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Effective Low-Complexity Optimization Methods for
Joint Phase Noise and Channel Estimation in OFDM
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Abstract—Phase noise correction is crucial to exploit full ad-
vantage of orthogonal frequency-division multiplexing (OFDM) in
modern high-data-rate communications. OFDM channel estima-
tion with simultaneous phase noise compensation has therefore
drawn much attention and stimulated continuing efforts. Existing
methods, however, either have not taken into account the funda-
mental properties of phase noise or are only able to provide esti-
mates of limited applicability owing to considerable computational
complexity. In this paper, we have reformulated the joint phase
noise and channel estimation problem in the time domain as op-
posed to existing frequency-domain approaches, which enables us
to develop much more efficient algorithms using the majorization–
minimization technique. In addition, we propose two methods
based on dimensionality reduction and regularization, respectively,
that can adapt to various phase noise levels and signal-to-noise ra-
tio and achieve much lower estimation errors than the benchmarks
without incurring much additional computational cost. Several
numerical examples with phase noise generated by free-running
oscillators or phase-locked loops demonstrate that our proposed
algorithms outperform existing methods with respect to both com-
putational efficiency and mean squared error within a large range
of SNRs.

Index Terms—Carrier frequency offset (CFO), channel esti-
mation, majorization-minimization (MM), orthogonal frequency
division multiplexing (OFDM), phase noise.

I. INTRODUCTION

PROMINENT advantages such as higher spectral efficiency,
adaptability to severe channel environments, and efficient

implementation have brought orthogonal frequency division
multiplexing (OFDM) into wide applications in modern com-
munications. To fully exploit these advantages in reality, we have
to resolve some demanding issues—sensitivity to frequency
synchronization errors, high peak-to-average power ratios, to
name a few. In this paper, we will focus on the frequency syn-
chronization issue stemming specifically from phase noise.

Phase noise is a random process caused by the fluctuation
in phase within receiver and transmitter oscillators that are
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deployed to generate carrier signals for up-down conversion
[1]–[7]. In practice, free-running oscillators and phase-locked
loops are widely used, for which phase noise is described by
Wiener process and Gaussian process (or Ornstein-Uhlenbeck
model in [8]), respectively [8]–[10]. An OFDM block, consist-
ing of several symbols, is transmitted and received with or-
thogonal subcarriers. Due to the introduction of phase noise,
however, the orthogonality among subcarriers is lost, which
causes degradation in performance of OFDM systems. Such loss
of performance has been well-documented and studied with de-
tailed analyses of, e.g., signal-to-noise ratio (SNR) and bit error
rate (BER); see [1]–[3], [8]–[13] and many references therein.
For instance, it has been reported in [13] that for OFDM with
2048 subcarriers, Wiener phase noise of 3dB bandwidth Δf3dB
of 100 Hz can bring about an SNR degradation over 10 dB,
which implies the acute sensitivity of OFDM systems to the
existence of phase noise.

Common phase error (CPE) and inter-carrier interference
(ICI) are two detrimental effects caused by phase noise. CPE
causes phase rotation to each subcarrier and does not change
within a transmitted OFDM block. In contrast, ICI introduces
different interference to different subcarriers in the same block,
and thus exhibits noise-like characteristics [14]. Even with small
phase noise, where ICI dominates over CPE, CPE-only correc-
tion can provide a 5 dB gain in SNR [3]. To be general, in this
paper we will consider phase noise that is not necessarily small.
Also, even though a constant carrier frequency offset (CFO)
may exist apart from phase noise, we assume CFO has been
fixed using readily available methods, e.g., [15].

Many works, e.g., [8], [16], [17], have studied phase noise es-
timation assuming channel information is given or in the context
of transmit data detection. Phase noise estimation and compen-
sation can reduce ICI between data subcarriers and directly fa-
cilitate information decoding. In practice, however, phase noise
exists throughout the channel training and data transmission
stages, and the effects of phase noise to channel estimates also
influence the next data detection. Joint estimation of phase noise
and channel has thus been proposed to improve the quality of
channel estimates [18]–[20]. The joint estimation problem has
been investigated as early as in [13]. The least-squares estimator
of channel impulse response is computed first; then heuristically,
a window function as a filter is applied to the obtained channel
estimator to reduce its sensitivity from phase noise and CFO.
To be statistically justified, maximum a posteriori channel es-
timator in [18] has exploited the statistical properties of phase
noise. But the authors use a Taylor expansion to approximate the
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nonlinear optimization objective function, which works only for
small phase noise. A simple alternating optimization method for
the joint estimation problem can be found in [19]. The critical
issue with that method is its failure to deal with the constraint
of phase noise in each iterative sub-problem.

Supposedly, estimating phase noise and channel was hard to
disentangle as previous works claimed. In [21], a novel for-
mulation is proposed with phase noise and channel estimations
unraveled. To solve the resulting optimization problem, the au-
thors replace the unimodular constraint on phase noise in the
time domain with a relaxation assuming the magnitude of phase
noise is relatively small. Nevertheless, their method is com-
putationally unstable with a singularity issue that renders the
already approximated solution even more inaccurate. And re-
cently, a method craftily using the spectral property of phase
noise is provided for the frequency domain-formulated problem
[22]. Based on [21], the separate phase noise estimation prob-
lem is solved by semidefinite programming (SDP). This method
works fine when the number of subcarriers deployed in OFDM
is not too large and phase noise arises in a small level. In real-
ity, however, the number of subcarriers can be as large as tens
of thousands, e.g., in terrestrial television broadcasting system
(DVB-T2) [23].

Regarding the joint phase noise and channel estimation, there
are basically two classes of approaches: time-domain [13], [18]–
[20], [24]–[26] and frequency-domain approaches [8], [21],
[22]. In this paper, we formulate the optimization problem in
the time-domain representation and our contributions are as fol-
lows. First, we prove the equivalence of the frequency-domain
approach and the time-domain approach to the problem formu-
lation. It allows us to separate the joint estimation problem and
to focus on estimating phase noise. And using the majorization-
minimization technique, we devise more efficient algorithms as
opposed to solving an SDP as in [22]. The efficiency and low
complexity of our proposed algorithms enable us to deal readily
with much larger number of subcarriers. Moreover, we offer two
adaptive methods for further reducing estimation errors consid-
ering that the joint estimation problem is underdetermined per
se irrespective of the approach of formulation. To achieve this,
dimensionality reduction has been adopted in [19], [22] to ad-
dress either the underdetermined nature of the problem or the
computational complexity. But instead of adopting a fixed di-
mension, we run our algorithms with different reduced sizes and
opt for the solution that yields the minimal Bayesian informa-
tion criterion (BIC). Besides dimensionality reduction, we also
propose a regularization to the original estimation objective to
prevent potential over-fitting. The extra adaptability to various
levels of phase noise and SNR comes without incurring much
computational burden as simulated examples demonstrate.

