality (11) implies that

log

(
n∏

i=1

xαi
i

)

≤ log

(
n∏

i=1

(
xt

i

)αi

)

+

(
n∏

i=1

(
xt

i

)αi

)−1( n∏

i=1

xαi
i −

n∏

i=1

(
xt

i

)αi

)

.

Rearranging the terms we have (17). �

5The result also holds for 1 < p ≤ 2 although |x|p is convex.
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The surrogate function is separable in the variables, which
can be optimized in parallel if the constraints are also separable.

B. Convexity Inequality

For a convex function fcvx , we have the following inequality:

fcvx

(
n∑

i=1

wixi

)

≤
n∑

i=1

wifcvx (xi) , (18)

where
∑n

i=1 wi = 1, wi ≥ 0.∀i = 1, . . . , n. Equality can
achieved if the xi’s are equal, or for different xi’s if fcvx is
not strictly convex.

Example 8 (Jensen’s Inequality): Let f : X → R be a con-
vex function and x be a random variable that take values in X .
Assuming that E (x) and E (f (x)) are finite, then

E (f (x)) ≥ f (E (x)) .

With Jensen’s inequality we can show that EM is a special case
of MM (cf. Section IV-A).

Particularizing (18) for the concave function log, we have the
following inequality.

Example 9: Function
∑n

i=1
αi log fi (x) with αi > 0 can

be upperbounded as

n∑

i=1

αi log fi (x) ≤
n∑

i=1

αi log fi (xt)

+

(
n∑

i=1

αi

)

log

⎛

⎝

∑n
i=1 αi

fi (x)
fi (xt )∑n

i=1 αi

⎞

⎠ ,

(19)
where fi (x) > 0, ∀i. Equality is achieved at x = xt .

Inequality (19) creates a concave upperbound for∑n

i=1
αi log fi (x) by merging the summation inside the log

function. Recall that by applying inequality (11) we can obtain
an alternative upperbound that is linear in the fi (x)’s as

n∑

i=1

αi log fi (x) ≤
n∑

i=1

αi

(

log fi (xt)

+
1

fi (xt)

(
fi (x) − fi (xt)

))

.

(20)

However, the concave upperbound (19) is tighter, thus is pre-
ferred to (20) for a faster convergence rate, see Fig. 3 as an
illustration.

Particularizing inequality (18) for 1/x we have the following
bound.

Example 10: The function
1

∑n
i=1 aixi

with ai > 0 and xi

> 0 can be upperbounded as

1
∑n

i=1 aixi
≤

∑n
i=1 ai (xt

i)
2
x−1

i

(
∑n

i=1 aixt
i)

2 (21)

with equality achieved at xi = xt
i , ∀i = 1, . . . , n.

Generalizing (21) to a convex function f yields the following
inequality.

Fig. 3. Objective function: f (x) = 3 log (1 + x) + 5 log (1 + 3x)
+ 1.5 log (1 + 6x); log upperbound: upperbound given by (19); linear
upperbound: upperbound given by (20).

Example 11 [13]: The convex function f
(
aT x

)
can be up-

perbounded as

f
(
aT x

)
≤

n∑

i=1

αif

(
ai

αi

(
xi − xt

i

)
+ aT xt

)

, (22)

where αi > 0,
∑n

i=1 αi = 1. Moreover, if the elements of

a and xt are positive, letting αi = ai x
t
i

aT xt
yields a different

upperbound as

f
(
aT x

)
≤

n∑

i=1

aix
t
i

aT xt
f

(
aT xt

xt
i

xi

)

. (23)

Inequalities (22) and (23) were proposed and applied in medical
imaging in [6], [9].

C. Construction by Second Order Taylor Expansion

Lemma 12 (Descent Lemma [89]): Let f : Rn → R be a
continuously differentiable function with a Lipschitz contin-
uous gradient and Lipschitz constant L (we say that ∇f is
L-Lipschitz henceforth). Then, for all x,y ∈ Rn ,

f (x) ≤ f (y) + ∇f (y)T (x − y) +
L

2
‖x − y‖2 . (24)

More generally, if f has bounded curvature, i.e., there exists a
matrixM such thatM � ∇2f (x) , ∀x ∈ X , then the following
inequality implied by Taylor’s theorem [88] holds:

f (x) ≤ f (y) + ∇f (y)T (x − y) +
1
2

(x − y)T M (x − y) .

(25)
Particularizing (25) for f (x) = xH Lx gives the following
inequality6.

6Wirtinger calculus is applied for complex-valued matrix differentials [90].
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Example 13: The quadratic form xH Lx, where L is a Her-
mitian matrix, can be upperbounded as

xH Lx ≤ xH Mx + 2Re
(
xH (L − M)xt

)
+ xH

t (M − L)xt ,
(26)

where M � L. Equality is achieved at x = xt .
Example 13 shows that using (26) we can replace L by M

with some desired structures, such as being a diagonal matrix,
so that the surrogate function is separable.

D. Arithmetic-Geometric Mean Inequality

The arithmetic-geometric mean inequality states that [88]

n∏

i=1

zαi
i ≤

n∑

i=1

αi

‖α‖1
z
‖α‖1
i , (27)

where zi and αi are nonnegative scalars. Equality is achieved
when the zi’s are equal.

Letting zi = xi/xt
i for αi > 0 and zi = xt

i/xi for αi < 0 we
have the following inequality.

Example 14 [54]: A monomial
∏n

i=1 xαi
i can be upper-

bounded as

n∏

i=1

xαi
i ≤

(
n∏

i=1

(
xt

i

)αi

)
n∑

i=1

|αi |
‖α‖1

(
xi

xt
i

)‖α‖1 sgn(αi )

. (28)

Equality is achieved at xi = xt
i , ∀i = 1, . . . , n.

Upperbound (28) and lowerbound (17) serve as the basic in-
gredients for deriving MM algorithms for signomial program-
ming [54].

Example 15 [53]: A posynomial
∑n

i=1 ui (x), where ui (x)
is a monomial, can be lower bounded as

n∑

i=1

ui (x) ≥
n∏

i=1

(
ui (x)

αi

)αi

, (29)

where αi = ui (xt )∏ n
i = 1 ui (xt )

. Equality is achieved at x = xt .
Inequality (29) can be used in solving complementary geo-

metric programming (GP) with the objective function being the
ratio of posynomials.

Example 16: The �2-norm ‖x‖2 can be upperbounded as

‖x‖2 ≤ 1
2

(
‖xt‖2 + ‖x‖2

2 / ‖xt‖2

)
, (30)

given that ‖xt‖2 �= 0. Equality is achieved at x = xt .

E. Cauchy-Schwartz Inequality

Cauchy-Schwartz inequality states that

xT y ≤ ‖x‖2 ‖y‖2 .

Equality is achieved when x and y are collinear.
Example 17: Function

∣
∣aH x

∣
∣ can be lowerbounded as

∣
∣aH x

∣
∣ ≥ Re

(
xH

t aaH x
)
/
∣
∣aH xt

∣
∣ , (31)

given that
∣
∣aH xt

∣
∣ �= 0. Equality is achieved at x = xt .

Proof: For two complex numbers z1 = u1 + iv1 and z2
= u2 + iv2 , we have

Re (z1z
∗
2) = u1u2 + v1v2

≤
√

u2
1 + v2

1 ·
√

u2
2 + v2

2

by Cauchy-Schwartz inequality. Letting z1 = aH x and z2
= aH xt yields the desired inequality. �

Example 18: The �2-norm ‖x‖2 can be lowerbounded as

‖x‖2 ≥ xT xt/ ‖xt‖2 , (32)

given that ‖xt‖2 �= 0. Equality is achieved at x = xt .
Together with (32), they provide a quadratic upperbound and

a linear lowerbound for the �2-norm on the whole space except
the origin.

F. Schur Complement

The Schur complement condition for C � 0 states that

X =
[

A B
BT C

]

� 0

if and only if the Schur complement of C is in S+ . That is,

S := A − BC−1BT � 0. (33)

Inequality (33) provides a way to upperbound the inverse of
a matrix.

Example 19 ([25]): Assuming P � 0, the matrix
(
APAH

)−1
can be upperbounded as

R−1
t APtP−1PtAH R−1

t �
(
APAH

)−1
, (34)

where Rt = APtAH . Equality is achieved at P = Pt .
Inequality (34) can also be derived based on convexity [63].
Particularizing (34) for P = diag (p1 , . . . , pn ) and A

=
[√

a1 , . . . ,
√

an

]
gives a different derivation for inequality

(21).

