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Maximin Joint Optimization of Transmitting Code
and Receiving Filter in Radar and Communications

Licheng Zhao and Daniel P. Palomar, Fellow, IEEE

Abstract—In this paper, we conduct the joint design of transmit-
ting sequence(s) and receiving filters subject to the Peak-to-Average
Ratio (PAR) constraint in radar and communications applications.
We consider optimizing the worst-case performance and the re-
sulting optimization problem takes a maximin format. We propose
two algorithms based on the MM (Majorization–Minimization or
Minorization–Maximization) method as opposed to the traditional
epigraph-based smooth reformulation. On top of that, both algo-
rithms are guaranteed to converge to a B(oulingand)-stationary so-
lution, and B-stationarity is the appropriate stationarity condition
for problems with a nonconvex constraint set. The proposed algo-
rithms successively solve a series of simple convex problems that
enjoy low computational complexity. Numerical simulations have
shown that the proposed algorithms empirically achieve slightly
higher objective values and converge faster in terms of CPU time
than the existing methods.

Index Terms—Radar, CDMA, PAR constraint, maximin, MM
method, B-stationary solution.

I. INTRODUCTION

MAXIMIZATION of the minimum of a finite number of
differentiable functions is of interest in various signal

processing applications, especially in radar target detection and
multiuser communications. The maximin metric aims at ensur-
ing the worst-case performance guarantee or providing fairness
among multiple users. In this paper, we consider the maxi-
mization of the minimum of several Signal-to-Interference-plus-
Noise Ratio (SINR) functions subject to the PAR constraint, i.e.,

maximize
s (or si ), w i

min
i=1,2,··· ,I

SINRi

subject to s (or si) ∈ S, (1)

where s (or si) ∈ CN denotes the transmitting sequence, wi ∈
CM represents the receiving filter, and S models the PAR con-
straint set (cf. [1]–[4]):

S =
{
s ∈ CN

∣∣∣ ‖s‖2 = 1, ‖s‖∞ ≤
√

ρ

N

}
. (2)

The PAR constraint controls the excursions of the squared code
elements around their mean value [3]. A lower PAR means a
lower dynamic range of the analog-to-digital converters and
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digital-to-analog converters in the system, and fewer linear
power amplifiers are needed. The �2-norm constraint stands for
the energy budget and the �∞-norm constraint reflects the PAR
level which is controlled by the parameter ρ, ranging from 1 to
N . In particular, when ρ = 1, the PAR constraint degenerates
into the constant modulus constraint. The different expressions
of SINRi will be specified in the next section.

A. Related Works

Radar target detection: Joint design of the receiving filter
and transmitting sequence has been extensively studied during
the last few decades. In the field of active sensing, many works
are based on either known Doppler shifts [5]–[7] or signal-
independent interference [3], [8], [9]. In practice, Doppler shifts
are often unknown, especially when the detection process has
just been launched and the target has not yet been tracked. The
assumption of signal-independent interference fails to take into
account possible reflections of transmitting signals from other
objects (hence signal-dependent interference). One pioneering
work combining these two considerations is [10], which pro-
posed a novel algorithm, DESIDE, to conduct the maximin op-
timization. The DESIDE algorithm is cyclic and Semidefinite-
Programming (SDP)-relaxation-based with overall complexity
O
(
N 6.5

)
[11], [12], and the computational cost is rather high.

The more recent work [13] improved the design of [10] by in-
corporating a filter bank, i.e., multiple filters instead of one, on
the receiver side. Each filter is tuned to a specific Doppler fre-
quency, and all the Doppler frequencies are uniformly sampled
from the uncertainty interval of the target Doppler frequency.
The idea of filter banks originates from the Moving Target De-
tector (MTD) [14]. Incorporating the filter bank proves to en-
hance the worst-case performance according to the simulation
results of [13]. Moreover, the algorithm proposed by [13] is
Second-Order-Cone-Programming (SOCP)-based, with overall
complexity O

(
N 3.5

)
[11], [15], three orders of magnitude less

costly than SDP. However, [13] merely solved a related prob-
lem rather than the original one (i.e., (1)), and the stationarity
convergence result is thus not intended for the original problem.

Apart from active sensing, there exists a similar problem in a
colocated MIMO radar system [16]–[19]. We consider signal-
dependent interference as well as some uncertainty in the target
angle. A filter bank is also used on the receiver side. Each filter is
tuned to a specific predetermined target angle, and all the target
angles are uniformly sampled from the uncertainty interval.
Hence, the optimization problem takes the same form as (1).

Multiuser Communications: DS-CDMA: The user perfor-
mance of Direct Sequence-Code Division Multiple Access (DS-
CDMA) also depends on the joint design of receiving filters
and transmitting sequences (also known as signature codes).
To ensure max-min fairness among users, we maximize the
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minimum SINR of all users. Interestingly, as [20] pointed out,
maximizing the minimum SINR is equivalent to maximizing
the minimum largest achievable rate (R = log2 (1 + SINR)) as
well as minimizing the maximum Mean Square Error (MSE)
(MSE = 1

1+SINR ). The expression of the SINR follows [21],
and interference is caused by the signals of other users. The
PAR constraint is imposed to prevent high peak power of linear
combinations of signature sequences [22], [23]. Apart from DS-
CDMA, there are many relevant works studying the maximin
SINR problem. The works [24] and [25] studied the maximin
SINR problem in a MIMO downlink system with [24] optimiz-
ing the transmitting beamformers only and [25] jointly design-
ing the transmitting and receiving beamformers. Karipidis et al.
[26] studied the max-min fair transmitting beamformers subject
to quality of service constraints. Soltanalian et al. [27] proposed
the Grab-n-Pull algorithm to design precoding vectors. Wu et al.
[28] exploited semidefinite relaxation to design the transmitting
matrix for relay beamforming networks. These works provide
insight into solving the maximin SINR problem.

Algorithmic Scheme: From the perspective of the algorithm,
maximin optimization has been well studied in the literature. In-
troducing a slack variable and deriving the equivalent epigraph-
based reformulation is a classic and common practice [29]. One
recent work by Scutari et al. [30] showed that the stationary
solution of the epigraph-based reformulation turns out to be the
d(irectional)-stationary solution of the original problem. How-
ever, when the constraint set includes a nonconvex equality con-
straint, the algorithm in [30] may fail and the convergence result
is no longer applicable. Hence, this paper avoids the epigraph-
based reformulation and works on the piecewise differentiable
objective directly.

Orthogonality Concern: In sequence design, we could either
impose mutual orthogonality of sequences in a direct way or
in an indirect way. The direct way is to explicitly suppress
the magnitude of the inner product of multiple sequences, like
[2], [31]. This kind of design is useful when we do not have
any prior knowledge of channel information. However, explicit
orthogonality may not be necessary if we know in advance that
some particular channel lags do not exist. We could take into
account the channel information and maximize the worst-case
SINR on the receiver side instead. By including the channel
information, we are implicitly inducing mutual orthogonality,
like [10], [13], [32]. In this paper, we exploit the information
of channel and/or clutter in the sequence design and thus we do
not adopt the explicit orthogonality philosophy.