The structure of this paper is as follows. We give the system
model of OFDM with a description of phase noise in Section II.
In Section III, the problem formulation is presented after a re-
view of existing methods. We dedicate Section IV to develop-
ing algorithms solving the formulated problem with extensions
based on dimensionality reduction and regularization. Simula-
tion results are given in Section V, followed by a conclusion to
summarize the paper in Section VI.

We use the following notation throughout this paper. Scalars,
vectors, and matrices are denoted by italic letters, boldface
lower-case letters, and boldface upper-case letters, respectively.
The superscript (·)T denotes the transpose, (·)H the conjugate
transpose. The �2-norm and �∞-norm of a vector is denoted by
‖ · ‖ and ‖ · ‖∞, respectively. The identity matrix is denoted by
In with size specified by the subscript n. R is the set of real
numbers. 1n is an all-one vector of length n. λmax(·) denotes the
maximum eigenvalue of a matrix.O(·) denotes Big-O notation.

II. SYSTEM MODEL AND DESCRIPTION OF PHASE NOISE

A. OFDM Transmission Model

Suppose there are Nc subcarriers and an OFDM block is
denoted by s = [s0 , . . . , sNc−1 ]

T . The time-domain symbols
can be obtained by the unitary inverse discrete Fourier transform
(IDFT):

xn =
1√
Nc

Nc−1∑

k=0

ske
j 2 π n k

N c , n = 0, 1, . . . , Nc − 1. (1)

Let F be the Nc ×Nc unitary discrete Fourier transform (DFT)
matrix, then (1) can be written as

x = FH s. (2)

Assume a slow-varying channel whose response does not
change within the transmission of several OFDM blocks and
is denoted by h = [h0 , h1 , . . . , hL−1 ]

T (Nc � L). Let x =
[x0 , x1 , . . . , xNc−1 ]

T and y = [y0 , y1 , . . . , yNc−1 ]
T . With the

cyclic prefix appending and removal, we have the OFDM
transmission model [27, Ch. 3.4.4]:

y = x �
[
h
0

]
+ v, (3)

where � denotes the operation of circular convolution, and
v = [v0 , v1 , . . . , vNc−1 ]

T is a zero-mean circularly symmet-
ric complex Gaussian channel noise vector with distribution
CN (0, 2σ2I).

To obtain the frequency-domain representation of (3), take
the DFT to both sides and we have1

r =
√

NcHs + w, (4)

where r is the unitary DFT of the received time-domain symbols
y, H is a diagonal matrix with the Nc -point unitary DFT of h
as the diagonal, and w is the unitary DFT of the time-domain
channel noise v. Let F̌ be a semi-unitary matrix formed by the
first L columns of F, then H = Diag

(
F̌h

)
.

B. OFDM Transmission With Phase Noise

In general, phase noise is present in the local oscillators
that generate carrier signals for up-down conversion for the
time-domain symbols. And the effect of phase noise can be rep-
resented mathematically by multiplying each time-domain sym-
bol with a complex exponential with a random phase. Although
phase noise exists in both the transmitter and the receiver, herein

1Note that the factor
√

Nc results from using the unitary DFT.
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only the effect at the receiver side is studied. The reason for this
simplified consideration is the assumption that at the transmitter
side, the bandwidth of phase noise is small [14] or high-caliber
oscillators are employed [22]. Therefore, the following signal
model with phase noise is considered [8]:

y = ejθ �
(
x �

[
h
0

])
+ v, (5)

where ejθ :=
[
ejθ0 , ejθ1 , . . . , ejθN c −1

]T
denotes phase noise,

and � denotes the Hadamard product. Taking the unitary DFT
on both sides of (5), we can obtain the frequency-domain signal
model:

r = φ � (Hs) + w, (6)

where φ = [φ0 , φ1 , . . . , φNc−1 ]
T = Fejθ, called spectral phase

noise vector, and w are the unitary DFT of ejθ and v, re-
spectively. For each received frequency-domain symbol rk , k =
0, 1, . . . , Nc − 1, we have

rk = φ0Hk,ksk +
Nc−1∑

l=0,l �=k

φk−lHl,lsl + wk , (7)

where the first term, subjected only to the scaling of factor φ0 , is
called CPE, and the second term, combining effects from other
subcarriers, is ICI. With rk = rk mod Nc

, (6) can be rewritten
in the following matrix form

r = ΦφHs + w, (8)

in which

Φφ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

φ0 φNc−1 · · · φ2 φ1

φ1 φ0 · · · φ3 φ2

...
. . .

...

φNc−2 φNc−3 · · · φ0 φNc−1

φNc−1 φNc−2 · · · φ1 φ0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

denoted by Φφ = circ (φ), is a circulant matrix formed by
spectral phase noise φ. The off-diagonals of Φφ close to the
main diagonal correspond to low-frequency components. With
H = Diag

(
F̌h

)
, (8) can be rewritten as

r = ΦφSF̌h + w, (10)

where S = Diag(s) is a diagonal matrix with s as the diagonal
and F̌ a semi-unitary matrix with the first L columns of F.

C. Properties of Phase Noise

Two canonical models of phase noise are Wiener process
and Gaussian process when free-running oscillators and phase-
locked loops are respectively employed [8]. The statistical prop-
erties of phase noise have also been studied in [8], [14]. Before
introducing some existing formulations of the phase noise es-
timation problem, some useful properties of phase noise are
presented here.

1) Time-Domain Property: Obviously, phase noise ejθ is
determined only by the phase variable θ, and phase noise at
each OFDM subcarrier is unimodular, i.e.,

∣∣ejθn
∣∣ = 1, n = 0, 1, . . . , Nc − 1. (11)

2) Frequency-Domain Property: Let φ and φ be the unitary
DFT of ejθ and e−jθ, respectively. It is well-known that φ and
φ are conjugate symmetric, i.e.,

φ
k

= φ∗−k . (12)

Observing that ejθ � e−jθ = 1Nc
and applying the DFT to both

sides, we can obtain the following constraint for spectral phase
noise:

φ � φ = Ncδk , (13)

where δk is the Kronecker delta function, i.e., δ0 = 1, and δk = 0
for k �= 0. Indeed, (13) is a necessary and sufficient description
of the autocorrelation of the spectral components of any uni-
modular complex exponential sequence, which can be easily
verified by Fourier transform and its properties. Equivalently,
(13) can be written in a matrix form as

ΦH
φ Φφ = NcINc

, (14)

where Φφ = circ (φ) is a circulant matrix defined in (9). This
is the main property exploited in [22], termed the spectral
geometry.