G. Generalization

With the inequalities provided above we can construct sur-
rogate functions for more complicated objective functions by
majorizing f more than once. Specifically, one can find a se-
quence of functions g(1) (·|xt) , . . . , g(k) (·|xt) satisfying

g(i) (xt |xt) = g(i+1) (xt |xt)

g(i) (x|xt) ≤ g(i+1) (x|xt) , ∀x ∈ X , ∀i = 1, . . . , k − 1.

Function g(i) (·|xt) usually gets a simpler structure gradually
until its minimizer is easy to compute, as illustrated by the
applications in Section V.

IV. CONNECTION TO OTHER ALGORITHMIC FRAMEWORKS

A. The EM Algorithm

Introduced in [4], EM is often employed to derive an iterative
scheme for ML estimation problems with latent variables. To be
precise, denote the observed variable by x and the latent variable
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by z, the maximum likelihood estimator (MLE) of parameter θ
is defined as the maximizer of the log-likelihood function

L (θ) = log p (x|θ) = logEz|θp (x|z,θ) .

In the E-step of EM, we compute

g (θ|θt) = Ez|x,θt
log p (x, z|θ) ,

where p (z|x,θt) is the posterior distribution of z given the
current estimate θt , and g (θ|θt) is the expected log-likelihood
of the complete data set. Then in the M-step, the new estimate
θt+1 is defined as

θt+1 ∈ arg max
θ∈Θ

g (θ|θt) .

Applying Jensen’s inequality, we have

L (θ) = logEz|θp (x|z,θ)

= logEz|x,θt

p (x|z,θ) p (z|θ)
p (z|x,θt)

≥ Ez|x,θt
log

(
p (x|z,θ) p (z|θ)

p (z|x,θt)

)

= g (θ|θt) + const.,

which shows that g (θ|θt) is a lower bound of L (θ). Therefore,
EM is a special case of MM [11]. Moreover, theoretical results
of EM such as convergence analysis and acceleration schemes
can be adapted to MM [3], [10].

We mention that EM can also be viewed as a proximal mini-
mization algorithm by rewriting g (θ|θt) as

g (θ|θt) = log p (x|θ) − βtI (θt ,θ)

with the proximal term

I (θt ,θ) =
∫

log
p (z|x,θt)
p (z|x,θ)

p (z|x,θt) dz

being the KL-divergence between p (z|x,θt) and p (z|x,θ),
and βt = 1 [91]. Ratio p(z|x,θt )

p(z|x,θ) is assumed to exist for all θ and
θt . This connection suggests that one could tune the penalty
parameter βt to achieve a faster convergence rate.

In addition, EM belongs to the class of cyclic algorithms as
well [92]. This can be shown by defining function

F (p̃,θ) = Ep̃ (log p (x, z|θ)) − Ep̃ (log p̃ (z))

and noticing that the E-step gives the optimal p̃ (z) with θ fixed
as θt , and the M-step gives the optimal θt+1 with p̃ (z) fixed
as p (z|x,θt+1). The equivalence of MM and cyclic algorithms
with finite dimensional variables will be justified in the follow-
ing subsection.

B. Cyclic Minimization

If there exists an augmented function g : X × Y → R
satisfying

f (x) = min
y∈Y

g (x,y) ,

then problem

minimize
x

f (x)

subject to x ∈ X
(35)

can be equivalently reformulated as

min
x∈X

min
y∈Y

g (x,y) . (36)

The objective function g can be minimized by alternately min-
imizing it with respect to x and y. That is, (x,y) is updated as

yt+1 ∈ arg min
y∈Y

g (xt ,y)

xt+1 ∈ arg min
x∈X

g (x,yt+1) .
(37)

This method is referred to as cyclic minimization and appears
in applications such as [37], [62], [93]–[96].

Here we prove that cyclic minimization and MM are equiva-
lent. First we show that cyclic minimization belongs to MM.

Define y� (x) ∈ arg miny∈Y g (x,y), then

g (x,y� (x)) = f (x) . (38)

For any given feasible xt ∈ X , we have

g (x,y� (xt)) ≥ g (x,y� (x)) = f (x) . (39)

Eqs. (38) and (39) imply that g (x,y� (xt)) is a surrogate
function of f (x), and (37) is an MM iteration with xt+1 ∈
arg min g (x,y� (xt)).

Conversely, MM can be regarded as cyclic minimization as
follows. The MM conditions

g (x|x) = f (x)

g (x|y) ≥ f (x)

∀x,y ∈ X imply that x ∈ arg miny∈X g (x|y). Therefore the
MM iteration can be rewritten as

yt+1 = xt ∈ arg min
y∈Y

g (xt |y)

xt+1 ∈ arg min
x∈X

g (x|yt+1) ,

which can be interpreted as minimizing g (x|y) with respect to
x and y alternately.

C. DC Programming and Concave-Convex Procedure

DC programming problems take the general form

minimize
x

f0 (x) − h0 (x)

subject to fi (x) − hi (x) ≤ 0, i = 1, . . . ,m,
(40)

where fi (·) and hi (·) for i = 0, . . . ,m are convex functions
[97], [98]. We assume that the fi’s and hi’s are differentiable
and, without loss of generality, that they are strongly convex.

The concave-convex procedure (CCCP) [99]–[101] devel-
oped to reach a local minimum of (40) states that xt can be
updated by solving the following convex subproblem:

minimize
x

g0 (x|xt)

subject to gi (x|xt) ≤ 0, ∀i = 1, . . . ,m,
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where

gi (x|xt) = fi (x) −
(
hi (xt) + ∇hi (xt)

T (x − xt)
)

, (41)

for all i = 0, . . . , m.
Approximation (41) satisfies the MM principle and is a

tight upperbound of fi with equality attained at x = xt .
As a result, CCCP is a special case of MM if hi ≡ 0, ∀i
= 1, . . . , m. When there exists some hi �= 0, the constraint
set {x|gi (x|xt) ≤ 0, ∀i = 1, . . . ,m} approximates the origi-
nal constraint set from inside and is tangent to it at x = xt .

D. Proximal Minimization

The proximal minimization algorithm [102]–[104] has a
cyclic minimization interpretation, thus also belongs to MM.
Specifically, it minimizes f : X → R by introducing an auxil-
iary variable y and solving

minimize
x∈X ,y∈X

g (x,y) = f (x) +
1
2c

‖y − x‖2
2 .

The objective function g (x,y) is minimized alternately with
respect to x and y, leading to the iteration:

xt+1 ∈ arg min
x∈X

f (x) +
1
2c

‖x − yt‖2
2 ,

yt+1 = xt+1 .

(42)

Algorithm (42) can be generalized as:

xt+1 = proxA(xt ),f (xt)

:= arg min
x∈X

f (x) +
1
2
‖x − xt‖2

A(xt ) ,

where A (xt) ∈ Sn
++ and ‖x‖2

A(xt ) := xT A (xt)x.

E. Variable Metric Splitting Method for Non-Smooth
Optimization

Variable metric forward-backward splitting (VMFB) can be
derived based on MM for solving problems of the form

minimize
x∈X

f (x) + h (x) ,

where f is a differentiable function and h is a convex non-
smooth function [105]. For presentation clarity we introduce
below its simplest version to illustrate the connection.

Let (At)t∈N be a sequence of positive definite matrices
satisfying

gf (x|xt) = f (xt) + ∇f (xt)
T (x − xt) +

1
2
‖x − xt‖2

A t

≥ f (x) ,
(43)

i.e., gf (·|xt) is a quadratic function that majorizes f at x = xt .
Then we can upperbound f + h by

g (x|xt)

= f (xt) + ∇f (xt)
T (x − xt) +

1
2γt

‖x − xt‖2
A t

+ h (x) ,

(44)

where γt ∈ (0, 1) , ∀t ∈ N. Omitting the constant terms, the
update xt+1 is given by

xt+1 =proxγ−1
t A t ,h

(
xt − γtA−1

t ∇f (xt)
)

:=arg min
x∈X

1
2γt

∥
∥x −

(
xt − γtA−1

t ∇f (xt)
)∥
∥2

A t
+ h (x).