B. Contribution

In this paper, we propose two algorithms based on the MM
method to efficiently solve the maximin problem. The major
contributions are as follows:

1) We employ the MM method and extend it to the case
where the objective takes the pointwise minimum format.
The tight lower bound for a piecewise smooth function
is simple; however, it is nontrivial to verify the condition
for stationarity convergence. We are able to claim conver-
gence to a B(oulingand)-stationary solution of the original
problem,1 even if the objective function is only piecewise

1B-stationarity is recently mentioned in [33] and was proposed in [34].

smooth and the constraint set includes a nonconvex
equality constraint, which is beyond the scope of [30].

2) The proposed algorithms can achieve slightly higher ob-
jective values empirically and are more efficient than the
existing methods. We break the convention of alternat-
ing optimization in the joint design of receiving filters
and transmitting sequence(s). The alternating algorithmic
scheme gives rise to either SOCP- or SDP-based algo-
rithms, which are computationally costly and often utilize
an off-the-shelf solver. However, the proposed MM-based
algorithms are more systematic and efficient. In the mi-
norization stage, we exploit the hidden convexity of the
SINR function to derive the minorizing function at a given
point. In the maximization stage, we show that the max-
imization problem enjoys tight convex relaxation and we
propose two ways to solve the relaxed maximization prob-
lem: one requiring an off-the-shelf solver and the other us-
ing the Mirror Descent Algorithm (MDA) [35] framework
by introducing an auxiliary simplex. Thus, the proposed
algorithms successively solve a series of simple convex
problems which enjoy low computational complexity and
a fast convergence speed in terms of CPU time.

C. Organization and Notation

The rest of the paper is organized as follows. In Section II,
we specify the problem formulation. In Section III, we first
give a brief introduction of the vanilla MM method, and then
move on to its extension, where the objective takes the point-
wise minimum format. In Section IV, we provide the algorith-
mic framework for solving the maximin problem, i.e., (1). In
Section V, we look into specific applications and examples for
case studies. Finally, Section VI presents numerical simulations,
and the conclusions are given in Section VII.

The following notation is adopted. Boldface upper-case letters
represent matrices, boldface lower-case letters denote column
vectors, and standard lower-case letters stand for scalars. R (C )
denotes the real (complex) field. � stands for the Hadamard
product. ‖·‖p denotes the p-norm of a vector. 〈x,y〉 denotes
the inner product of x and y. ∇(·) represents the gradient of a
vector (matrix) function (the way to derive the complex-valued
gradient follows [36]), and I stands for the identity matrix. XT ,
X∗, XH , Tr(x), and λmax(x) denote the transpose, complex
conjugate, conjugate transpose, trace, and the largest eigen-
value of X, respectively. Diag(x) is a diagonal matrix with
x filling its principal diagonal. X � 0 means X is positive
semidefinite.

II. PROBLEM STATEMENT

We consider the maximization of the minimum of several
SINR functions subject to the PAR constraint (cf. (1)) and we
specify the SINR functions in this section. We denote the length
of the transmitting sequence(s) and receiving filters as N and M ,
respectively. Recall that s (or si) is the transmitting sequence
and wi is the receiving filter. In radar target detection, SINR is
expressed as

SINRi =
αi

∣∣wH
i His

∣∣2
wH

i ΣI (s)wi + wH
i Rwi

(3)
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with

ΣI (s) =
∑

j

βjMjssH MH
j , (4)

while in multiuser communications,

SINRi =
αi

∣∣wH
i Hisi

∣∣2
wH

i ΣI

(
{sj}j �=i

)
wi + wH

i Rwi

(5)

with

ΣI

(
{sj}j �=i

)
=

I∑
j=1, j �=i

αjHjsjsH
j HH

j . (6)

The expression of SINRi (cf. [10], [13], [16], [21], [37]) is
interpreted as follows. The numerator is the power of the desired
receiving signal: αi > 0 is the parameter representing the path
gain (or loss) and Hi ∈ CM ×N represents the channel matrix.
The denominator is the power of the signal-dependent interfer-
ence (the first term) plus background noise (the second term).

The matrices ΣI (s) (cf. [1], [16], [38]) and ΣI

(
{sj}j �=i

)
(cf.

[21]) are the interference covariance matrices, with βj , αj > 0.
The matrix Mj ∈ CM ×N is an application-dependent constant
matrix. The matrix Hj ∈ CM ×N is the channel matrix of the
jth user.

III. PRELIMINARIES: THE MM METHOD

A. The Vanilla MM Method

The MM method refers to the Majorization-Minimization
method for minimization problems or the Minorization-
Maximization method for maximization problems. The MM
method [39], [50] can be applied to solve the following general
optimization problem:

maximize
x

F (x)

subject to x ∈ X , (7)

where X is some constraint set. Rather than maximizing F (x)
directly, we consider successively solving a series of simple op-
timization problems. The algorithm initializes at some feasible
starting point x(0) , and then iterates as x(1) , x(2) , . . . until a
convergence criterion is met. The update rule at any iteration,
say the nth iteration, is

x(n+1) ∈ arg maxx∈X F̄
(
x,x(n)

)
, (8)

where F̄
(
x,x(n)

)
is a minorizing function of F (x) at x(n) .

Suppose X is a convex set, F̄
(
x,x(n)

)
must satisfy the follow-

ing conditions so as to claim convergence [40]:
A1) F̄ (y,y) = F (y), ∀y ∈ X ,
A2) F̄ (x,y) ≤ F (x), ∀x,y ∈ X ,
A3) F̄ ′(y,y;d) = F ′(y;d), ∀d with y + d ∈ X ,
A4) F̄ (x,y) is continuous in (x,y),

where F ′ stands for directional derivative, whose definition is

F ′ (x;d) = lim inf
λ↓0

F (x + λd) − F (x)
λ

. (9)

The proof of convergence to a stationary point can be found in
[40], where it is proved that the limit point x(∞) satisfies

F ′
(
x(∞) ;d

)
≤ 0, ∀d with x(∞) + d ∈ X . (10)

But it only applies to the case where X is a convex set. If X is
nonconvex, we should modify (A3) so as to claim stationarity
convergence:

A3) F̄ ′(y,y;d) = F ′(y;d), ∀d ∈ TX (y),
where in this case F̄ and F are defined on the whole R or C
space and TX (y) is the Boulingand tangent cone of X at y.
The expression d ∈ TX (y) means that there exist a sequence of
vectors {y(k)} ⊂ X converging to y and a sequence of positive

scalars {λ(k)} converging to 0 such that d = limk→∞
y (k )−y

λ(k ) .
For more details, interested readers may refer to [33], [34]. If
(A3) is modified in this way, then we can prove that the limit
point x(∞) satisfies

F ′
(
x(∞) ;d

)
≤ 0, ∀d ∈ TX

(
x(∞)

)
, (11)

and thus B-stationarity is achieved.