III. LITERATURE REVIEW AND PROBLEM FORMULATION

Phase noise contamination can be removed from the received
OFDM symbols if a reliable estimate of the instantaneous real-
ization of phase noise process is accessible. In practice, phase
noise exists throughout channel estimation stage and data detec-
tion stage, where phase noise estimation is entangled with the
unknown channel and unknown transmitted data, respectively.
Plenty of works are available for estimating transmitted data
with phase noise compensated, e.g., [19], [24]. In this paper we
will focus on joint phase noise and channel estimation, where
transmitted symbols (called pilot symbols or training symbols)
are assumed known to receiver [27, Ch. 3.5.2]. A motivation for
studying this joint estimation problem is that assuming chan-
nel is quasi-static or slowly-varying, the channel estimate can
be reasonably used in the subsequent data estimation [19]. In
the literature, methods for this purpose can be categorized into
two classes: time-domain approach and frequency-domain ap-
proach. In particular, we assume in this paper that phase noise
θ and channel impulse response h are constant parameters to
estimate, and OFDM symbols S are given and known to the
receiver.

A. Time-Domain Approaches

In [19], the authors formulate the least-squares problem
with (10)

minimize
h,θ,φ=Fej θ

∥∥r−ΦφSF̌h
∥∥2

, (15)
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and solve for channel and phase noise estimates alternately. At

the ith iteration, given the phase noise estimate ej θ̂
( i−1 )

, the
channel estimate is computed by

ĥ(i) =
(
F̌H SH (Φ(i−1)

φ )H Φ(i−1)
φ SF̌

)−1
F̌H SH (Φ(i−1)

φ )H r
(16)

with Φ(i−1)
φ = circ(Fej θ̂

( i−1 )

). Let c = ejθ , then the estimate
for phase noise is updated as

ĉ(i) =
(
FH PH PF

)−1
FH PH r, (17)

where P = circ(SF̌ĥ(i)). Yet there are two issues with their
method: the unimodular property of phase noise vector is not
considered when updating ĉ(i) ; and the alternating optimization
scheme suffers from slow convergence.

Some other heuristic methods include approximating phase
noise by a Taylor expansion [18], applying filtering to channel
estimate with a noise-suppressing function [13], approximating
with sinusoidal waveforms [24], and Monte Carlo methods [20],
[25], [26].

B. Frequency-Domain Approaches

In [8], a phase noise correction method is proposed by esti-
mating the spectral components, based on the assumption that
phase noise process can be characterized by a low-pass signal
and thus only a few spectral components need to be estimated.
But it is necessary to find a proper number of spectral phase
noise components in order to achieve reliable estimation. Al-
though [8] also exploits the statistical properties of ICI to obtain
the MMSE estimate of phase noise, their method is subject to
two main issues: the channel is assumed known and the MMSE
estimation has not taken into account the constraint (13) of
spectral phase noise.

Following the same idea of [8] to estimate the low-frequency
components of phase noise, [21] formulates the problem of joint
phase noise and channel estimation based on least-squares. To
acquire separate estimators, instead of alternately updating (16)
and (17), they substitute the channel estimate into the least-
squares objective and the resulting error function for phase noise
can be derived as

E (φ) = rH r− 1
Nc

rH ΦφBΦH
φ r (18)

=
1

Nc
φH J1

(
RH R−RH BR

)T
J1φ, (19)

where B = SF̌
(
F̌H SH SF̌

)−1
F̌H SH and J1 a permutation

matrix, left multiplication by which keeps the first row and re-
verses the orders of the remaining rows. Note that in [21], the
expression for E (φ) is further simplified assuming the trans-
mitted symbols are of constant-modulus. When solving for the
phase noise estimate, however, an approximation by a Taylor ex-
pansion is applied, which leads to a relaxed constraint on phase
noise. In practice, this approximation works only for small phase
noise.

In contrast, [22] incorporates the fundamental spectral
constraint (14) into the formulation proposed in [21]. Let

M =
1

Nc
J1

(
RH R−RH BR

)T
J1 , (20)

then the problem is formulated as

minimize
φ

φH Mφ

subject to ΦH
φ Φφ = NcINc

,Φφ = circ (φ) . (21)

Instead of solving (21), dimensionality reduction is introduced
to alleviate the computation complexity by estimating only
the low-frequency components, cf. [8]. To achieve this, the
phase-noise-geometry preserving transformation is defined by

φ = Tφ̌, (22)

where φ̌ of a shorter length N is the reduced spectral phase
noise to be estimated. An example of T is piecewise-constant
transformation (PCT). Then an alternative optimization problem
is posed as follows:

minimize
φ̌

φ̌
H
TH MTφ̌

subject to Φ̌
H
φ Φ̌φ = NIN , Φ̌φ = circ(φ̌). (23)

To solve the above problem, the S-procedure is invoked to
rewrite (23) as a semidefinite program (SDP). The original spec-
tral phase noise vector φ can be recovered by (22). To guarantee
the constraint (14) still holds, the authors provide a sufficient
condition for the transformation matrix. Their method, however,
suffers from several limitations. When the reduced length N is
not small enough, SDP reformulation still renders a solution
failing to satisfy the spectral constraint of phase noise; yet, it
is prohibited to solve a large dimensional SDP. Nowadays, the
number of subcarriers can be up to thousands and to use this
method, the original dimension needs to be greatly reduced,
which can result in the loss of reliability and accuracy in the ob-
tained estimate. Furthermore, the reduced spectral phase noise
does not necessarily satisfy the spectral constraint as imposed
in problem (23); thus, this method gives a tightened solution.

C. Problem Formulation

Based on (5), the time-domain OFDM model with phase noise
is given by

y =
√

NcDiag
(
ejθ

)
FH SF̌h + v. (24)

Similar to (15), we propose the following optimization problem:

minimize
h,θ

∥∥y −√NcDiag
(
ejθ

)
FH SF̌h

∥∥2
. (25)

Solving (25) for h gives the least-squares channel estimate

ĥ =
1√
Nc

(
F̌H SH SF̌

)−1
F̌H SH FDiag

(
ejθ

)H
y. (26)

And the resulting least-squares error for phase noise is

E(θ) = yH Diag
(
ejθ

)
FH (INc

−B)FDiag
(
ejθ

)H
y, (27)
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where B = SF̌
(
F̌H SH SF̌

)−1
F̌H SH . The phase noise

estimation problem is thus formulated as

minimize
θ

yH Diag
(
ejθ

)
FH (INc

−B)FDiag
(
ejθ

)H y.

(28)
Let us introduce V = FH (INc

−B)F and u = e−jθ. We can
rewrite (28) as the following quadratic problem:

minimize
u

uH Diag(y)H VDiag(y)u

subject to |un | = 1, n = 0, 1, . . . , Nc − 1. (29)

Consequently, the joint phase noise and channel estimation
problem boils down to the phase noise estimation problem (29)
followed by computing the channel estimate with (26).