(45)
Steps (44) and (45) can be interpreted as MM naturally.

If ∇f is L-Lipschitz continuous, then At can be set as
At = LI and descent lemma (24) implies condition (43) holds.
In this case, VMBF reduces to the proximal gradient algorithm
(see [61] and [104] for examples).

Similar to MM, VMFB can also be generalized to blockwise
update [57], [106].

F. Successive Convex Approximation (SCA) Algorithms

1) Approximating the Objective Function: Consider the fol-
lowing problem

minimize
x

f (x) + h (x)

subject to x ∈ X ,

where f : X → R is smooth with a Lipschitz continuous gradi-
ent, and h : X → R is convex possibly non-differentiable.

To arrive at a stationary point, FLEXA [107]–[109] approxi-
mates f by a strongly convex function g (·|xt) satisfying the
property that ∇g (xt |xt) = ∇f (xt). The subproblem to be
solved is

minimize
x

g (x|xt) +
τ

2
(x − xt)

T Q (xt) (x − xt) + h (x)

subject to x ∈ X ,

where Q (xt) ∈ S++ .
The main differences between FLEXA and MM are summa-

rized as follows:
� Applicable problems: To ensure convergence, both

FLEXA and MM require the objective function to be con-
tinuous, and the set X to be convex. MM has been applied
to some applications with a discontinuous objective func-
tion and non-convex set to devise an algorithm with a con-
vergent objective value. The convergence of the iterates,
however, needs to be studied separately.

� Approximating function: MM requires the surrogate func-
tion to be a global upperbound, not necessarily convex. On
the contrary, FLEXA relaxes the upperbound condition,
but requires it to be strongly convex.

For the sake of a clearer comparison, the FLEXA algorithm
presented here is a simplified version of that proposed in [107]
and [108], where blockwise update and parallel computation
are incorporated. Extensions of the algorithm to stochastic op-
timization can be found in [110].

2) Approximating Both the Objective Function and Con-
straint Set: Consider problem

minimize
x

f0 (x)

subject to fi (x) ≤ 0, i = 1, . . . , m.
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Apart from f0 , we can also approximate the feasible set
{x|fi (x) ≤ 0, i = 1, . . . ,m} at each iteration. As proposed in
the early work [111], assuming that fi is differentiable, we can
solve the following convex subproblem at the t-th iteration:

minimize
x

g0 (x|xt)

subject to gi (x|xt) ≤ 0, i = 1, . . . , m,

where gi (·|xt),∀i = 0, . . . ,m, is a convex function that satisfies

gi (xt |xt) = fi (xt)

gi (x|xt) ≥ fi (x)

∇gi (xt |xt) = ∇fi (xt) .

(46)

The limit of any convergent sequence of (xt)t∈N is a KKT
point. In short, the subproblem is constructed by upperbound-
ing the objective function by a convex surrogate function, and
approximating the feasible set from inside by a convex set.

The condition that gi (·|xt) is a global upperbound can be
relaxed to just being the first order convex approximation. In
addition, it can be generalized to blockwise update with the
blocks updated either sequentially or in parallel. We refer read-
ers to [101] and [112]–[115] for the details and convergence
analysis.

G. Subspace MM Algorithm

The descent nature of MM indicates that it can be employed
for step-size selection. Recall that line search type nonlinear
optimization algorithms with update xt+1 = xt + αtdt (xt ∈
Rn ) can be described as first finding a gradient-related descent
direction dt , and then the step-size as

αt = arg min
α≥0

f (xt + αdt) . (47)

The exact line search criterion (47) can be relaxed by only re-
quiring that αtdt generates a sufficient decrease of the objective
value.

MM subspace optimization generalizes the search space to be
the column space of a matrix Dt =

[
d1

t , . . . ,d
m
t

]
(Dt is usually

constructed by the gradient directions of the previous xt’s), and
the step-size to be αt ∈ Rm . Given Dt , αt is found by MM
that decreases the objective value.

In the following we assume ∇f is L-Lipschitz. Define f̃t as
f̃t (α) = f (xt + Dtα), then

f̃t (α)

= f (xt + Dtα)

≤ f̃
(
αk

t

)
+ ∇f̃

(
αk

t

)T (
α − αk

t

)
+

L

2

∥
∥Dt

(
α − αk

t

)∥
∥2

2

:= g (α|αt) .

The surrogate function g (α|αt) is quadratic in α, and has a
minimizer given by

αk+1
t = αk

t −
(
LDT

t Dt

)† ∇f̃
(
αk

t

)
.

When m = 1, the method reduces to MM line search [116],
[117], and when m = n it recovers the ordinary MM. Analysis

of the algorithm convergence and generalizations can be found
in [118]–[122].

V. APPLICATIONS

In this section, we demonstrate applications of MM catego-
rized according to the techniques in Section III.

A. First Order Taylor Expansion

A large number of MM algorithms are derived based on lin-
earizing the concave components in the objective function, as
shown in the following applications.

1) Reweighted �1-norm Minimization: The problem of find-
ing a sparse solution of an underdetermined equation system
y = Ax can be formulated as

minimize
x

n∑

i=1

log (ε + |xi |)

subject to y = Ax,

(48)

where the objective function is an approximation of the �0-norm
with ε > 0 [15].

The reweighted �1-norm minimization algorithm solves prob-
lem (48) by solving

minimize
x

n∑

i=1

|xi |
ε + |xt

i |

subject to y = Ax

(49)

at the t-th iteration, which is an MM step by applying inequality
(11) to the objective function.

2) Robust Covariance Estimation: A robust estimator of co-
variance matrix R with zero-mean observations {xi}N

i=1 is for-
mulated as the minimizer of the following problem [33]:

minimize
R�0

log det (R) +
K

N

N∑

i=1

log
(
xH

i R−1xi

)
. (50)

By inequality (11) a surrogate function can be found as

g (R|Rt) = log det (R) +
K

N

N∑

i=1

xH
i R−1xi

xH
i R−1

t xi

, (51)

which is not convex in R, but has a closed-form minimizer
given by

Rt+1 =
K

N

N∑

i=1

xixH
i

xH
i R−1

t xi

. (52)

Notice that we can replace the log function in log
(
xH

i R−1xi

)

by a continuously differentiable concave function ρ and the same
derivation applies. This idea has also been used in [22]–[24] for
regularized covariance estimation problems.

In contrast to problems (48) and (50), where discovering
a surrogate function is easy, some applications require one to
exploit hidden concavity by manipulating the objective function,
as illustrated by the following example.
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3) Variance Component Model: Consider the signal model

xi = Asi + ni ,

where the si’s and ni’s are zero mean i.i.d. signal and noise
with Cov (si) = diag (p1 , . . . , pL ) and Cov (ni) = σ2I, re-
spectively.

Denote p = [p1 , . . . , pL ]T and P = diag (p), the covariance
R of xi admits the structure

R = APAH + σ2I.

Assuming Gaussianity of the observations {xi}N
i=1 , a maxi-

mum likelihood type estimator R̂ is defined as the solution of
the following problem [34], [35]:

minimize
R ,P�0,σ

log det (R) + Tr
(
SR−1)

subject to R = APAH + σ2I,
(53)

where S = 1
N

∑N
i=1 xixH

i .
We describe the SBL algorithm that solves (53) derived based

on EM [35] using MM. For simplicity, we assume that σ2 is
given. To find a separable surrogate function, we work with the
precision matrix Γ = P−1 and rewrite the objective function as

L (Γ)

= log det
(
Σ−1)− log det (Γ)− σ−4Tr

(
SAΣAH

)
+ const.,

where Σ =
(
Γ + σ−2AH A

)−1
.

Since log det is concave, and the last term of L (Γ) is convex
in Σ−1 , we construct surrogate function

g (Γ|Γt)

= Tr (ΣtΓ) − log det (Γ) +
σ−4

N

N∑

i=1

xH
i AΣtΓΣtAH xi

by inequalities (12) and (13).
Define μi = σ−2ΣtAH xi , then

g (Γ|Γt) =
L∑

j=1

Σt
jjΓj −

L∑

j=1

log Γj +
1
N

N∑

i=1

μH
i Γμi

=
L∑

j=1

(

Σt
jj +

N∑

i=1

|μij |2
)

Γj −
L∑

j=1

log Γj ,

(54)

where μij is the j-th element of μi . The update of Γj (equiva-
lently pj ) can be computed in parallel as

(
Γt+1

j

)−1 = pt+1
j = Σt

jj +
N∑

i=1

|μij |2 . (55)

4) Optimization with Projection Forms: Projection matrices
appear in optimization problems in structured low-rank approx-
imation [123], minimization of MSE criterion [124], etc.