B. MM in the Maximin Case

When the objective takes the form of F (x) = mini=1,··· ,I
fi(x) (the fi’s are assumed differentiable), it seems nontrivial
to derive a minorizing function satisfying all the aforementioned
conditions. The main difficulty is, given that F is nondifferen-
tiable, how to find an F̄ that has the same directional derivative
as F at a given feasible point. The answer turns out to be simple:

F̄ (x,y) = min
i=1,··· ,I

f̄i(x,y), (12)

with each f̄i being a tight lower bound of fi , satisfying: ∀i,
B1) f̄i (y,y) = fi(y), ∀y ∈ X ,
B2) f̄i(x,y) ≤ fi(x), ∀x,y ∈ X ,
B3) ∇f̄i (y,y) = ∇fi(y), ∀y ∈ X ,
B4) f̄i(x,y) is continuous in (x,y).
To guarantee stationarity convergence, we check whether

F̄ (x,y) satisfies (A1)–(A4):
Checking (A1): ∀y ∈ X ,

F̄ (y,y) = min
i=1,··· ,I

f̄i (y,y) = min
i=1,··· ,I

fi(y) = F (y). (13)

Checking (A2): ∀x,y ∈ X ,

f̄i(x,y) ≤ fi(x)

=⇒ min
i=1,··· ,I

f̄i(x,y) ≤ min
i=1,··· ,I

fi(x)

=⇒ F̄ (x,y) ≤ F (x). (14)

Checking (A3): according to [41, Theorem 9.16], given d, the
directional derivative of F̄ in (8) can be expressed as

F̄ ′ (y,y;d) = max
{
〈ξ,d〉 : ξ ∈ ∂F̄ (y,y)

}
, (15)

where ∂F̄ (y,y) = conv
({

∇f̄i (y,y) : F̄ (y,y) = f̄i (y,y)
})

and conv (A) is the convex hull of the set A. We also derive the
directional derivative of F :

F ′ (y;d) = max {〈ξ,d〉 : ξ ∈ ∂F (y)} , (16)
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where ∂F (y) = conv({∇fi(y) : F (y) = fi(y)}). From F̄ (y,
y) = F (y) and f̄i (y,y) = fi(y), we obtain {i|F̄ (y,y) =
f̄i(y,y)} = {i|F (y) = fi(y)}. In addition, f̄i satisfies ∇f̄i

(y,y) = ∇fi(y), ∀i, so ∂F̄ (y,y) = ∂F (y). If X is convex,
F̄ ′ (y,y;d) = F ′ (y;d), ∀d with y + d ∈ X . If X is noncon-
vex, F̄ ′ (y,y;d) = F ′ (y;d), ∀d ∈ TX (y).

Checking (A4): Obvious.
Thus, the piecewise function F̄ (x,y) in (12) satisfies

(A1)–(A4) and the limit point of (8), i.e., x(∞) , shall satisfy
either (10) or (11). With the help of [33], we can further specify
what kind of stationary point it is:

� when X is a convex set, d-stationarity is achieved;
� when X is a nonconvex set, B-stationarity is achieved.

IV. ALGORITHMIC FRAMEWORK OF MM METHOD

We are now prepared to present the MM algorithmic frame-
work for solving (1). For simplicity, we focus on the case of
radar target detection, i.e., (3). The case of multiuser communi-
cations follows the same idea despite some minor differences (to
be elaborated in the next section). The MM method is naturally
split into two stages: the minorization and the maximization.

A. Minorizing Function Construction

Before constructing the minorizing function, we first simplify
the original problem by maximizing with respect to wi , ∀i. It is
not hard to show that given s, the optimal solution for wi is (up
to a positive scaling factor)

w�
i =

(ΣI (s) + R)−1 His

sH HH
i (ΣI (s) + R)−1 His

. (17)

Then the original problem (1) is reduced to

maximize
s∈CN

min
i=1,2,··· ,I

SINRi(s)

subject to s ∈ S, (18)

where

SINRi(s) = αisH HH
i (ΣI (s) + R)−1 His. (19)

We already know from Section III-B that finding a minorizing
function for mini=1,2,··· ,I SINRi(s) can be boiled down to find-
ing one for each SINRi(s). Thus we can focus on the expression
of SINRi(s) only. In the following, we are going to find a tight
lower bound for SINRi(s) at the current iteration value s(n) .

We do a change of variable: let G be ΣI (s), and then
SINRi = SINRi (s, G) = αisH HH

i (G + R)−1 His. We can
see that SINRi is a matrix fractional function and proves to be
jointly convex in (s, G), as can be seen from [29, Example 3.4].
A toy example is shown as follows for intuitive illustration.

Example 1: Let s and G be scalars, G ≥ 0, αi = 1, Hi = 2,
R = 3. Thus, SINRi (s, G) = 2s×2s

G+3 = 4s2

G+3 . We can verify
the convexity in Figure 1.

In that sense, a simple first-order Taylor expansion with re-
spect to (s, G) at (s0 , G0) gives us a tight lower bound:

SINRi (s, G) ≥ SINRi (s0 , G0)

+ 2Re
[
bH

i (s − s0)
]
− Tr

(
aiaH

i · (G − G0)
)
, (20)

Fig. 1. Convexity of SINRi (s, G).

where
bi = αiHH

i (G0 + R)−1 His0 , (21)

ai =
√

αi (G0 + R)−1 His0 , (22)

and −aiaH
i is the gradient with respect to G. Now we undo the

change of variable G = ΣI (s) and let s0 be s(n) , the transmit-
ting code at the nth iteration:

SINRi (s, ΣI (s)) ≥ SINRi

(
s(n) , ΣI

(
s(n)

))

+ 2Re
[
bH

i

(
s − s(n)

)]
− Tr

(
aiaH

i ·
(
ΣI (s) − ΣI

(
s(n)

)))
,

(23)

where bi and ai should also be adjusted:

bi = αiHH
i

(
ΣI

(
s(n)

)
+ R

)−1
His(n) (24)

and

ai =
√

αi

(
ΣI

(
s(n)

)
+ R

)−1
His(n) . (25)

Remark 2: In order to get more intuition of the inequality
(23), we continue from Example 1 and set G = 5s2 and s(n) =
2. The inequality (23) is illustrated in Figure 2 . As we can see
in the plot, the blue curve stands for SINRi and the red curve
is a tight lower bound. We are minorizing a nonconvex function
with a concave function.

Lemma 3: A minorizing function of SINRi(s) at s = s(n) is
given as

SINRi

(
s, s(n)

)
= SINRi

(
s(n)

)

+ 2Re
[
cH

i

(
s − s(n)

)]
− λu,i

∥∥∥s − s(n)
∥∥∥2

2
, (26)

where
ci = bi − Ais(n) , (27)

Ai =
∑

j

βjMH
j aiaH

i Mj � 0, (28)

and
λu,i = λmax (Ai) > 0. (29)
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Fig. 2. Construction of a tight lower bound for a nonconvex function.