D. Equivalence of Time- and Frequency-Domain Approaches

In this section, we show that our formulation of the joint
estimation problem (25) and the resulting phase noise estimation
problem (29) are equivalent to the existing approaches.

Lemma 1: Let φ = Fejθ and Φφ = circ(φ), then Φφ =√
NcFDiag

(
ejθ

)
FH .

Proof: According to the eigenvalue decomposition of a
circulant matrix [28],

Φφ = FDiag
(√

NcF
(
eT

1 Φφ

)T
)
FH

= FDiag
(√

NcFH
(
eT

1 Φφ

)H
)∗

FH

= FDiag
(√

NcFH φ
)∗

FH

= FDiag
(√

Nce
−jθ

)∗
FH

=
√

NcFDiag
(
ejθ

)
FH ,

where e1 = [1 0 · · · 0]T . �
With Lemma 1, we can prove that the objective function in

problem (25) is the same as that of (15):
∥∥∥y −

√
NcDiag

(
ejθ

)
FH SF̌h

∥∥∥
2

=
∥∥∥FH r−

√
NcDiag

(
ejθ

)
FH SF̌h

∥∥∥
2

(30)

=
∥∥∥r−

√
NcFDiag

(
ejθ

)
FH SF̌h

∥∥∥
2

(31)

=
∥∥r−ΦφSF̌h

∥∥2
. (32)

Since

ΦH
φ r =

√
NcFDiag

(
ejθ

)H
FH r =

√
NcFDiag

(
ejθ

)H
y,

(33)
(27) is equivalent to the frequency-domain phase noise error
function (18):

E (φ) =
1

Nc
rH Φφ (INc

−B)ΦH
φ r (34)

= yH Diag
(
ejθ

)
FH (INc

−B)FDiag
(
ejθ

)H
y.
(35)

In the next section, we will use the majorization-minimization
technique to develop efficient algorithms to solve problem (29).

IV. ALGORITHMS

A. The Majorization-Minimization Technique

The majorization-minimization (MM) technique provides an
approximation-based iterative approach to solving an optimiza-
tion problem of a generic form [29]–[31]. As the original prob-
lem is difficult to address directly, the MM technique follows
an iterative procedure—a simpler surrogate objective function
is minimized in each iteration—to find a local optimum.

Consider the problem of

minimize
x

f(x) subject to x ∈ X . (36)

The MM technique starts from a feasible point x(0) ∈ X , and
solves a series of simpler majorized problems:

minimize
x

g
(
x;x(t)

)
subject to x ∈ X , (37)

t = 0, 1, . . . , each of which produces an updated point x(t+1) .
Basically, the surrogate objective, known as the majorization
function for f(x), should satisfy the following conditions:

g
(
x(t) ;x(t)

)
= f

(
x(t)

)
, (38)

g
(
x;x(t)

)
≥ f (x) ∀x ∈ X , (39)

∇dg
(
x(t) ;x(t)

)
= ∇df

(
x(t)

)
∀x(t) + d ∈ X , (40)

where ∇dg
(
x(t) ;x(t)

)
is the directional derivative of g at x(t)

in the direction of d. Consequently, a series of points that result
in non-increasing objective values are obtained:

f
(
x(t+1)

)
≤ g

(
x(t+1);x(t)

)
≤ g

(
x(t) ;x(t)

)
= f

(
x(t)

)
,

(41)
And any limit point of thus generated sequence of points is a
stationary solution to the original problem (36).

To develop an efficient MM-based algorithm, the series of
problems (37) should all be simple enough to solve—ideally,
each should be solved with a closed-form solution. Crucial to
achieve such a goal is to find a good majorization function
g
(
x;x(t)

)
, which requires to properly exploit the particular

structure of the specific problem. Some general and useful rules
for majorization can be found in [31]. In the next section, we
will devise MM algorithms to solve our problem (29) with two
different majorizing methods. Also it will be illustrated in simu-
lations that the majorization is critical for the convergence speed
of the obtained algorithms.

B. The MM Algorithms for Phase Noise Estimation

The following lemma is introduced first, which is useful for
finding majorization functions.

Lemma 2: Given a matrix A, P = A(AH A)−1AH is an
orthogonal projection matrix, which is unitarily similar to a
diagonal matrix with diagonal entries being either 1 or 0
[32, Corollary 3.4.3.3].
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1) Loose Quadratic Majorization (LQM): Let us write Ṽ =
Diag(y)H VDiag(y). The objective in (29) can be majorized
by a quadratic function at u0 as follows [33, Lemma 1]:

uH Ṽu ≤ 2Re
{
uH

0

(
Ṽ − λINc

)
u
}

+ 2λ‖u‖2 − uH
0 Ṽu0 ,

(42)
in which λINc

� Ṽ for some constant λ. Note that the largest
eigenvalue of V is 1 by Lemma 2, then we have λmax(Ṽ) ≤
‖y‖2∞. Choosing λ = ‖y‖2∞ will thus satisfy the majorization
condition. At the step t, the following majorized problem with
the surrogate objective function is solved (since ‖u‖2 is just a
constant):

minimize
u

− 2Re
{(

u(t)
)H (

‖y‖2∞INc
− Ṽ

)
u
}

subject to |un | = 1, n = 0, 1, . . . , Nc − 1. (43)

It is obvious that a closed-form solution to (43) is:

u(t+1) = exp
[
j arg

((‖y‖2∞INc
− Ṽ

)
u(t)

)]

= exp
[
j arg

((‖y‖2∞1− |y|2)� u(t) (44)

+ Diag(y)H FH BFDiag(y)u(t)
)]

, (45)

where the exponential and the squared magnitude | · |2 are taken
element-wise. We call this method a loose quadratic majoriza-
tion (LQM) because the structure of the original objective func-
tion could have been better exploited as shown below, which
leads to faster convergence.

2) Tight Quadratic Majorization (TQM): Similar to (42), the
original objective can be majorized as follows:

uH Diag(y)H VDiag(y)u

≤ λuH Diag(y)H Diag(y)u

+ 2Re
{
uH

0 Diag(y)H (V − λINc
) Diag(y)u

}

+ uH
0 Diag(y)H (λINc

−V) Diag(y)u0 (46)

= 2Re
{
uH

0 Diag(y)H (V − λINc
) Diag(y)u

}

+ 2λ‖y‖2 − uH
0 Diag(y)H VDiag(y)u0 , (47)

where λINc
� V for some constant λ and the equality follows

from the unimodular property of un , n = 0, 1, . . . , Nc − 1. To
find a good majorization function, we can choose λ = 1 by
Lemma 2. At the step t, the following majorized problem can
be obtained:

minimize
u

− 2Re
{(

u(t)
)H

Diag(y)H FH BFDiag(y)u
}

subject to |un | = 1, n = 0, 1, . . . , Nc − 1, (48)

which results in a closed-form solution:

u(t+1) = exp
[
j arg

(
Diag(y)H FH BFDiag(y)u(t)

)]
.