With a slight abuse of terminology, in this subsection, we
refer to matrices parameterized as

P (X) = L (X)T Q (X)−1 L (X) (56)

as projection forms, where L (X) is linear in X and Q (X) is
quadratic in X. Note that P is a standard projection matrix if
L (X) = X and Q (X) = XXT .

By inequality (14), the trace of P (X) can be lowerbounded
as

Tr (P (X)) ≥ 2Tr
(
L (Xt)

T Q (Xt)
−1 L (X)

)

− Tr
(
Q (Xt)

−1 L (Xt)L (Xt)
T Q (Xt)

−1 Q (X)
)

(57)
with equality achieved at X = Xt .

Let us consider the covariance matrix estimation problem in
[36] with the following objective function:

L (W) = log det
(
τWH W + I

)
+ zH

(
τWWH + I

)−1
z.
(58)

The first term is upperbounded as

log det
(
τWH W + I

)

≤ Tr
(
τ
(
τWH

t Wt + I
)−1

WH W
)

+ const.
(59)

by inequality (12). As for the second term, we first create a
projection form by the matrix inversion lemma as follows:

zH
(
τWWH + I

)−1
z

= zH z − zH W
(
τ−1I + WH W

)−1
WH z.

︸ ︷︷ ︸
projection form

(60)

Letting L (W) = W and Q (W) = τ−1I + WH W, inequal-
ity (57) implies that (60) can be upperbounded as

zH
(
τWWH + I

)−1
z ≤ Tr

(
WHtWH

)
− 2Re

(
LtWH

)
,

(61)
where Ht and Lt are coefficients given by

Ht =
(
τ−1I + WH

t Wt

)−1
WH

t zzH Wt

(
τ−1I + WH

t Wt

)−1

and

Lt = zzH Wt

(
τ−1I + WH

t Wt

)−1
.

Combining (59) and (61) we arrive at a surrogate function

g (W|Wt) = Tr
(
WHWH

)
− 2Re

(
LtWH

)

with

H =
(
WH

t Wt + τ−1I
)−1

+ Ht ,

which has a closed-form minimizer given by Wt+1 = LtH−1 .
5) Maximizing of A Convex Function Over A Compact Set:

Consider problem

maximize
x

f (x)

subject to x ∈ K,
(62)

where K is a compact set and f : K → R is convex.
A gradient method has been proposed and analyzed in [37]

to solve (62), which falls into the category of MM.
Since f is convex, it can be minorized as

f (x) ≥ f (xt) + ∇f (xt)
T (x − xt) .
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The maximization step is then given by

xt+1 ∈ arg max
x∈K

∇f (xt)
T x. (63)

Since K is compact, xt+1 is well-defined.
For example, if K = {x ∈ Rn | ‖x‖2 = 1}, then xt+1

= ∇f (xt) / ‖∇f (xt)‖2 ; and if K is the Stiefel manifold de-
fined as

K =
{
X ∈ Rm×n |XT X = In

}
,

where n ≤ m, let the polar decomposition of ∇f (Xt) be
∇f (Xt) = UP, then Xt+1 = U.

6) SEVP with �0-norm Constraint: The sparse eigenvector
problem (SEVP) aims at finding a sparse unit length vector x
that maximizes the quadratic form xT Ax, where A ∈ Sn

+ . It
attracts a lot of attention in applications such as bioinformatics,
big data analysis, and machine learning, where a parsimonious
interpretation of the data set is desired, see references [37],
[125]–[127] for examples.

To enforce sparsity, we can include a zero norm constraint on
x and formulate the problem as [19]:

maximize
x

xT Ax

subject to ‖x‖2 = 1

‖x‖0 ≤ k.

(64)

Since xT Ax is convex in x, it can be minorized at x = xt by
g (x|xt) = 2xT

t Ax.
Define a = AT xt for notation simplicity. In the maximiza-

tion step we need to solve problem

maximize
x

aT x

subject to ‖x‖2 = 1

‖x‖0 ≤ k.

(65)

Define Ik = {i|xi �= 0}, then

aT x = aT
Ik

xIk
≤ ‖aIk

‖2 ‖xIk
‖2 = ‖aIk

‖2 ,

where the inequality follows from the Cauchy-Schwarz inequal-
ity, and the last equality follows from the constraint ‖x‖2 = 1
and the definition ofIk . Observe that ‖aIk

‖2 is maximized when
Ik is the set of indices of ai with the k largest absolute value,
and aT x is maximized when a and x are collinear. Sort the el-
ements of |a| = [|a1 | , . . . , |an |]T in descending order. That is,
we find a permutation π : {1, . . . , n} → {1, . . . , n} such that
|a|π (1) ≥ · · · ≥ |a|π (n) . The solution x� of the problem (65) is
given by

x̃�
i =

{
ai, ai ≥ |a|π (k)
0, ai < |a|π (k)

x� = x̃�/ ‖x̃�‖2 .

(66)

The algorithm is named the truncated power method as comput-
ing vector a is a power iteration step, and in (66) the smallest
n − k elements of |a| are truncated to zero.

7) SEVP with �0-norm Penalty: SEVP can also be formu-
lated in penalty form as [21]

maximize
x

xT Ax − ρ ‖x‖0

subject to ‖x‖2 = 1,
(67)

where ρ ≥ 0 is a parameter that controls the sparsity level. Lin-
earizing the quadratic term we have a minorizing function

g (x|xt) = 2xT
t Ax − ρ ‖x‖0 . (68)

Denote a = 2AT xt . Suppose ‖x‖0 = k ≤ ‖a‖0 , the mini-
mizer x� of g (x|xt) is then given by (66) with g (x� |xt) being

√
√
√
√

k∑

i=1

|a|π (i) − kρ.

Therefore, update xt+1 has cardinality

k� = arg max
k

√
√
√
√

k∑

i=1

|a|π (i) − kρ,

and takes the form (66) with k = k� .
We introduce in the end algorithms derived by iteratively

upperbounding f by a quadratic form, which belongs to the
iteratively reweighted least squares (IRLS) algorithms. Note
that the upperbounds for a convex objective function f are not
constructed based on first order Taylor expansion. We put them
in this subsection for the integrality of the applications.

8) Edge-Preserving Regularization in Image Processing:
Many image restoration and reconstruction problems can be
formulated as

minimize
x

f (x) + Φ (x) ,

where f is a quadratic function of the form

f (x) = xT Qx − 2qT x,

and Φ(x) =
∑m

i=1 φ (δi), where δi =
(
VT x − w

)
i
, is a regu-

larization term with parameters V ∈ Rn×m and w ∈ Rm [38].
Suppose that φ : R → R satisfies regularity conditions: (1) φ

is even; (2) φ is coercive and continuously differentiable; (3)
φ
(√·

)
is concave on R+ ; and (4) 0 < φ′ (t) /t < ∞ (cf. Fig. 4

for examples of φ). Then an upperbound of φ (δ) can be derived
based on the concavity of φ

(√·
)

as follows:

φ (δ) = φ
(√

δ2
)
≤ 1

2
φ′ (δt)

δt
δ2 + const.

Letting δi =
(
VT x − w

)
i

yields the following quadratic sur-
rogate function:

g (x|xt) = xT

(

Q +
1
2
VDtVT

)

x − (2q + VDtw)T x,

where Dt is a diagonal matrix with the i-th diagonal element
being di = φ′ (δt

i ) /δt
i . Assuming that 2Q + VDtVT is invert-

ible, x is then updated as

xt+1 =
(
2Q + VDtVT

)−1
(2q + VDtw) . (69)
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Fig. 4. Examples of edge-preserving functions presented in [128]

(ϕG M (t) = t2

1+ t2 , ϕH L = log(1 + t2 ), ϕH S = 2
√

1 + t2 − 2, ϕG R

= 2 log (cosh (t))).