Proof: See Appendix A for the detailed proof. �
Then, the minorizing function for mini=1,2,··· ,I SINRi(s) is

min
i=1,2,··· ,I

SINRi

(
s, s(n)

)
. (30)

According to the framework of the MM method, at every itera-
tion we just need to solve the following problem:

maximize
s∈CN

min
i=1,2,··· ,I

SINRi

(
s, s(n)

)
subject to s ∈ S. (31)

B. Maximization Solution Pursuit

Since ‖s‖2 = 1 and
∥∥s(n)

∥∥
2 = 1 (from constraint set S), we

can now rewrite (31) as

maximize
s∈S

min
i=1,2,··· ,I

di + 2Re
[(

ci + λu,is(n)
)H

s
]

, (32)

where
di = SINRi

(
s(n)

)
− 2Re

[
cH

i s(n)
]
− 2λu,i . (33)

We can rewrite the discrete minimum in (32) as a continuous
minimization over a simplex:

min
i=1,2,··· ,I

di + 2Re
[(

ci + λu,is(n)
)H

s
]

(a)
= min

p∈P

I∑
i=1

pi

(
di + 2Re

[(
ci + λu,is(n)

)H

s
])

(34)

(b)
= min

p∈P
pT d + 2Re

[((
C + s(l)λT

u

)
p
)H

s
]

,

where (a) P =
{
p ∈ RI |1T p = 1, p ≥ 0

}
is a simplex and

(b) d = [d1 , d2 , · · · , dI ]
T , C = [c1 , c2 , · · · , cI ], and λu =

[λu,1 , λu,2 , · · · , λu,I ]
T . Thus, (32) has an equivalent form:

max
s∈S

min
p∈P

2Re
[((

C + s(l)λT
u

)
p
)H

s
]

+ pT d. (35)

Algorithm 1: Accelerated Solver-Based MM Algorithm.

Require: feasible s(0) , n = 0;
1: repeat
2: Compute d, C, and λu (cf. (33), (27), and (29),

respectively);
3: Solve (37) via some off-the-shelf solver and get

its optimal solution ŝ(n) ;
4: Apply acceleration technique (39) for step size β;

5: s(n+1) =
s(n ) +β(ŝ(n )−s(n ) )

‖s(n ) +β(ŝ(n )−s(n ) )‖2

;

6: n = n + 1;
7: until convergence

Lemma 4: In problem (35), a saddle point exists and it can be
obtained from solving the relaxed problem where the nonconvex
constraint set S (cf. (2)) is relaxed to

Srelaxed =
{
s ∈ CN | ‖s‖2 ≤ 1, ‖s‖∞ ≤

√
ρ

N

}
. (36)

Proof: See Appendix B for the detailed proof. �
Now we look into the relaxed problem:

maximize
s∈Sr e la x e d

min
i=1,2,··· ,I

di + 2Re
[(

ci + λu,is(l)
)H

s
]

, (37)

or equivalently

max
s∈Sr e la x e d

min
p∈P

2Re
[((

C + s(l)λT
u

)
p
)H

s
]

+ pT d. (38)

Problem (38) is derived from (35) by changing S to Srelaxed
and problem (37) is a reformulation of (38) into the discrete
minimum format. We are going to propose two approaches for
solving the relaxed problem.

The First Approach: If we focus on (37), we can solve it via
an off-the-shelf solver directly. To accelerate the convergence
speed of the MM algorithm, we adopt the following technique:2

at any iteration, say the nth iteration, we utilize the optimal s,
denoted by ŝ(n) , to provide an ascent direction, ŝ(n) − s(n) , and
do the line search as [42]:

choose α (>1);
β = 1;

stemp =
s(n ) +αβ(ŝ(n )−s(n ) )

‖s(n ) +αβ(ŝ(n )−s(n ) )‖2

;

while min
i=1,2,··· ,I

SINRi (stemp) ≥ min
i=1,2,··· ,I

SINRi

(
ŝ(n)

)
and ‖stemp‖∞ ≤

√
ρ
N

β = αβ;

stemp =
s(n ) +αβ(ŝ(n )−s(n ) )

‖s(n ) +αβ(ŝ(n )−s(n ) )‖2

;

end
(39)

The first algorithm is summarized in Algorithm 1.

2The convergence result also holds for the accelerated MM algorithm
and the proof mostly follows that of [40, Theorem 1] with slight mod-
ifications on one equation: (following the notations and problem settings
of [40]) u (x, xrj ) ≥ u (MM (xrj ) , xr j ) ≥ f (MM (xrj )) ≥ f

(
xrj +1

)
≥

f (xrj + 1 ) = u (xrj + 1 , xr j + 1 ), where MM () is the MM algorithm mapping
and xrj +1 is the next iteration point found by the acceleration technique. In
this case, subsequence stationarity convergence is maintained.
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The Second Approach: Now we focus on (38). The objective
function in (38) is bilinear in s and p; Srelaxed and P are both
nonempty compact convex sets. Following the results of [43,
Corollary 37.6.2] and [43, Lemma 36.2], a saddle point exists
and we can swap maximin to be minimax without affecting the
solutions:

min
p∈P

max
s∈Sr e la x e d

2Re
[((

C + s(n)λT
u

)
p
)H

s
]

+ pT d, (40)

which can be compactly rewritten as

minimize
p∈P

h(p), (41)

where

h(p) = max
s∈Sr e la x e d

2Re
[
(Bp)H s

]
+ pT d (42)

and B = C + s(n)λT
u . In particular,

� when ρ = 1, Srelaxed =
{
s ∈ CN | ‖s‖∞ ≤

√
1
N

}
and

h(p) = 2
√

1
N ‖Bp‖1 + pT d;

� when ρ = N , Srelaxed =
{
s ∈ CN | ‖s‖2 ≤ 1

}
and

h(p) = 2 ‖Bp‖2 + pT d.
We solve (41) via the MDA, which iteratively repeats the

following three steps until convergence:

Following [35], when P is the unit simplex, one can choose

Ψ(p) =

{∑I
i=1 pi log pi p ∈ P

+∞ otherwise
, (43)

and the update step 2) is simplified to (“exp” operation is im-
posed in an elementwise way)

p(m+1) =
p(m ) � exp

(
−γmh(m )

)
1T

(
p(m ) � exp

(
−γmh(m )

)) . (44)

The choice of {γm} also follows [35]:

γm =
O (1)√

m
, (45)

where O (1) represents some constant. The MDA algorithm is
summarized in Algorithm 2. MDA is terminated when the im-
provement between iterations is smaller than a threshold (by
default 10−5) or the number of iterations reaches a predeter-
mined maximum (by default 3000).

Now we are only left with computing h(m ) , the update
step 1). The subgradient h(m ) is given as

h(m ) = 2Re
[
BH x(m )

]
+ d, (46)

Algorithm 2: MDA Algorithm.

Require: feasible p(0) , m = 0;
1: repeat
2: Get subgradient: h(m ) ∈ ∂h

(
p(m )

)
;

3: p(m+1) =
p(m )�exp(−γm h(m ) )

1T (p(m )�exp(−γm h(m ) )) ;

4: m = m + 1;
5: until convergence

Algorithm 3: Accelerated MDA-Based MM Algorithm.