(49)
It will be demonstrated later that this method converges faster
owing to its tighter majorization.

Algorithm 1: Algorithm for Phase Noise Estimation with
TQM.

1: Compute B = SF̌
(
F̌H SH SF̌

)−1
F̌H SH , set t = 0,

and initialize u(0) = ejθ0 .
2: repeat
3: u(t+1) =exp

[
j arg

(
Diag(y)H FH BFDiag(y)u(t)

)]

4: t← t + 1
5: until convergence.

The whole procedure is summarized in Algorithm 1 for
TQM. Since main difference from TQM lies in the update
of u(t+1) , the algorithm for LQM is omitted here. Once the
algorithm converges to solution u	 , the phase noise estimate
can be obtained by

θ̂ = − arg (u	) . (50)

Remark 1: There exists phase rotation ambiguity in problem
(25): it can be seen that phase noise and channel estimates are
subjected to reciprocal common phase rotations. Let ĥ and θ̂
be channel and phase noise estimates, respectively. The least-
squares error of the estimates ĥ and θ̂ is the same as that of ejθc ĥ
and θ̂ − θc1Nc

. Since θc keeps unchanged among subcarriers,
it acts like CFO. Many effective methods can be found for
CFO correction; see, e.g., [15], [18]. Assuming CFO has been
eliminated before estimating phase noise, we can thus set θc =
0. Therefore, once Algorithm 1 converges to a solution u	 , phase
ambiguity can be removed by the rotation: u	 ← u	/u	

0 .

C. Dimensionality Reduction

Dimensionality reduction has been proposed in [22] to al-
leviate the computational complexity when solving an SDP of
size Nc , the number of OFDM subcarriers. More important, as
noted in [19], estimation problem (15) and equivalent (25) are
essentially underdetermined. To obtain reasonable estimates, the
number of unknowns in the problem needs to be reduced and,
hence, a reduced phase noise vector is estimated.

Similar to the transformation (22) introduced in [22] for es-
timating reduced spectral phase noise, we apply dimensional-
ity reduction to our problem (29) in the time domain. Recall
u = e−jθ for phase noise θ. We define

û = TN ǔ = TN e−j θ̌ (51)

as a mapping from a low-dimensional phase noise θ̌ ∈ RN

to the original phase noise with the transformation matrix
TN ∈ RNc×N (N < Nc ). Two instances of TN are suggested
in [22]—piecewise-constant transformation (PCT) and random
perturbator. And it has been demonstrated that PCT, albeit
simple, achieves the best performance. PCT is defined as

TN =

⎡

⎢⎢⎢⎢⎢⎣

1Ns
0 . . . 0

0 1Ns
. . . 0

...
...

. . .
...

0 0 . . . 1Ns

⎤

⎥⎥⎥⎥⎥⎦
, (52)
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with Ns = Nc/N . In this case, the transformation matrix acts
like a sample-and-hold circuit to recover the desired phase noise.
Another transformation matrix is provided in [19] based on
linear interpolation. For simplicity, we focus on PCT in this
paper, but the methods proposed in the following also apply to
the linear interpolation transformation and a numerical example
is provided later.

Introducing dimensionality reduction requires us to solve a
different optimization problem. By substituting (51) into (29),
we can obtain an estimation problem of a lower dimension. A
similar procedure, however, can be followed when majorizing
the new objective function and developing the MM algorithms.
For TQM, the update (49) is modified accordingly as

ǔ(t+1) = ej arg(TH
N Diag(y)H FH BFDiag(y)TN ǔ( t ) ). (53)

For LQM, the majorization function needs to be recomputed
as the condition λIN � TH

N ṼTN involves TN . Notice that
λmax(Ṽ) = ‖y‖2∞, and λ can be set to be ‖y‖2∞λmax(TH

N TN )
such that the majorization inequality constraint is satisfied. As
a result, the update for LQM is obtained as follows:

ǔ(t+1) = ej arg((‖y‖2∞λm a x (TH
N TN )IN −TH

N ṼTN )ǔ( t ) ). (54)

For our chosen PCT, λmax(TH
N TN ) = Ns and (54)

simplifies to

ǔ(t+1) = exp
[
j arg

((
‖y‖2∞NsIN −TH

N ṼTN

)
ǔ(t)

)]
.

(55)
The transformation matrix requires the reduced dimension N

to be specified in advance. Previous works have assumed a fixed
PCT with given N , which is hardly flexible to different SNR.
Here, we prescribe a set of values of N and run our algorithm
for each of those values. In particular, N is chosen as a factor of
Nc such that PCT is well-defined. To choose the optimal N , we
employ the BIC rule [34], which has been demonstrated very
effective in model order selection to avoid over-fitting. For each
estimate û, the corresponding BIC is defined as

BIC (û) = −2 ln p (y, ǔ) + N lnNc, (56)

where p (y, ǔ) is the probability density function of y given ǔ.
With model (5) and transformation (51), (56) can be rewritten
as

BIC (û) =
E(θ̂)
σ2 + N ln Nc, (57)

where E(θ̂) is the least-squares error (27) of the phase noise
estimate û. The optimal PCT is then defined as the one that
produces the minimal BIC. In doing so, improved estimates
are expected, compared with the traditional methods [19], [22].
Furthermore, the computational efficiency of LQM and TQM
also guarantees an acceptable computational cost. The whole
procedure is described in Algorithm 2.

D. Regularization

Apart from dimensionality reduction, another approach to
addressing the potential over-fitting inherent in (25) is to impose

Algorithm 2: Phase Noise Estimation with TQM and the
Optimal PCT Selected by BIC.