Suppose alternatively that φ satisfies: (1) φ is coercive and
continuously differentiable; and (2) φ′ is L-Lipschitz. Then f
can be majorized based on descent lemma (24) by surrogate
function

g (x|xt) = xT

(

Q +
1

2L
VVT

)

x +
(

2q +
V (�t + w)

L

)

,

where �i
t = δt

i − Lφ′ (δt
i ). Assuming that 2Q + 1

L VVT is in-
vertible, x is then updated as

xt+1 =
(

2Q +
1
L

VVT

)−1 (

2q +
V (�t + w)

L

)

. (70)

Iteration (69) and (70) correspond to the half-quadratic mini-
mization algorithms without over-relaxation as proposed in [7]
and [8], respectively. A convergence study of the algorithm with
over-relaxation can be found in [38].

9) �p -Norm Minimization: Optimization problems involv-
ing �p -norm arise frequently in robust fitting and sparse repre-
sentation problems. When 1 ≤ p < 2, |x|p is convex, and when
0 < p < 1, the tightest convex upperbound of |x|p is obtained
by linearization. IRLS type algorithms, however, use a quadratic
upperbound for |x|p . The idea is to majorize ‖x‖p

p (x ∈ Rn ) by

‖x‖2 at each iteration and solve a weighted �2-norm minimiza-
tion problem instead. More precisely, inequality (16) indicates
that at x = xt , if none of the elements of xt are zero, then ‖x‖p

p

can be majorized as

‖x‖p
p ≤ ‖x‖2

W t
+ const., (71)

where Wt is a diagonal matrix with the i-th diagonal element
being wt

i = p
2 |xt

i |
p−2 .

Take the following robust regression problem as an example:

minimize
x

‖Ax − b‖p
p , (72)

where b ∈ Rm . With inequality (16) we can construct a
quadratic surrogate function:

g (x|xt) =
m∑

i=1

wt
i (bi − Ai,:x)2 ,

where wt
i is given by

wt
i = |bi − Ai,:xt |p−2 .

Function g (x|xt) admits a closed-form minimizer

xt+1 =
(
AT WtA

)−1
AT Wtb.

The loss function |x|p can be generalized to any continuously
differentiable concave function for robust fitting [40].

A similar idea has been applied in [41] in solving the sparse
representation problem

minimize
x

‖Ax − b‖2
2 + λ ‖x‖1 ,

and in [42] in solving the compressed sensing problem

minimize
x

‖x‖1

subject to Ax = b,

where ‖x‖1 was upperbounded by a quadratic function using
inequality (16) and a least squares problem was solved per
iteration.

Note that in [41], convergence was established under the con-
dition that none of the xt

i ’s are zero, and in [42] the weight
was adaptively modified so that it never goes to infinity. If any
xt

i becomes zero, the algorithm will be ill-posed since weight
matrix Wt will be undefined in the next iteration. The effect of
this singularity issue in algorithm convergence has been exten-
sively studied in the literature, see [29], [39], [41] and [42] for
examples. A way to circumvent the difficulty is by smoothing
the objective function. For example, ‖x‖p

p was approximated by

hε,p (x) =
n∑

i=1

(
ε2 + x2

i

)p/2

in [43], where ε is a positive small number. As a result, the
weight at each iteration is always well-defined. The smoothing
technique was also adopted in [21] with a different approxima-
tion, to solve a sparse generalized eigenvalue problem (GEVP)
formulated as

maximize
x

xT Ax −
n∑

i=1

|xi |p

subject to xT Bx = 1.

(73)

B. Second Order Taylor Expansion (Hessian Bound)

If the Hessian matrix of the objective function f is uniformly
bounded, i.e., M � ∇2f (x) , ∀x ∈ X , then we can find a
quadratic surrogate function using inequality (25). As a ben-
efit, the update usually admits a closed-form solution.
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1) Logistic Regression: In a multi-class classification prob-
lem, we are given data pairs (xn , tn )1≤n≤N , where xn ∈ Rm

is a feature vector and tn is a (K + 1)-dimensional encoding
vector with (tn )i = 1 if x belongs to the i-th category and
(tn )i = 0 otherwise. The task is to train a statistical model that
can predict t based on x [44], [129]. For notation simplicity we
assume there is only one training sample (x, t).

The problem can be formulated as finding a w, defined
as w =

[
wT

1 , . . . ,wT
K

]T
, that minimizes the negative log-

likelihood function:

L (w) =
K∑

j=1

−tjwT
j x + log

⎛

⎝1 +
K∑

j=1

exp
(
wT

j x
)
⎞

⎠ . (74)

It can be proved that the Hessian of L (w) is uniformly upper-
bounded by matrix

M =
1
2

(

I − 11T

K + 1

)

⊗
(
xxT

)
.

Therefore, inequality (25) implies that L can be upperbounded
by

g
(
w|wt

)
=

((
t̃ − p

(
wt

))
⊗ x

)T (
w − wt

)

+
1
2
(
w − wt

)T M
(
w − wt

)
,

(75)

where t̃ := [t1 ; . . . ; tK ] and p (w) := [p1 (w) ; . . . ; pK (w)]
with

pj (w) =
exp

(
wT

j x
)

1 +
∑K

j=1 exp
(
wT

j x
) .

The update of w is then given as

wt+1 = wt − M−1 ((t̃ − p
(
wt

))
⊗ x

)
.

Compared to the Newton method that requires computing
∇2L (w) at each iteration, minimizing g (w|wt) only requires
pre-computing M once since it is independent of wt .

Combining with the technique described in Section V-A9,
MM can be derived for sparse logistic regression with the �1-
norm penalty formulated as

L (w) =−
K∑

j=1

tjwT
j x + log

⎛

⎝1 +
K∑

j=1

exp
(
wT

j x
)
⎞

⎠+ λ ‖w‖1 ,

(76)
where λ ≥ 0 is a regularization parameter [45]. At each iteration,
a quadratic upperbound for the �1-norm term was merged with
(75), thus still leading to a quadratic surrogate function that has
a closed-form minimizer.

Even if the function to be majorized is already quadratic,
inequality (25) is still applied in some applications with an M
that is easier to deal with (usually being a diagonal or a scaled
identity matrix), as can be seen in Sections V-B2, V-B3, V-B4,
and V-B5.

2) Matrix Quadratic Form Minimization with Rank Con-
straint: Consider problem

minimize
X

vec (X)T Qvec (X) + vec (L)T vec (X)

subject to rank (X) ≤ r,
(77)

where Q is a symmetric square matrix with its maximum eigen-
value positive and X,L ∈ Rm×n (m ≥ n).

Observe that if Q is a scaled identity matrix, then problem
(77) can be written as

minimize
X

‖X + cL‖2
F

subject to rank (X) ≤ r
(78)

with c being some positive constant, which has a closed-form
minimizer based on the singular value decomposition (SVD)
of L.

For this reason, we construct the following surrogate function
by applying inequality (26) to the first term of the objective
function:

g (X|Xt) = λ ‖X − Y‖2
F + const., (79)

where λ = λmax (Q) and vec (Y) = − (Q/λ − I) vec (Xt)
− vec (L) / (2λ).

Let the thin SVD of Y be Y = USVT with S
= diag (σ1 , . . . , σn ) and σ1 ≥ · · · ≥ σn , Xt+1 ∈
arg minrank(X)≤r g (X|Xt) is then given by

Xt+1 = USrVT ,

where Sr is obtained by thresholding the smallest (n − r) ele-
ments of the diagonal of S to zero. We refer to this procedure
as singular value hard thresholding.

Many problems can be cast in the form of (77). Two examples
are given as follows.

Problem 20: The weighted low rank approximation problem
is formulated as

minimize
X

‖X − R‖2
Q

subject to rank (X) ≤ r,
(80)

where R ∈ Rn×m is the matrix to be approximated, and
‖X‖Q := vec (X)T Qvec (X) with Q ∈ S+ being a weight
matrix. Problem (80) is an instance of problem (77), thus can
be solved accordingly.

Problem 21: The low rank matrix completion problem is
formulated as

minimize
X

‖PΩ (X) − PΩ (R)‖2
F

subject to rank (X) ≤ r,
(81)

where

PΩ (R)ij =

{
Rij , (i, j) ∈ Ω

0, otherwise
.

By defining Q = diag (q) with qi = 1 if vec (PΩ (R))i �= 0 and
qi = 0 otherwise, problem (81) is a special case of (80).
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Fig. 5. Matrix completion problem. Left: objective value
‖PΩ (Xt ) − PΩ (R)‖2

F versus the number of iterations; right: recov-
ery error measured by ‖Xt − R‖F versus the number of iterations.