Require: feasible s(0) , n = 0;
1: repeat
2: Compute d, C, and λu (cf. (33), (27), and (29),

respectively);
3: Solve (41) via MDA (Algorithm 2) for the optimal

p, denoted as p� , and ŝ(n) ;
4: Apply acceleration technique (39) for step size β;

5: s(n+1) =
s(n ) +β(ŝ(n )−s(n ) )

‖s(n ) +β(ŝ(n )−s(n ) )‖2

;

6: n = n + 1;
7: until convergence

where x(m) = arg maxx∈Sr e la x e d Re[(Bp(m ))H x]. In particular,
� when ρ = 1, x(m ) =

√
1
N

(∣∣Bp(m )
∣∣−1 �

[
Bp(m )

])
(|·|−1 operation is imposed elementwisely);

� when ρ = N , x(m ) =
(
Bp(m )

)
/
∥∥Bp(m )

∥∥
2 ;

� when 1 < ρ < N , x(m ) follows the closed-form solution
in [2, Algorithm 2]. The phases of x(m ) are aligned with
those of Bp(m ) . Denote the number of nonzero elements
of Bp(m ) as K (≤ N), and the set containing all the corre-
sponding indexes asK. The solution of

∣∣x(m )
∣∣ is as follows:

– if Kρ/N ≤ 1, the solution is

∣∣∣x(m )
n

∣∣∣ =

⎧⎨
⎩
√

ρ
N ∀n ∈ K,

√
1−K ρ/N

N −K ∀n /∈ K;
(47)

– if Kρ/N > 1, the solution is

∣∣∣x(m )
∣∣∣ =

[
η
∣∣∣Bp(m )

∣∣∣]
√

ρ/N

0
, (48)

where η satisfies ‖
[
η|Bp(m ) |

]√ρ/N

0 ‖2 = 1 (|·| de-

notes the elementwise absolute value and [x]ba means
projecting x elementwisely onto [a, b]). Observing that

g (η) = ‖
[
η|Bp(m ) |

]√ρ/N

0 ‖2 is a strictly increasing
function on

[
0,

√
ρ/N

minn∈K
{∣∣(Bp(m )

)
n

∣∣}
]

,

there is a unique η satisfying g (η) = 1.
The second algorithm is finally summarized in Algorithm 3.
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C. Computational Complexity

Now we discuss the computational complexity of Algorithm 1
and 3. The only difference between the two algorithms is the way
they solve the subproblem (31). We analyze the computational
complexity on a per-iteration basis or, more precisely, on a
per-outer-iteration basis. For analytical convenience, we focus
on the deterministic cost only. The deterministic computational
cost mainly comes from two sources: 1) computing d, C, and
λu , and 2) solving the simple convex problem (37) or (38). We
assume M and N are of the same order (Hi ,Mj ∈ CM ×N ).

First we look into the computation of d, C, and λu (cf.
(33), (27), and (29), respectively). The most costly operation
in computing one element of d ∈ RI and one column of C ∈
CN ×I needs O

(
N 3

)
because of

(
ΣI

(
s(n)

)
+ R

)−1
, so the

overall complexity is O
(
IN 3

)
. Recall that λu,i = λmax (Ai),

where Ai � 0. The computation of λu,i can be replaced by
Tr (Ai) in practice because, first, this change does not violate
any of the inequalities in the algorithm design, and second,
computing Tr (Ai) is very efficient, only O (N). So the overall
cost is O (IN). To this moment, the first source contributes
a total amount of complexity O

(
IN 3

)
, neglecting the lower-

order terms.
Next we move on to the simple convex problem. An off-

the-shelf solver, e.g., MOSEK [44], will reformulate the prob-
lem into the epigraph form with one more slack variable.
Thus, we have I linear constraints. The �2- and �∞-norm con-
straints can be rewritten as Second-Order Cone (SOC) con-
straints: 1) �2 : ‖s‖2 ≤ 1 and 2) �∞: ∀n, |sn | ≤

√
ρ
N =⇒

‖[Re [sn ] , Im [sn ]]‖2 ≤
√

ρ
N , hence a total of N + 1 SOC con-

straints. To sum up, there are I linear constraints and N + 1 SOC
constraints, so the computational complexity of solving the sim-
ple convex problem should be upper bounded by O

(
N 3.5

)
, the

same order as SOCP. If we take a closer look at those SOC
constraints, we find that they are of very small size (only two
variables) and much simpler than those in [13]: no Hadamard
product, no matrix decomposition, and no affine transformation.
The resulting SOCP is quite sparse, and modern conic solvers
such as MOSEK can exploit the sparsity of the problem very
efficiently. That’s why the practical complexity is far below the
worst-case complexity O

(
N 3.5

)
.

When we solve the convex problem with MDA, the analysis
on its computational cost is elaborated in [35, Theorem 5.1],
which indicates the gap between the global optimal objective
and the best objective achieved in k iterations is no more than
O(1)

√
log I√

k
. The per iteration complexity of MDA is elaborated

as follows. MDA consists of two main steps in each iteration:
1) computation of subgradient h(m ) : this step involves matrix
multiplications Bp(m ) and BH x(m ) , of complexity O (NI)
(B ∈ CN ×I , p(m ) ∈ RI , and x(m ) ∈ CN ); 2) update of p(m )

to p(m+1) : this step involves elementwise exponent, Hadamard
product, and summation, of complexity O (I). Therefore, the
per iteration complexity of MDA is O (NI), neglecting lower
order terms.

V. APPLICATIONS AND EXAMPLES

In this section, we specify the expressions for the chan-
nel matrix Hi , the interference covariance matrix ΣI (s) or

ΣI ({sj}j �=i) etc. in various radar and communications appli-
cations. The numerical simulations in the next section will be
based on these applications.

A. Radar Application

In a real-life radar system, the target information may not
be precisely known, but is believed to lie in a small interval
centering some nominal value. In the following, we look into
two examples, one in Doppler robust design and the other in a
colocated MIMO radar system.

1) Doppler Robust Design - Monostatic Radar System Trans-
mitting Slow-Time Codes: Following the setting in [13], we set
the transmitting sequence length to be N and M = N (the fil-
ter has the same length as the sequence); the channel matrix is
given as

Hi = Diag
(
p
(
νi

dT

))
, (49)

where p (ν) =
[
1, ej2πν, · · ·, ej2π (N −1)ν

]T
is the Doppler

steering vector and νi
dT

is the ith sampled normalized target
Doppler frequency, falling within [νdT, lower , νdT, upper]. The in-
terference covariance matrix ΣI (s) is specifically expressed as

ΣI (s) =
Nc −1∑
nc =0

L−1∑
l=0

σ2
(nc ,l)Jnc

(
Φ

ν̄d (n c , l )
ε(n c , l ) � ssH

)
JH

nc
, (50)

where Nc (< N) is the number of range rings, L is the number
of azimuth sectors, the range-azimuth bin is denoted as (nc, l),
the bin of interest is (0, 0) (where we receive signals), σ2

(nc ,l)
is the mean interfering power associated with the clutter patch
located at the range-azimuth bin (nc, l) whose (normalized)
Doppler shift νd(n c , l ) is uniformly distributed over the interval(
ν̄d(n c , l ) − ε(nc ,l)/2, ν̄d(n c , l ) + ε(nc ,l)/2

)
, Jnc

is a Toeplitz ma-
trix with the nc th subdiagonal entries being 1 and 0 elsewhere,

and Φ
ν̄d (n c , l )
ε(n c , l ) is the covariance matrix of p

(
νd(n c , l )

)
, given as

Φ
ν̄d (n c , l )
ε(n c , l ) (m,n) = exp

(
j2πν̄d(n c , l ) (m − n)

)
× sinc

(
ε(nc ,l) (m − n)

)
, (51)

sinc (x) = sin (πx) / (πx). In this case, the expression of Ai is
specified as

Ai =
Nc −1∑
r=0

L−1∑
k=0

Ai,(r,k) �
(
Φ

ν̄d ( r , k )
ε( r , k )