1: Compute B = SF̌
(
F̌H SH SF̌

)−1
F̌H SH . Choose T as

a set of PCT matrices of different reduced length N .
2: for each TN ∈ T do
3: set t = 0 and initialize ǔ(0)

4: repeat
5: ǔ(t+1) = ej arg(TH

N Diag(y)H FH BFDiag(y)TN ǔ( t ) )

6: t← t + 1
7: until convergence
8: û = TN ǔ(t+1)

9: choose û with the minimal BIC (û).

a regularization to the objective in problem (29). Let

D =

⎡

⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · 0

· · ·
0 0 0 1 −1

⎤

⎥⎥⎥⎥⎦
(58)

be an (Nc − 1)×Nc first-order difference matrix. As phase
noise does not change significantly between consecutive sam-
ples, we can use the regularizer ‖Du‖2 and solve the following
regularized estimation problem:

minimize
u

uH Diag(y)H VDiag(y)u + μ‖Du‖2

subject to |un | = 1, n = 0, . . . , Nc − 1, (59)

where μ is a given regularization parameter. To solve the regular-
ized problem with the MM framework, the previous procedure
can be followed to obtain the modified MM update, which is
given by

u(t+1) = exp
[
j arg

(
Diag(y)H FH BFDiag(y)u(t)

+ μ
(
λmax(DH D)INc

−DH D
)
u(t)

)]
. (60)

Compared with dimensionality reduction method, solving the
regularized problem saves the trouble of choosing sampling
length N , but still the value of regularization parameter μ needs
to be properly chosen. In practice, the obtained estimates are
robust to μ within a large range of value.

E. Computational Issues and Analysis of Convergence

In the initialization, both LQM and TQM need to compute
B. Since S is diagonal, computing SH S needs Nc complex
multiplications. Notice that F̌ consists of the first L (L� Nc)
columns of unitary DFT matrix F. And using FFT to com-
pute Nc -point DFT needs (Nc/2) log2 Nc complex multipli-
cations and Nc log2 Nc complex additions. Then F̌H SH SF̌,
which is L× L Toeplitz, can be calculated with less than
Nc + Nc log2 Nc complex multiplications and 2Nc log2 Nc

complex additions. Computing the inverse of this L× L ma-
trix is an easy task (L is the number of the channel taps, usually
around the order of 10), which requires O(L2) arithmetical
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TABLE I
COMPUTATIONAL COMPLEXITY OF PROPOSED ALGORITHMS FOR COMPUTING PHASE NOISE

TABLE II
CPU TIME OF DIFFERENT ALGORITHMS WITH Δf3dB = 5000 HZ, SNR = 35 dB, AND 500 MONTE CARLO SIMULATIONS†

operations [35]. Furthermore, less computation will be required
when the pilot symbols have constant modulus, e.g., using
M -QAM signals [8], [22], for which SH S = αIL for some con-
stant α and B is thus much simplified. To compute B, we still
need additional FFT for the left and right matrix multiplications,
each of which involves NcL + ((L/2) log2 L + Nc − L) L
complex multiplications and L2 log2 L complex additions. In
the update of TQM, Diag(y)H FH BFDiag(y) is fixed and
thus needs to be computed only once, which requires 2N 2

c +
N 2

c log2 Nc complex multiplications and 2N 2
c log2 Nc complex

additions. The summary of the computational complexity for
computing phase noise estimate is given in Table I. The overall
complexity is at the order of O(N 2

c log2 Nc) for the initializa-
tion andO(Nc) for each update. For TQM, the algorithm usually
converges in practice within around 10 iterations. Faster conver-
gence speed can also be achieved by applying accelerations; see
Table II. Once a phase noise estimate is obtained, channel esti-
mate (26) can be computed with Nc complex multiplications.

Compared with some existing methods, our proposed
algorithms requires almost the same or even less computational
complexity. For instance, the state-of-the-art PNC in [22] solves
an SDP, which requires a complexity ofO(N 3.5 log2(

1
ε )) using

efficient solver SeDuMi [36]. An alternating optimization

method proposed in [19] requires a per-update complexity of
O(N 3

c ). And a non-iterative method in [21] requires a complex-
ity of O(N 3) apart from the computation of B.

According to (41), the obtained series of points {u(t)} of
LQM and TQM is non-increasing. To further show the proposed
algorithms converge to a stationary point, we first define a first-
order optimality condition for minimizing a smooth function
subject to an arbitrary constraint [37].

Proposition 1: Let f : RN → R be a smooth function. A
point x	 is a local minimum of f within a subset X ⊂ RN if

∇f(x	)T y ≥ 0 ∀y ∈ TX (x	), (61)

where TX (x	) is the tangent cone of X at x	 .
With Proposition 1, the convergence of our proposed

algorithms is guaranteed, i.e., the limit point of {u(t)} is a
stationary point. A similar proof can be found in [33, Th. 5].

V. SIMULATION RESULTS

In simulations, we consider a Rayleigh fading channel of
length L = 10, where each tap is independently distributed
with exponentially decreasing power of rate 0.7 and channel
noise is circularly symmetric complex Gaussian with σ = 0.1.
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Fig. 1. Four instances of the estimated phase noise θ. Nc = 1024. Where PCT is applied, N = 32. (a) SNR = 15 dB, Δf3dB = 500 Hz, (b) SNR = 35 dB,
Δf3dB = 500 Hz, (c) SNR = 15 dB, Δf3dB = 5000 Hz, (d) SNR = 35 dB, Δf3dB = 5000 Hz2.

Transmitted OFDM symbols are generated randomly (as-
sumed known to receiver) with distribution CN (0, 2I). To
apply dimensionality reduction,2 we use PCT with the re-
duced dimension indicated by the value of N (51)–(52).
Throughout this section we choose N = 32 if a fixed PCT
is applied.

The following methods are considered in our simulations.
PNC, as the benchmark, is the algorithm proposed in [22],
where phase noise is estimated in the frequency domain by
solving an SDP (23). A non-iterative method NonIt proposed
in [21] is also considered. Method AltOpt refers to the alter-
nating optimization algorithm proposed in [19]. A modified
version AltMM, based on the MM, is also compared. Specifi-
cally, we have modified AltOpt to take into account the phase
noise constraint in each phase noise estimate update as op-
posed to the original algorithm; see Appendix for details. TQM
and LQM are two MM-based algorithms we have proposed to

2The non-iterative method NonIt [21] has been favored for slow-varying
phase noise with a small number of OFDM subcarriers. For moderately fast-
varying phase noise or when the number of subcarriers is large, the estimates
obtained by NonIt are much worse than other methods; also see [17].

solve the time-domain problem (29). From a set of specified
PCTs with different values of N , opt-PCT is defined as the one
that gives the minimal BIC. In particular, opt-PCT is selected
from PCTs with N ∈ {25 , 26 , . . . , 2log2 Nc }. TQM + Reg is the
regularization-based method as an alternative to dimensionality
reduction and to accelerate the convergence speed, we have em-
ployed SQUAREM method [38]. For comparison, Ignore PHN
and Exact PHN are also included, where phase noise is ignored
and the exact phase noise is used, respectively, when estimating
channel impulse response. Whenever necessary, an algorithm is
initiated with an all-one vector and regarded converged when the
squared �2-norm of the difference between two consecutive iter-
ates is no larger than 10−8 . The maximum number of iterations
allowed toward the convergence is 500. All simulations were
run in MATLAB on a PC with a 3.20 GHz i5-4570 CPU and
8 GB RAM.