Moreover, since qi is either 0 or 1, we have λmax (Q) = 1.
Consequently, vec (Y) = Q (vec (R) − vec (Xt)) + vec (Xt)
and the expression of Y can be simplified as

Yij =

{
Rij , (i, j) ∈ Ω

Xt
ij , otherwise

. (82)

We randomly generate a matrix R ∈ R500×600 of rank r = 10,
and create PΩ (R) by uniformly randomly deleting 70% of the
entries of R. Fig. 5 plots the objective value evolution curve
and the recovery error ‖Xt − R‖F versus iterations. It can be
seen that in 100 iterations the objective value (approximation
error) decreases to a value below 10−8 and the recovery error
decreases to 10−4 .

Similar to Section V-A7, the penalty form of problem (77),
which relaxes the rank constraint to the objective function, can
be handled with minor modifications of the above-described
derivation.

3) Minimization of Quartic Forms: Minimizing a quartic
function is closely related to minimizing matrix quadratic forms
as discussed in Section V-B2. The objective function takes the
form

f (x) =
N∑

i=1

(
xH Aix − yi

)2
, (83)

where Ai is Hermitian positive definite.
The idea is to reduce the order of f by a change of variables.

To this end, we define the “lifting matrix” X = xxH . Then
f (x) can be written as

f (X) =
N∑

i=1

(Tr (AiX) − yi)
2

= vec (X)H

(
N∑

i=1

vec (Ai) vec (Ai)
H

)

vec (X)

− 2
N∑

i=1

yiTr (AiX) +
N∑

i=1

y2
i , (84)

which is quadratic in X.
Although the order of the objective function has been reduced

from quartic to quadratic, we have introduced the constraint that
X is rank-one, i.e., X = xxH .

Fig. 6. Linear upperbound for a quadratic function on unit circle (black curve:
intercept of the quadratic function on the unit circle; magenta curve: intercept
of the linear upperbound on the unit circle; red dot: point at which the value of
the functions are equal).

Denote A =
∑N

i=1 vec (Ai) vec (Ai)
H , minimizing f is

then equivalent to solving

minimize
X

vec (X)H Avec (X) − 2
N∑

i=1

yiTr (AiX)

subject to rank (X) = 1,

which is a special case of (77) with the identification that Q = A
and L = −2

∑N
i=1 yiAi .

Problem 22: The phase retrieval problem aims at recov-
ering signal x from phaseless measurements yi =

∣
∣aH

i x
∣
∣2 , i

= 1, . . . , N . The problem can be formulated as

minimize
x

N∑

i=1

(
yi −

∣
∣aH

i x
∣
∣2
)2

. (85)

Defining matrix Ai = aiaH
i , problem (85) is of the form (83)

and MM algorithms can be derived accordingly [47].
Problem 23: The sequence design problem considered in

[31] aims at finding a length N complex-valued unimodular
sequence (xn )1≤n≤N with low autocorrelation sidelobes. The
associated optimization problem takes the form

minimize
x

2N∑

p=1

(
xH apaH

p x
)2

subject to |xi | = 1, i = 1, . . . , N.

(86)

The objective function is a special case of that of problem (83)
with Ap = apaH

p and yp = 0.
To deal with the unit-modulus constraint |xi | = 1, we ob-

serve that Tr
(
XH X

)
and xH x are constants in the set X

= {x| |xi | = 1, i = 1, . . . , N}. Therefore, we can apply in-
equality (25) twice with M being a scaled identity matrix, yield-
ing a linear surrogate function that has a closed-form minimizer
in X [31].

Remark 24: Upperbounding a quadratic function by a lin-
ear function is not possible if the constraint set is the entire
Euclidean space. However, restricting it to the set X makes it
possible. Fig. 6 visualizes how a linear function upperbounds a
convex quadratic one on the unit circle.

We test the performance of MM in designing a sequence of
length N = 1024. The algorithm is initialized with a Golomb se-
quence as a reasonably good starting point, and the SQUAREM
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Fig. 7. Sequence design problem. Left: objective value versus iterations; right:
correlation level of sequence of length N = 1024.

accelerator is employed to achieve a fast convergence rate. Fig. 7
shows the evolution curve of the objective value versus the
number of iterations and the correlation level of the resulting
sequence at convergence.

Extensions of the problem to the design of a sequence min-
imizing a weighted integrated sidelobe level criterion and the
design of a sequence set using MM can be found in [32], [130].

4) Sparse Linear Regression: The sparse linear regression
problem can be formulated as

minimize
x

‖Ax − b‖2
2 + ρh (x) , (87)

where h is a penalty function that promotes a sparse x, and ρ ≥ 0
is the regularization parameter. We assume that h is separable
and even, i.e., h (x) =

∑n
i=1 hi (|xi |), and hi is concave and

nondecreasing on R+ .
The idea is to decouple the objective function, so that opti-

mizing x can be done element-wise [18]. To this end, we resort
to inequality (26) and upperbound the first term as

‖Ax − b‖2
2 ≤ λxT x − 2yT

t x + const.,

where λ = λmax
(
AT A

)
, and yt = AT b −

(
AT A − λI

)
xt .

Then for each xi , the problem boils down to finding a
minimizer of

g(1) (xi |xt) = λx2
i − 2yixi + ρhi (|xi |) . (88)

For example, when h (x) = ‖x‖1 the update is given by the
soft-thresholding operator as [49]:

xt+1
i = Sρ/λ

(yi

λ

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yi

λ
− ρ

2λ
,

yi

λ
>

ρ

2λ
yi

λ
+

ρ

2λ
,

yi

λ
<

ρ

2λ

0, otherwise.

(89)

When hi is concave, further applying inequality (10) we can
upperbound hi (|xi |) as

hi (|xi |) ≤ h′
i

(∣
∣xt

i

∣
∣
)
|xi | + const.

Together with (88) we arrive at the surrogate function

g(2) (xi |xt) = λx2
i − 2yixi + ρh′

i

(∣
∣xt

i

∣
∣
)
|xi |

with a minimizer given by

xt+1
i = Sρh ′

i (|xt
i |)/λ

(yi

λ

)
.

This method has been applied in image restoration in [29] and
[48], where the problem is formulated as a high-dimensional
penalized least square problem.

In the end, we present a special case that h (|xi |) = ‖xi‖0 ,
which is discontinuous [16], [17]. The minimizer of g(1) (xi |xt)
has a closed-form given by

xt+1
i =

{
yi/λ, y2

i /λ > ρ

0, otherwise,
(90)

which is an iterative hard thresholding algorithm.
5) Nonnegative Least Squares: The nonnegative least

squares (NLS) problem is a least squares fitting problem
that requires the regressor to be nonnegative. The problem is
stated as

minimize
x

‖Ax − b‖2
2

subject to x ≥ 0.
(91)

To obtain a closed-form update of x under the constraint x
≥ 0, we construct a separable surrogate function. The simplest
way is to apply inequality (26) with M = λI, which gives the
following surrogate function:

g (x|xt) = xT x − 2xT

(

xt −
1
λ

(
AT Axt − AT b

)
)

,

where λ ≥ λmax
(
AT A

)
. Consequently, the update of x is

given by

xt+1 =
[

xt −
1
λ

(
AT Axt − AT b

)
]

+
, (92)

which is a gradient projection algorithm.
If further assuming that A ∈ Rm×n

++ , b ∈ Rm
+ , and b �= 0, it

has been proven in [51] and [131] that

g (x|xt) = xT Mtx + 2xT
((

AT A − Mt

)
xt − AT b

)

with

Mt = diag

((
AT Axt

)
1

xt
1

, . . . ,

(
AT Axt

)
n

xt
n

)

is a valid surrogate function since Mt � AT A. The update of
x is then given by

xt+1 =
(
AT b/AT Axt

)
� xt . (93)

Initialized at x0 > 0, we can see that (xt)t∈N remains nonneg-
ative if the elements of A and b are nonnegative. Although both
derived based on separable quadratic surrogate functions, (92)
is an additive update while (93) is multiplicative. Iteration (93)
was studied in a more general context, namely as an instance of
multiplicative iterative algorithms for convex problems, in [50].