)T

, (52)

where

Ai,(nc ,l) = −σ2
(nc ,l)J

H
nc

aiaH
i Jnc

(53)

(ai cf. (25)).
2) Colocated MIMO Radar System: Following the settings

in [16], we set M = NsNr and N = NsNt , where Ns is the
number of samples, Nt is the number of transmitting antennas,
and Nr is the number of receiving antennas. In this case M
and N may be unequal. The number of interference sources is
denoted as J ; θ0 is the angle of the target and θj is the angle of
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the jth interference source (j = 1, 2, · · · , J). We also define

F(θ) = INs
⊗
[
fr (θ) fT

t (θ)
]
, (54)

fr (θ) =
1√
Nr

[
1, e−jπ sin θ , · · · , e−jπ (Nr −1) sin θ

]T

, (55)

ft(θ) =
1√
Nt

[
1, e−jπ sin θ , · · · , e−jπ (Nt −1) sin θ

]T

, (56)

and the following short notations are adopted: Fj = F (θj ), ∀j
and F0,i = F (θ0,i), where θ0,i is the ith sampled target location
angle, falling within [θ0,lower , θ0,upper]. Thus, we specify the
channel matrix and the interference covariance matrix:

Hi = F0,i (57)

and

ΣI (s) =
J∑

j=1

βjFjssH FH
j , (58)

where βj is some positive scaling factor. In this case, the ex-
pression of Ai follows (28) by replacing Mj with Fj .

B. Synchronous DS-CDMA Application

Following [21], we consider a reverse-link synchronous DS-
CDMA system with I users. The transmitting sequence length is
N and M = N (the filter has the same length as the sequence).
The channel matrix is given as

Hi =
L∑

l=1

hi,lJl−1 , (59)

hi,l is the lth fading gains for user i, Jl is a Toeplitz matrix with
the lth subdiagonal entries being 1 and 0 elsewhere, J0 = I,

and L is the number of fading paths; ΣI

(
{sj}j �=i

)
(cf. (6)) is

the covariance matrix measuring the interference to the ith user
from the other I − 1 users.

We can still use the aforementioned MM algorithms, but some
adjustments have to be made. To avoid unnecessary repetition,
we give directly the following lemma for SINRi .

Lemma 5: In the multiuser communications example, a mi-
norizing function of SINRi ({si}) at {si = s(n)

i } is given as

SINRi

(
{si} ,

{
s(n)
i

})

� SINRi

({
s(n)
i

})
+ 2Re

[
cH

i,i

(
si − s(l)

i

)]

+
I∑

j=1, j �=i

(
2Re

[
cH

i,j

(
sj − s(l)

j

)]
− λu,i,j

∥∥∥sj − s(l)
j

∥∥∥2

2

)
,

(60)

where ∀i,

ci,i = αiHH
i

(
ΣI

({
s(n)
j

}
j �=i

)
+ σ2

nI
)−1

His
(n)
i , (61)

∀j �= i,

ci,j = −AH
i,js

(n)
j , (62)

Ai,j = αjHH
j aiaH

i Hj � 0, (63)

λu,i,j = λmax (Ai,j ) = αjaH
i HjHH

j ai > 0, (64)

and

ai =
√

αi

(
ΣI

({
s(n)
j

}
j �=i

)
+ σ2

nI
)−1

His
(n)
i . (65)

Proof: The proof follows that of Lemma 3 and is thus
omitted. �

The relaxation argument for the constraint set S stills holds,
which follows that of Lemma 4, and the relaxed problem reads

maximize
si ∈Sr e la x e d , ∀i

min
i=1,2,··· ,I

di + 2Re
[
cH

i,isi

]

+
I∑

j=1, j �=i

2Re
[(

ci,j + λu,i,js
(l)
j

)H

sj

]
, (66)

where di = fi({s(l)
i }) − 2Re[cH

i,is
(l)
i ] −

∑I
j=1, j �=i(2Re[cH

i,j

s(l)
j ] + 2λu,i,j ), or equivalently, by introducing an auxiliary

simplex,

max
si ∈Sr e la x e d , ∀i

min
p∈P

2
I∑

i=1

Re
[((

Ci + s(l)
i λT

u,i

)
p
)H

si

]
+ pT d,

(67)
where P =

{
p ∈ RI |1T p = 1, p ≥ 0

}
, d = [d1 , d2 , · · · ,

dI ]T , ∀i, Ci = [c1,i , c2,i , · · · , cI ,i ], λu,i = [λu,1,i , λu,2,i , · · · ,
λu,I ,i ]T , and λu,i,i = 0. Then we can use an off-the-shelf solver
(following the first approach) or MDA (following the second
approach) to solve the maximization problem.

VI. NUMERICAL SIMULATIONS

We present numerical results with respect to two applications,
the Doppler robust design and the synchronous DS-CDMA. To
avoid redundancy, we omit the colocated MIMO radar example,
which is merely a change of constant parameters compared with
the Doppler robust design example. All experiments were per-
formed on a PC with a 3.20 GHz i5-4570 CPU and 8 GB RAM.
The off-the-shelf solver is specified as 1) MOSEK [44] built in
the CVX toolbox [45], shortly denoted as CVX, and/or 2) the
Fusion Matlab API in MOSEK, shortly denoted as MOSEK.
We include the in-built Matlab nonconvex optimization solver,
namely, Fmincon, as a potential benchmark. The proposed algo-
rithms are terminated when the improvement between iterations
is smaller than a threshold (by default 10−6) or the number of
iterations reaches a predetermined maximum (by default 500).

A. Doppler Robust Design

Experiment Settings: The transmitting sequence length is
N = 20 by default. We assume Nc = 2 interfering range
rings and L = 100 azimuth sectors. A homogeneous ground
clutter is adopted: ∀ (nc, l), a uniformly distributed clutter is
assumed with σ2

(nc ,l) = σ2 = 1000 and the Doppler shift of
the clutter scatterer νd(n c , l ) is uniformly distributed over Ωc =(
ν̄d(n c , l ) − ε(nc ,l)/2, ν̄d(n c , l ) + ε(nc ,l)/2

)
= (−0.065, 0.065).

As for the target, αi = α = 10 dB, ∀i. The background
noise covariance matrix R is I (white noise) by default.
The filter bank is designed by assuming νi

dT
/∈ Ωc , ∀i, i.e.,

the uncertainty interval of the target Doppler frequency
ΩT = [νdT , lower , νdT , upper] does not overlap with Ωc . We set
ΩT = [0.34, 0.5]. The number of filters is I = 10 by default.
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Fig. 3. Convergence plot: worst-case SINR versus iteration, N = 20. The
lower plot is zoomed in from the upper plot within the iteration interval [0, 90].

For the PAR constraint threshold, we set ρ = 1, N/4, and N
for performance comparison.