A. Phase Noise and Channel Estimation

In this section, we define phase noise θ as a Wiener process
[8], [19], [22]. The baseband sampling rate is fs = 20 MHz;
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Fig. 2. Joint estimation of phase noise and channel under different values of SNR with Nc = 1024 and 2000 Monte Carlo simulations: (a) averaged MSE
of phase noise estimate, Δf3dB = 500 Hz (b) averaged MSE of channel estimate, Δf3dB = 500 Hz, (c) averaged MSE of phase noise estimate, Δf3dB =
5000 Hz, (d) averaged MSE of channel estimate, Δf3dB = 5000 Hz.

3-dB bandwidth Δf3dB of phase noise is 500 Hz or 5000 Hz;
assuming CFO has been fixed, i.e., θ0=0, phase noise is generated
with

θn − θn−1 ∼ N
(

0,

√
2πΔf3dB

fs

)
, (62)

for n = 1, . . . , Nc − 1. We first show four instances of phase
noise estimates to provide an intuitive idea of how different
algorithms perform, and then compare the resultant phase noise
and channel estimation errors by Monte Carlo simulations.

Figs. 1(a)–1(d) show phase noise estimates under four dif-
ferent scenarios. In all cases, PNC, TQM, and LQM yield the
same estimate when the a fixed PCT is applied. NonIt, the
non-iterative method, solves the original phase noise estima-
tion problem, assuming that the magnitude of phase noise is
small, with a first-order Taylor approximation. Also assuming

that phase noise is low pass, it recovers phase noise using only
several (3 in our simulations) low-pass spectral components.
Obviously, the obtained estimates by NonIt are only rough ap-
proximations compared with the true phase noise. Due to this
reason, PNC is proposed in [22] to both take spectral phase
noise constraints into account and also make use of more spec-
tral components.

1) Small Phase Noise and Low SNR: In the small phase
noise case with Δf3dB = 500 Hz, as Fig. 1(a) shows, using the
given PCT results in a staircase-like estimate; loose though it
may seem, it is actually beneficial when SNR is limited, owing
to the fundamental underdetermined issue of the original prob-
lem. In fact, TQM with opt-PCT provides the same estimate as
that of the benchmark—opt-PCT in this case is T32 . In contrast,
TQM without PCT and AltOpt produce estimates with many
undesired peaks associated with larger MSE. It implies, there-
fore, that with small phase noise and low SNR, dimensionality
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Fig. 3. Joint estimation of phase noise and channel with different values
of SNR, Nc = 1024, Δf3dB = 500 Hz, and 500 Monte Carlo simulations:
(a) averaged MSE of phase noise estimate, (b) averaged MSE of channel esti-
mate.

Fig. 4. Convergence of TQM and LQM. Nc = 1024. Δf3dB = 500 Hz.

Fig. 5. Gaussian phase noise estimation with Nc = 512 and SNR = 35 dB.

Fig. 6. Joint estimation of Gaussian phase noise and channel with different
values of SNR, Nc = 512, and 500 Monte Carlo simulations: (a) averaged MSE
of phase noise estimate, (b) averaged MSE of channel estimate.



3258 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 12, JUNE 15, 2017

reduction is recommended in order to achieve a relatively better
performance.

2) Small Phase Noise and High SNR: A particular example
for this case is shown in Fig. 1(b). With the given PCT, we
can see that PNC, TQM, and LQM are still able to produce the
same good estimate by and large, the resulting MSE of which
is around 6.98. AltOpt offers a relatively better estimate with
MSE 0.6849, which is comparable to TQM without PCT whose
MSE is 0.7489. TQM with opt-PCT (opt-PNC is T256 here)
outperforms other opponents though, with the corresponding
MSE of 0.2362, which implies that dimension should not be
reduced too much with high SNR. It should be mentioned that
this will pose a challenge to the benchmark PNC because it
needs to deal with an SDP with size of 512 or even larger. More
details will be illustrated in Section V-B.

3) Large Phase Noise and Low SNR: A major difference in
this scenario from the previous one is that TQM without PCT
yields a phase noise estimate with many undesired peaks and so
does AltOpt; see Fig. 1(c). The reason is that low SNR renders
the original problem more susceptible to the underdetermined
issue—the same as the case of small phase noise and low SNR
in Fig. 1(a). Nonetheless, TQM with opt-PCT gives a very good
estimate outperforming other opponents (opt-PCT in this case
is T128).

4) Large Phase Noise and High SNR: In this last example,
except NonIt, all the other algorithms yield nearly good esti-
mates as Fig. 1(d) shows. Fixed PCT for PNC, TQM, and LQM,
however, still provide a relatively loose result that could have
been improved with available high SNR, the MSE of which
are 9.9862, 9.9862, and 9.9870, respectively. AltOpt yields an
estimate with smaller MSE 1.8928. We can also expect that
TQM without PCT and TQM with opt-PCT perform better, the
resulting MSE of which are 0.6938 and 0.5352, respectively.
Opt-PCT in this example is T512.

Since phase noise estimate by NonIt is much worse than other
methods and AltOpt and AltMM have MSE of phase noise no
better than TQM, we will only compare our proposed algorithms
with PNC with respect to MSE. For comparison of computation
time for each algorithm, see Table II.

Figs. 2(a)–2(d) show averaged MSE of phase noise and chan-
nel estimates with 500 Monte Carlo trials. From Fig. 2(a) and
2(c), we see that PNC, TQM, and LQM are comparable to each
other with dimensionality reduction when SNR is low. In con-
trast, TQM without PCT can provide much better phase noise
estimates for high enough SNR. A similar result can be found for
channel estimation in Fig. 2(b) and 2(d). But TQM produces bet-
ter estimates with opt-PCT than without PCT. Even though the
benchmark PNC can deal with larger SNR, the computational
burden is prohibitive, not to say the additional computational
issues; see the following remark and an illustration of CPU
time consumed by each algorithm in Section V-B. Using regu-
larization, TQM can further reduce MSE compared with TQM
with PCT. Here, we choose regularization parameter μ = 50 for
Δf3dB = 500 Hz and μ = 10 for Δf3dB = 5000 Hz. But for a
given Δf3dB , the performance of resulting estimates is robust
to the choice of μ. See Fig. 3(a)–3(b) for more details. The LI is
the interpolation matrix proposed in [19] and opt-LI, similar to

opt-PCT, is obtained with BIC. For LI to be properly defined, the
sampling length N is chosen from {34, 94, 342, 1024}, which
is more restricted than PCT. For fixed LI, we choose N = 34.