We mention that another surrogate function can be con-
structed based on (17) and (28), whose derivation is postponed
to Section V-D3.

C. Convexity Inequality

In this subsection we show the application of inequality (19)
to a robust mean-covariance estimation problem formulated in
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[24] as

minimize
μ,R�0

K + 1
N

N∑

i=1

log
(
1 + (xi − μ)H R−1 (xi − μ)

)

+ α
(
log det (R) + K log Tr

(
R−1T

))

+ γ log
(
1+(μ−t)H R−1 (μ−t)

)
+ log det (R) .

(94)
Similar to (50), Problem (94) can be solved by linearizing the log
function. Here we provide an alternative solution by exploiting
convexity.

Specifically, applying inequality (19) to the sum of the log
terms, the objective function can be majorized by

g (μ,R|μt ,Rt) =

(1 + α) log det (R) + (K + 1 + γ + αK)×

log

(
N∑

i=1

K + 1
N

wi (μt ,Rt)
(
1 + (xi − μ)H R−1 (xi − μ)

)

+ γwt (μt ,Rt)
(
1 + (μ − t)H R−1 (μ − t)

)

+
αK

Tr
(
R−1

t T
)Tr

(
R−1T

)
)

.

(95)
Proposition 25: The surrogate function g (μ,R|μt ,Rt) has

a closed-form minimizer given by

μt+1 =
(K + 1)

∑N
i=1 wi (μt ,Rt)xi + γNwt (μt ,Rt) t

(K + 1)
∑N

i=1 wi (μt ,Rt) + γNwt (μt ,Rt)

Rt+1 = βSt ,
(96)

where

St =
N∑

i=1

K + 1
N

wi (μt ,Rt)
(
xi − μt+1

) (
xi − μt+1

)H

+ γwt (μt ,Rt)
(
μt+1−t

) (
μt+1−t

)H +
αK

Tr
(
R−1

t T
)T.

(97)
and

β =
1 + γ

1 + α

(
N∑

i=1

K + 1
N

wi (μt ,Rt) + γwt (μt ,Rt)

)−1

.

(98)
Proof: See Appendix. �
Note that the MM update (96) turns out to be the accelerated

MM algorithm (without convergence proof) provided in [24].
Fig. 4 and Table II provided in [24] show that the number of
iterations required for algorithm (96) to converge is significantly
smaller than MM derived based on linearization, which can be
explained by the fact that the former algorithm has a tighter
surrogate function (see Fig. 3 for example).

D. Geometric and Signomial Programming

An unconstrained standard GP takes the form

minimize
x

f (x) :=
J∑

j=1

cj

n∏

i=1

x
ai j

i , (99)

where∀i, j, aij ∈ R, cj > 0, and xi > 0. Function cj

∏n
i=1 x

ai j

i

is a monomial, and the sum of monomials is a posynomial. When
some of the cj ’s are negative, f is a signomial.

1) Signomial Programming: We apply inequality (28) to
the summands of f with positive cj ’s and inequality (17) to
those with negative cj ’s, which leads to the following surrogate
function [54]:

g (x|xt) =
n∑

i=1

gi (xi |xt)

gi (xi |xt) =
∑

j :cj >0

cj

(
n∏

k=1

(
xt

k

)ak j

)
|aij |
‖aj‖1

(
xi

xt
i

)‖aj ‖1 sgn(ai j )

+
∑

j :cj <0

cj

(
n∏

k=1

(
xt

k

)ak j

)

aij log xi,

where aj = [a1j , a2j , . . . , anj ]
T . Surrogate function g (x|xt) is

separable, and minimizing gi (xi |xt) is a uni-variate optimiza-
tion problem and can be done in parallel.

Having discussed how to minimize a signomial, we move to
the problem of minimizing the ratio of two posynomials.

2) Complementary GP: Consider the following minimiza-
tion problem:

minimize
x

f (x)
g (x)

, (100)

where f and g are posynomials. The idea is to lowerbound g by
a monomial, so that the resulting surrogate function becomes a
posynomial.

Write g (x) as g (x) =
∑J

j=1 uj (x), where uj is a monomial.
Invoking inequality (29), the objective function is majorized by

g (x|xt) = f (x) /

⎛

⎝
J∏

j=1

(
uj (x)

αj

)αj

⎞

⎠ ,

where αj = uj (xt )
∏ J

j = 1 uj (xt )
. As a result, minimizing the surrogate

function becomes a standard GP [53].
At this point, we can either solve the GP directly or further

upperbound g (x|xt) by a separable surrogate function using the
techniques in Section V-D1.

3) Nonnegative Least Squares Revisit: An alternative ap-
proach to find a separable surrogate function for NLS problem
(91) hinges on inequalities (17) and (28) for monomials.

To lighten the notation, denote AT A by Q and −AT b by q.
Problem (91) can be written equivalently as

minimize
x

1
2
xT Qx + qT x

subject to x ≥ 0.
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Fig. 8. Objective value evolution curve of MM algorithms for the NLS prob-
lem. Red: algorithm (93), black: algorithm (103), blue: algorithm (92), magenta:
accelerated algorithm (92).

To find a separable surrogate function, we need to take care of
the cross terms Qijxixj .

Notice that |Qij |xixj is a monomial, and we have separable
upper and lower bounds for a monomial given by inequalities
(28) and (17), respectively. To be precise, for the terms xixj

with Qij > 0, we have

xixj ≤ 1
2

(
xt

j

xt
i

x2
i +

xt
i

xt
j

x2
j

)

, (101)

and for the terms xixj with Qij < 0, we have

xixj ≥
(
xt

ix
t
j

) (
1 + log xi + log xj − log xt

i − log xt
j

)
.

(102)
Define Q+ = max [Q,0] and Q− = −min [Q,0], where

the maximum and minimum are taken element-wise.
The bounds (102) and (101) lead to the following
surrogate function:

g (x|xt)

=
1
2

∑

i

(Q+xt)i

xt
i

x2
i −

∑

i

xi

(
Q−xt

)
i
log xi +

∑

i

qixi.

Setting its gradient to zero gives the multiplicative update [55]

xt+1
i = xt

i

(
−qi +

√
q2
i + 4 (Q+xt)i (Q−xt)i

2 (Q+xt)i

)

. (103)

Remark 26: If A ∈ Rm×n
++ and b ∈ Rm

+ , b �= 0, we can see
that Q ∈ Rn×n

++ and −q ∈ Rn
++ . In this case, iteration (103)

coincides with (93).
Fig. 8 shows the performance of MM iterations (92), (93), and

(103). We have also included the accelerated algorithm (92) by
modifying the step-size according to the Armijo line search rule.
A and x are generated randomly so that each of the elements
follows a uniform distribution in [0, 1], and the dimensions are

set to be m = 60 and n = 100, and we assume the noiseless
case, i.e., b = Ax.

Remark 27: Combining with the techniques for sparse linear
regression in Section V-B4, an alternating MM algorithm can
be derived for the matrix factorization problem, possibly with
the nonnegativity constraint and sparsity penalty. We refer the
readers to [27] and [132]–[134] for the details.

E. Cauchy-Schwartz Inequality

Cauchy-Schwartz Inequality can be used to lower bound the
�2-norm by a linear function, which is applied in the following
applications.

1) Phase Retrieval Revisit: The phase retrieval problem con-
sidered in Section V-B3 can be alternatively formulated by mag-
nitude matching as [56], [135]–[137]

minimize
x

∥
∥√y −

∣
∣AH x

∣
∣
∥
∥2

2 , (104)

where
√· is applied element-wise.

Expanding the squares and applying inequality (31) to the
cross term (assuming

∣
∣AH xt

∣
∣ �= 0) leads to the following sur-

rogate function:

g(1) (x|xt) =
∥
∥Ct

√
y − AH x

∥
∥2

2 ,

where Ct = diag
(
ej arg(AH xt )

)
, which has a minimizer

xt+1 =
(
AAH

)−1
ACt

√
y. (105)

Algorithm (105) turns out to be the famous Gerchberg-Saxton
algorithm [56].

Restricting x to be real-valued, we can further majorize
g(1) (·|xt) using inequality (26) [57].