1) Monotonic Property of the Proposed Algorithms: We im-
plement both Solver-based MM and MDA-based MM; both
algorithms initiate from a known sequence: the generalized
Barker code (with unit energy). In Figures 3 and 4, we show the
monotonic property of the proposed algorithms. The worst-
case SINR (i.e., the objective function value) monotonically
increases with the number of iterations as well as the time, un-
til it becomes saturated at a certain level. When we increase
the parameter ρ, the optimized worst-case SINR also increases
because the constraint set becomes more and more relaxed. We
may notice that the two algorithms need different numbers of
iterations and time to converge, and they may not converge to ex-
actly the same solution. In the current settings, when ρ = N/4
and N , MDA-based MM reaches a slightly higher optimized
value, while Solver-based MM converges slightly faster, espe-
cially in the case of MOSEK; when ρ = 1, Solver-based MM
using MOSEK directly reaches the highest optimized value and
converges the fastest.

It is also nice to see how {SINRi} evolve for various i through
the iterations. We set ρ = N . In Figure 5, the evolution process is
shown. We can see that any single SINRi has a general trend of

Fig. 4. Convergence plot: worst-case SINR versus CPU time, N = 20.

Fig. 5. Convergence plot: {SINRi} versus iteration for various i, I = 10.
Please note that only i = 2, 4, 6, 8 are displayed.

increase but the evolution process is not monotonic and displays
oscillation instead. The worst-case SINR is the minimum of
{SINRi}, and its evolution enjoys monotonicity.

2) Robust Versus Non-robust Design: We adopt the MDA-
based MM as the proposed method, which initiates from the
generalized Barker code (with unit energy). In the non-robust
design, only the nominal target Doppler frequency is consid-
ered. Here we set the nominal value to be the center of the
uncertainty interval, i.e., ν̂dT

= (0.34 + 0.5) /2 = 0.42. Some
previous works, like [38], have mentioned this non-robust de-
sign. We find that our proposed algorithm can serve the same
purpose by setting ΩT = {0.42} and I = 1, which turns out
to be more efficient since [38] involves SDP in the algorith-
mic design. The radar detection performance is measured by
SINR (ν), which is defined as

SINR (ν) = max
i=1,2,··· ,I

αi

∣∣wH
i H (ν) s

∣∣2
wH

i ΣI (s)wi + wH
i Rwi

, (68)
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Fig. 6. Robust designs versus non-robust designs under different PAR levels and noise.

with

H (ν) = Diag
([

1, ej2πν , · · · , ej2π (N −1)ν
]T
)

, (69)

and all the other parameters follow Section V-A1. The variable
s is derived from optimization; once s is known, the optimal
{wi} is also known (cf. (17)). The reason for using SINR (ν)
is related to the detection mechanism of the filter bank: once
the received signal is passed through the filter bank, we pick
the largest SINR to compare with a predetermined threshold
for detection; when the target Doppler is actually ν (still falling
within the uncertainty interval), the largest SINR for threshold
comparison is thus expressed as SINR (ν) and in the perfor-
mance evaluation, we want SINR (ν) to be as large as possible.
In Figure 6, we carry out a comparison between robust and
non-robust designs under different PAR levels and noise. Under
both white noise and colored noise, the robust design has a much
smaller scale of fluctuation than its non-robust counterpart. Al-
though the non-robust design achieves slightly higher SINR in
a small neighborhood around the nominal value, its worst-case
performance across the interval can be arbitrarily bad. Moreover,
when imposing different levels of the PAR constraint, we see no
significant change of SINR (ν) in the robust design, while the
opposite is the case with the non-robust design.

3) Comparison with Existing Methods: Several existing ro-
bust designs have been proposed in the open literature. We com-
pare the proposed two algorithms with the existing DESIDE [10]
and the SOCP-based algorithm in [13]. In order to gain more
insight, we include the in-built Matlab nonconvex optimization
solver, namely, Fmincon, as an additional benchmark if it is ap-
plicable. To enable fair comparison, only the energy constraint

Fig. 7. SINR (ν) versus Doppler shift ν for four methods: MM: MDA, MM:
Solver (proposed methods) and SOCP, DESIDE (benchmark methods).

is enforced, i.e., ρ = N , and all four methods initiate from the
same code s(0) .

First, we set s(0) to be the generalized Barker code (with unit
energy). Since the Fmincon solver fails to provide a feasible
solution when initializing from this known sequence, Fmincon
is not applicable here and its performance is not displayed.
In Figure 7, we plot SINR (ν) in the uncertainty interval for
the four methods. Our proposed methods achieve a worst-case
SINR (the smallest value across the uncertainty interval, i.e.,
minν∈ΩT

SINR (ν)) of around 9.8 dB, while both benchmark
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Fig. 8. Objective function value versus CPU time for four methods: MM:
MDA, MM: Solver (proposed methods) and SOCP, DESIDE (benchmark
methods).

algorithms achieve around 8.2 dB. In Figure 8, we plot the ob-
jective function value versus CPU time for the four methods.
The four methods have different objective functions, so we focus
on the convergence speed. Our proposed algorithms converge
within 15 seconds, while SOCP needs more than 120 seconds
and DESIDE needs about 48 seconds. So in this particular in-
stance, the proposed algorithms are superior in terms of both
worst-case SINR and convergence speed.

Now we set s(0) to be a random code with constant modulus
and unit energy, and generate 100 starting points. All the re-
ported performances are averaged over the 100 instances. When
the initialization is random, the performance of Fmincon gets
better, and we should discuss its performance. The worst-case
SINR is evaluated as minν∈ΩT

SINR (ν). We vary the sequence
length N among {20, 30, 40} and the number of filters I among
{N − 15, N − 10} for a particular N . We present the results
in Table I. In terms of worst-case SINR, Solver-based MM (ei-
ther CVX or MOSEK) achieves the best performance; it beats
MDA-based MM, DESIDE, SOCP, and Fmincon by around
0.10 dB, 1.76 dB, 0.82 dB, and 2.44 dB, respectively. Solver-
based MM slightly beats MDA-based MM due to the relatively
inexact solution to the subproblem caused by MDA-based MM.
The achieved worst-case SINR of Fmincon is the lowest among
all the methods since it is merely a general nonconvex opti-
mization solver and cannot solve this specific problem quite
well. DESIDE achieves the second lowest worst-case SINR be-
cause of the single receiving filter design. In terms of CPU time,
with Fmincon excluded, the proposed MM algorithms beat the
rest of the benchmarks: the fastest two, MDA-based MM and
Solver-based MM (MOSEK), are about one order of magnitude
faster than the slowest one, SOCP. Moreover, the performance
of MDA-based MM and Solver-based MM (MOSEK) become
more impressive for large N . When N = 40, MDA-based MM
and Solver-based MM (MOSEK) are twice, three times, and
ten times as fast as Solver-based MM (CVX), DESIDE, and
SOCP, respectively. The underlying reason for the fast conver-
gence speed is that MDA-based MM and Solver-based MM
(MOSEK) do not use the CVX toolbox. From the perspective
of problem size, we also see that for a fixed N , incorporat-

ing more filters (i.e., increasing I) can improve the worst-case
SINR. This makes sense because we provide guarantee on more
Doppler shift values in the uncertainty interval.