Remark 2: PNC is proposed in [22], where the original prob-
lem is reformulated as an SDP by using the S-procedure. The
authors only prove the equivalence (strong duality) between the
reduced problem and its SDP reformulation. For the original
problem, however, the strong duality has not been established.
From simulations, the resultant estimate of frequency-domain
phase noise vector is not a reasonably good solution that satis-
fies the spectral constraint. Also, solving an SDP only gives an
intermediate solution that requires an additional eigendecom-
position step. PNC can thus easily fall within infeasibility and
singularity issues when dimension is not reduced enough. These
issues, however, have not been addressed in [22].

B. Algorithm Convergence

In this section, we first present an example of convergence
properties of our proposed algorithms, and then give a compar-
ison of CPU time consumed by each algorithm. Convergence
criteria defined previously apply here as well.

Fig. 4 demonstrates convergence of four methods. TQM and
LQM converge to the same optimal solution with the same ini-
tialization. TQM, however, converges remarkably faster than
LQM, within twenty iterations or fewer. This is because TQM
employs a much tighter majorization function than LQM. Thus
we adopt TQM with opt-PCT in previous simulations to achieve
the same performance with respect to estimation error and to
save computation time at the same time. On the other hand,
as shown in previous examples, applying PCT in the case of
large phase noise and high SNR causes loss of quality in the
obtained estimates, which is substantiated by the fact that with-
out PCT, much lower objective value can be achieved. Using
different values of regularization parameters, TQM converges
to different objective values with comparable computation time.
The resulting estimation errors, however, are almost the same
as Figs. 2(a)–2(b) have shown.

A further comparison in terms of the computation time among
our proposed algorithms and the benchmarks is provided in
Table II. In the case with PCT applied, our proposed algorithms
outperform PNC, AltOpt, and AltMM by saving much time and
at the same time achieve the same MSE as shown in the pre-
vious examples. TQM gives as the same estimate as LQM but
is much more efficient owing to the tighter majorization func-
tion employed. TQM with regularization is also computation-
ally efficient with an even further improvement in the resulting
estimation errors.

C. Gaussian Phase Noise Estimation

Phase noise generated in a phase-locked loop is modeled
as a Gaussian process [18]. In this example, the number of
subcarriers is Nc = 512 with baseband sampling rate fs =
20 MHz. The standard deviation θrms of phase noise gener-
ated by a phase-locked voltage controlled oscillator is 2 de-
grees. The single-pole butterworth filter with 3-dB bandwidth
Δf3dB = 100 Hz is adopted so that the covariance matrix of
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phase noise is

Ci,j =
(

πθrms

180

)2

e
−2 π Δ f 3 d B |i−j |

f s . (63)

An instance of Gaussian phase noise and its estimates is
shown in Fig. 5. As its name indicates, Gaussian phase noise
will not drift away too much like Wiener phase noise. Similar
to Fig. 1(b) and 1(d), large dimensionality reduction induces
considerable loss in the obtained estimates; with PCT, MSE
for PNC, TQM, and LQM are 1.4049, 1.4049, and 1.4024,
respectively. TQM without PCT and TQM with opt-PCT achieve
the best performance in this example, both of which have the
same MSE of 0.1556. And opt-PCT is just an identity matrix,
which causes no dimension to be reduced. Figs. 6(a)–6(b) show
MSE of the obtained estimates of Gaussian phase noise and
channel, respectively. Still, our proposed algorithms can provide
much better estimates as in the previous examples with Wiener
phase noise.

VI. CONCLUSION

We have proposed efficient algorithms for the joint phase
noise and channel estimation in OFDM. The algorithms are
devised based on the majorization-minimization technique and
apply to two canonical models of phase noise—Wiener process
and Gaussian process. To properly address the underdetermined
nature in the original estimation problem, dimensionality re-
duction and regularization have been proposed with similar
MM algorithms provided. The simulation results have shown
that when the same dimensionality reduction is employed, our
proposed algorithms achieve the same MSE as that of the bench-
mark but consume much less time. By further selecting the opti-
mal dimensionality reduction with BIC or imposing appropriate
regularization, our proposed algorithms produce significantly
better estimates for moderate SNR without demanding much
additional computation time. It is expected that in modern ap-
plications of OFDM, where a large number of subcarriers are
deployed, the advantage of our methods should be outstanding.

APPENDIX

ALTERNATING OPTIMIZATION WITH THE MM

In the following, the constraint of phase noise is taken into
account and the alternating optimization scheme is correspond-
ingly modified.

With the unimodular constraint for c = ejθ, we have(
Φ(i−1)

φ

)H Φ(i−1)
φ = NcI (14). And the channel estimate is up-

dated by

ĥ(i) =
(
NcF̌H SH SF̌

)−1
F̌H SH

(
Φ(i−1)

φ

)H

r. (64)

Substitute (64) into the objective of problem (15), and the
following problem is obtained:

minimize
c:|c|n =1,n=1,...,Nc

‖r−PFc‖2 , (65)

where P = circ(SF̌ĥ(i)). Instead of updating c by the least-
squares solution (17), the MM method can be used to solve

Algorithm 3: Phase Noise Estimation by Alternating
Minimization and the MM.

1: Set i = 1 and initialize ĉ(0) = ejθ0 .
2: repeat
3: Φ(i−1)

φ = circ(Fĉ(i−1))

4: ĥ(i) =
(
NcF̌H SH SF̌

)−1
F̌H SH

(
Φ(i−1)

φ

)H r

5: P = circ
(
SF̌ĥ(i)

)

6: λ = Nc

∥∥FH (SF̌ĥ(i))
∥∥2
∞

7: t = 0, and initialize c(0)

8: repeat
9: a(t+1) = FH PH r + λc(t) − FH PH PFc(t)

10: c(t+1) = ej arg a( t + 1 )

11: until convergence
12: ĉ(i) = c(t+1)

13: t← t + 1
14: until convergence.

problem (65). The majorization can be obtained as follows [33,
Lemma 1]:

‖r−PFc‖2 = rH r− 2Re
{
rH PFc

}
+ cH FH PH PFc

(66)

≤ rH r− 2Re
{
rH PFc

}
+ λcH c

+ 2Re
{(

c(t))H (
FH PH PF− λI

)
c
}

+
(
c(t))H (

λI− FH PH PF
)
c(t) . (67)

To obtain a good majorization function, we can choose λ as

λ = λmax
(
FH PH PF

)
(68)

= Nc

∥∥∥FH
(
SF̌ĥ(i)

)∥∥∥
2

∞
, (69)

where Lemma 1 is applied to compute the maximum eigenvalue
of P. Minimizing (67) results in the update of c:

c(t+1) = ej arg a( t + 1 )
, (70)

where a(t+1) = FH PH r + λc(t) − FH PH PFc(t) . The com-
plete procedure is described in Algorithm 3. Algorithm 3 can
also be readily modified to incorporate PCT, for which a similar
majorization approach can be followed.
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