Let us write
∥
∥AH x

∥
∥2

as
∥
∥AH x

∥
∥2 =

∑N
i=1

∣
∣aH

i x
∣
∣2

=
∑N

i=1

∣
∣
∣
∑p

j=1 aijxj

∣
∣
∣
2
, where aij is the j-th element of aH

i

and p is the dimension of x. For simplicity we assume that
aij �= 0. Applying Jensen’s inequality we have

∣
∣
∣
∣
∣
∣

p∑

j=1

aijxj

∣
∣
∣
∣
∣
∣

2

=

⎛

⎝
p∑

j=1

Re (aij ) xj

⎞

⎠

2

+

⎛

⎝
p∑

j=1

Im (aij ) xj

⎞

⎠

2

=

⎛

⎝
p∑

j=1

V ij
R

Re (aij )
V ij

R

xj

⎞

⎠

2

+

⎛

⎝
p∑

j=1

V ij
I

Im (aij )
V ij

I

xj

⎞

⎠

2

≤
p∑

j=1

Re (aij )
2

V ij
R

x2
j +

p∑

j=1

Im (aij )
2

V ij
I

x2
j ,

(106)
where V ij

R = |Re(ai j )|
∑ p

j ′= 1 |Re(ai j ′)| and V ij
I = |Im(ai j )|

∑ p

j ′= 1 |Im(ai j ′)| .
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Summing Eq. (106) over indices i we have
∥
∥AH x

∥
∥2

≤
N∑

i=1

⎛

⎝
p∑

j=1

Re (aij )
2

V ij
R

x2
j +

p∑

j=1

Im (aij )
2

V ij
I

x2
j

⎞

⎠

=
N∑

i=1

⎛

⎝
p∑

j=1

⎛

⎝|Re (aij )|
p∑

j ′=1

|Re (aij ′)|

⎞

⎠x2
j

+
p∑

j=1

⎛

⎝|Im (aij )|
p∑

j ′=1

|Im (aij ′)|

⎞

⎠x2
j

⎞

⎠

:= xH Mx,

where M is a diagonal matrix with its j-th diagonal entry being

N∑

i=1

⎛

⎝|Re (aij )|
p∑

j ′=1

|Re (aij ′)| + |Im (aij )|
p∑

j ′=1

|Im (aij ′)|

⎞

⎠ .

2) Sensor Network Localization: We introduce the localiza-
tion problem described in [138], where a sensor network is
modeled by a graph G

(
V,E ∪ Ē

)
. The nodes V are partitioned

into a set of m anchor nodes Va = {a1 , . . . ,am} with known
location, and the rest Vx = {x1 , . . . ,xn} are n sensors with
unknown location. An edge in the set E = {(i, j) |i, j ∈ Vx} is
associated with dij representing the distance between sensors
i and j, and an edge in the set Ē = {(k, j) |k ∈ Va, j ∈ Vx} is
associated with d̄kj representing the distance between anchor k
and node j.

To estimate the location of all nodes, we formulate the prob-
lem as

min
{x i }n

i = 1

∑

(i,j )∈E

(
‖xi − xj‖2 − dij

)2 +
∑

(k,j )∈Ē

(
‖xj − ak‖2 − d̄kj

)2
.

(107)
Expanding the squares we can see that the cross terms are con-
cave and thus destroy the convexity of the objective function.

Invoking inequality (32), we can get the following quadratic
surrogate function [58]–[61]:

g
(
{xi}n

i=1 |
{
xt

i

}n

i=1

)

=
∑

(i,j )∈E

(

‖xi − xj‖2
2 − 2dij

(
xt

i − xt
j

)T (xi − xj )
∥
∥xt

i − xt
j

∥
∥

2

)

+
∑

(i,j )∈Ē

(

‖xj − ak‖2
2 − 2d̄kj

(
xt

j − ak

)T (xj − ak )
∥
∥xt

j − ak

∥
∥

2

)

,

which has a closed-form minimizer.
Problem (107) has many variants. For example, to achieve

robustness, the authors of [59] replaced the squared loss function
by the �1-norm loss function, and the authors of [139] employed
the Huber’s loss function. In both cases, inequality (16) has been
applied together with (32) to arrive at a quadratic surrogate
function.

F. Schur Complement

We revisit the variance component model problem (53) and
show that an alternative MM algorithm can be derived based on
inequality (34).

Define Ã = [A; IK ] and

P̃ = diag(p1 , . . . , pL , σ2 , . . . , σ2
︸ ︷︷ ︸

)

K

,

then R = ÃP̃ÃH and the objective function can be rewritten
as

L (P) = log det
(
ÃP̃ÃH

)
+ Tr

(

S
(
ÃP̃ÃH

)−1
)

.

To find a surrogate function separable in P, we apply inequality
(12) to the first term, which leads to the first step majorization
with surrogate function

g(1) (R|Rt) = Tr
(
R−1

t R
)

+ Tr
(
SR−1)

� wH
t p + Tr

(

S
(
ÃP̃ÃH

)−1
)

,

where wt
j = aH

j R−1
t aj with aj being the j-th column of A.

In the next step, we find a separable upperbound for
Tr(S(ÃP̃ÃH )−1). By inequality (34) we have

g(1) (R|Rt) ≤ g(2) (R|Rt)

= wH
t p + Tr

(
P̃tAH R−1

t MtR−1
t AP̃tP̃−1

)

= wH
t p +

L∑

j=1

(
pt

j

)2 aH
j R−1

t MtR−1
t aj p

−1
j + const.

The update of pj can be obtained in closed-form as

pt+1
j =

√
√
√
√aH

j R−1
t MtR−1

t aj

aH
j R−1

t aj

pt+1
j . (108)

Iteration (108) is similar to the LIKES algorithm presented in
[93], but executes the outer loop iteration only once. Detailed
numerical comparisons between the SBL and LIKES algorithm
can be found in [140].

VI. CONCLUSIONS

In this overview, we have presented the MM principle and its
recent developments. From a theoretical perspective, we have
introduced the general algorithmic framework, its convergence
conditions, as well as acceleration schemes. We have also related
MM to several algorithmic frameworks, namely EM, cyclic min-
imization algorithms, CCCP, proximal minimization, VMFB,
SCA, and subspace MM. More importantly, a large part of the
article has been devoted to presenting the techniques of con-
structing surrogate functions and applying MM to problems in
signal processing, communications, and machine learning. A
wide range of applications have been covered in this overview
such as sparse regression, matrix completion, phase retrieval,
sparse PCA, covariance estimation, sequence design, and sen-
sor network localization. In the end, we mention that although
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MM has been proven to be an effective tool for many applica-
tions, practitioners should also be aware of the following issues.
One is that MM algorithms can get stuck at stationary points
for nonconvex problems, therefore the performance of the con-
vergent point (whether it satisfies application design criterion)
should be studied either theoretically or empirically. Another
problem is that MM can suffer from a slow convergence rate. In
this situation, either the surrogate function should be tightened,
or an MM accelerator needs to be employed (possibly at the cost
of losing convergence guarantees).

APPENDIX
PROOF OF PROPOSITION 25

To find a minimizer of the surrogate function (95), we first
set the gradient of g (μ,R|μt ,Rt) with respect to μ to zero,
which leads to the minimizer

μt+1 =
(K + 1)

∑N
i=1 wi (μt ,Rt)xi + γNwt (μt ,Rt) t

(K + 1)
∑N

i=1 wi (μt ,Rt) + γNwt (μt ,Rt)
.

Substituting the optimal μ back into g (μ,R|μt ,Rt) and setting
the gradient of it with respect to R to zero leads to the fixed-point
equation

R=
(K + (1 + γ) / (1 + α))St(∑N

i=1
K +1

N wi (μt ,Rt)+γwt (μt ,Rt)
)

+Tr (StR−1)
,

(109)
where St is given by (97). Similar to the proof of Theorem 10
in [23], it can be shown by contradiction that if (109) has a
solution, it is unique.

Since equation (109) indicates that R̂ should be proportional
to St , we let the solution R̂ be βSt . To get the value of β,
we substitute R̂ back into (109), which leads to the following
equation of β:

K + 1 + γ + αK

(1 + α) β

=

(
N∑

i=1

K + 1
N

wi (μt ,Rt) + γwt (μt ,Rt)

)

+ Kβ−1 .

(110)
The solution of (110) is given by (98).
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[128] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Determin-
istic edge-preserving regularization in computed imaging,” IEEE Trans.
Image Process., vol. 6, no. 2, pp. 298–311, Feb. 1997.
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