B. Multiuser Communications: Synchronous DS-CDMA

Experiment Settings: We consider a reverse-link synchronous
DS-CDMA system with I = 10 users. The transmitting se-
quence length is N = 20 by default. We set αi = α = 1, ∀i.
The background noise covariance matrix R is σ2I (white noise),
where σ2 = 5 × 10−3 . The channel matrix Hi is

Hi = hi,1I + hi,2J1 , ∀i, (70)

which means we consider two paths with different gains, with
hi,1 ∼ CN (0, 0.9) and hi,2 ∼ CN (0, 0.1) being independent
complex Gaussian random variables, and J1 is a Toeplitz ma-
trix with the first subdiagonal entries being 1 and 0 elsewhere.
As for the constraint set, we set ρ = 1, 1 + N/200, N for per-
formance comparison. Here the off-the-shelf is only specified
as CVX because we find the Fusion Matlab API in MOSEK
fails to solve the convex maximization problem well in this
particular application. We observe violation of feasibility and
suboptimality compared with CVX.

1) Monotonic Property of the Proposed Algorithms: We im-
plement our proposed algorithms, Solver-based MM and MDA-
based MM. Both algorithms initiate from the same random se-
quences {s(0)

i }I
i=1 . In Figure 9, we present the monotonic prop-

erty of the proposed algorithms. The worst-case SINR (i.e., the
objective function value) is monotonically increasing as time
passes. When we decrease the parameter ρ from N to 1, the
optimized worst-case SINR decreases because the constraint
set becomes more and more tightened. Here the two algorithms
reach almost the same optimized value, but MDA-based MM
converges faster than Solver-based MM. In terms of CPU time,
MDA-based MM is 0.5 − 1.5 orders of magnitude faster.

2) Performance Evaluation of the Proposed Algorithms:
Now we generate 20 Gaussian channel realizations and each
start with 10 random starting sequences {s(0)

i }I
i=1 . For SINR

measurement, we run the algorithms with 10 initializations for
every particular channel realization and get the best result. Then
we compute the average of the best performances over 20 chan-
nel realizations. For CPU time, the performance is averaged over
the 20 × 10 = 200 instances. The worst-case SINR is evaluated
as mini=1,2,··· ,I SINRi ({si}). We vary the sequence length N
among {20, 50, 80} and the number of users I among {5, 10}.
We set ρ = 1, that is, we design constant modulus sequences
{si}. The early works [46]–[48] assumed the channel matrix
to be I, and another work [49] assumed the channel matrix to
be diagonal. In both cases, there is no actual channel that con-
volves with the sequences. In [20], the authors studied a general
form of channel matrix and various optimization metrics, but
did not consider the PAR constraint. The Matlab in-built solver
Fmincon provides infeasible solutions almost surely, so Fmin-
con is inapplicable here. Hence, we do not have benchmarks
for our maximin design problem. We present the results in
Table II. In terms of worst-case SINR, Solver-based MM is alw-
ays slightly better than MDA-based MM, which may result from
the inexact solution of the subproblem caused by MDA-based
MM. In terms of CPU time, MDA-based MM is much better;
it is 0.5 − 1 orders of magnitude faster than Solver-based MM.
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TABLE I
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHMS (THE FIRST THREE FROM THE LEFT) AND BENCHMARKS

(THE LATTER THREE FROM THE LEFT) WITH DIFFERENT VALUES OF N AND I

Fig. 9. Convergence plot: worst-case SINR versus CPU time; N = 20.

TABLE II
PERFORMANCE EVALUATION OF THE MM ALGORITHMS WITH DIFFERENT

VALUES OF N AND I

From the perspective of problem size, we can see an increase in
CPU time with the growth of N and I . Also, we observe that
the worst-case SINR of I = 5 is always a few dBs (seemingly
1.5 dB−3 dB from the table) higher than that of I = 10. This is

because the inclusion of more users brings more interference and
thus reduces the chance of achieving a higher worst-case SINR.

VII. CONCLUSION

In this paper, we have proposed two algorithms based on the
MM method to efficiently conduct the joint design of transmit-
ting sequence(s) and receiving filters via maximin optimization.
We have given an introduction of the vanilla MM method and
elaborated its maximin extension, where the objective takes a
pointwise minimum format. The algorithmic framework of the
MM method for solving the maximin problem has been pro-
vided, and we have looked into some specific applications and
examples as case studies. Numerical simulations have been pre-
sented based on these cases. The simulation results have shown
that the proposed MM algorithms, both Solver-based and MDA-
based, achieve higher objective values as well as a faster con-
vergence speed compared with the benchmarks.

APPENDIX A
PROOF OF LEMMA 3

Proof: Referring to the expression of ΣI (s) from (4), one
term in (23) can be further specified:

− Tr
(
aiaH

i ·
(
ΣI (s) − ΣI

(
s(n)

)))

= − Tr

⎛
⎝aiaH

i ·
∑

j

βjMj

(
ssH − s(n)s(n)H

)
MH

j

⎞
⎠

= − sH Ais +
(
s(n)

)H

Ais(n) , (71)

where Ai follows (28). Thus,

SINRi(s) ≥ SINRi

(
s(n)

)
+ 2Re

[
bH

i

(
s − s(n)

)]

− sH Ais +
(
s(n)

)H

Ais(n) . (72)
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We further minorize SINRi(s) by applying sH Ais ≤ (s(n))H

Ais(n) + 2Re
[
s(n)H Ai

(
s − s(n)

)]
+ λmax(Ai)

∥∥s − s(n)
∥∥2

2 :

SINRi(s) ≥ SINRi

(
s(n)

)
+ 2Re

[
cH

i

(
s − s(n)

)]

− λu,i

∥∥∥s − s(n)
∥∥∥2

2
= SINRi

(
s, s(n)

)
, (73)

where ci and λu,i are defined in (27) and (29), respectively. �

APPENDIX B
PROOF OF LEMMA 4

Proof: If we relaxS to beSrelaxed , then the problem becomes
(same as (38))

max
s∈Sr e la x e d

min
p∈P

2Re
[((

C + s(l)λT
u

)
p
)H

s
]

+ pT d. (74)

We observe that the objective function is concave-convex in s
and p, and Srelaxed and P are both nonempty compact convex
sets. Following the results of [43, Corollary 37.6.2] and [43,
Lemma 36.2], a saddle point exists for the relaxed problem.

Now we claim the saddle point of the relaxed problem, de-
noted by (s� , p�), must satisfy s� ∈ S, or equivalently ‖s�‖2 =
1. The argument is given by contradiction. Suppose ‖s�‖2 < 1.
We can always find some element of s� , say s�

j , such that∣∣s�
j

∣∣ <
√

ρ
N . If not, then ‖s�‖2 ≥

√(√
ρ
N

)2 × N =
√

ρ ≥ 1,
causing contradiction. Then we reset the phase of s�

j to be

aligned with the jth element of
(
C + s(l)λT

u

)
p� and increase

its modulus by a small amount without violating feasibility. The
objective can be pushed up from the side of s, causing contra-
diction with the saddle point nature of s� . The jth element of(
C + s(l)λT

u

)
p� has been assumed to be nonzero for simplic-

ity. In case it becomes zero, the optimal solution of sj may be
non-unique (and thus the saddle point is non-unique), but we
can always find one on the boundary by properly increasing the
modulus of the currently obtained s�

j if necessary.
Since the saddle point (or at least one saddle point) of the

relaxed problem naturally satisfies s� ∈ S and p� ∈ P , there
must exist a saddle point for problem (35), and the saddle point
can be obtained from solving the relaxed problem. �
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