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Abstract—Downlink channel estimation is an important task
in any wireless communication system, and 5G massive multiple-
input multiple-output in particular—because the receiver must
estimate and feed back to the transmitter a high-dimensional
multiple-input single-output (MISO) vector channel for each re-
ceiving element. This is a serious burden in terms of mobile com-
putation and power, as well as uplink communication overhead.
The starting point of this paper is that all existing and emerg-
ing wireless communication systems provide basic Received Signal
Strength (RSS) / Channel Quality Indicator (CQI) feedback to
compensate for temporal channel variations. Is it possible to esti-
mate and track the vector MISO channel from RSS/CQI feedback
alone? This paper shows that the answer is affirmative, if one em-
ploys time-varying beamforming and phase modulation together
with phase retrieval ideas from optics and crystallography. Three
efficient algorithms that cover different model assumptions are
proposed to track the vector MISO channel on the transmitter’s
side using only RSS/CQI feedback. Numerical simulation results
under various settings validate the efficacy of the proposed algo-
rithms in tracking a slowly time-varying vector MISO channel.
Interestingly, this is the first application of phase retrieval where
assuming independent and identically distributed Gaussian mea-
surement vectors can be practically justified.
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I. INTRODUCTION

CHANNEL estimation is a key task for any digital commu-
nication system. Channel knowledge is always needed for

decoding at the receiver; higher rates and quality of service can
be provided when the channel state can be made available to the
transmitter, because then the transmission can be matched to
the propagation channel, e.g., via appropriate beamforming or
precoding. Acquiring accurate channel state information (CSI)
is particularly important for massive multiple-input multiple-
output (MIMO) systems that use a very large number of base
station transmit antennas to enable highly selective spatial mul-
tiplexing [1], [2]. In the past several years, much effort has
been invested into the area of channel estimation for massive
MIMO—a variety of approaches such as those in [3]–[12] have
been developed.

In frequency division duplex (FDD) systems, information
about the channel state can only be acquired at the receiver,
but should somehow be communicated to the transmitter in or-
der to enable transmit beamforming and spatial multiplexing.
Channel estimation and feedback is much more challenging
in FDD massive MIMO systems, because the receiver must
estimate and feed back to the transmitter a high-dimensional
multiple-input single-output (MISO) vector channel for each
receiving element. This creates a serious burden in terms of
mobile computation and power, as well as uplink communica-
tion and signaling overhead [13]. Limited feedback schemes
based on vector quantization (VQ) [7]–[9] use pilots to estimate
the channel state, then quantize it using a previously designed
vector codebook that is shared between the transmitter and the
receiver, and feed back the quantization index to the transmit-
ter. VQ-based limited feedback schemes [7]–[9] work well for
conventional MIMO systems, but require codebook re-design
when the channel characteristics change, and are not appealing
for massive MIMO systems because their feedback overhead
must scale linearly with the number of transmit antennas for a
given performance level.

Another line of work uses “closed-loop” training to select a
training sequence so that the downlink training overhead can be
reudced [6]. This approach was later combined with a sparse
channel model to further reduce feedback (uplink) overhead in
[4]. Specifically, the downlink massive MIMO channel is mod-
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eled using direction-of-departure (DOD), direction-of-arrival
(DOA), and path loss for a few dominant paths [3], [4], [12].
This allows one to build up a dictionary that contains many pos-
sible combinations of DODs and DOAs in space. Then, sparse
optimization approaches are employed to identify the “active”
combinations, thereby achieving channel acquisition. The up-
shot is that the feedback can be quite ecomnonical since the
receivers only need to send back the column indices of the con-
structed dictionary, which correspond to the active DODs and
DOAs. The downside is that this approach only works for this
specific channel model.

A very different channel estimation and tracking approach
that shifts the burden of acquiring channel state information to
the transmitter’s side has been proposed in [10]. The idea of [10]
is to exploit temporal channel correlation using locked tracking
loops at both ends of the link. The receiver coarsely quantizes
the innovation sequence down to one bit per real/imaginary part
and feeds this pair of bits back to the transmitter. Both ends use
a sign-of-innovation Kalman filter, maximum a posteriori prob-
ability, or minimum mean square error tracking loop to estimate
the analog baseband channel from such ‘frugal’ feedback. The
approach works very well, but requires knowledge of the tem-
poral channel decorrelation rate / coherence time, as well as the
spatial channel covariance matrix at the transmitter; a tracking
loop at the receiver; and synchronization between the two ends.
The scheme in [10] also uses (beamformed) pilots.

A method to estimate and track the spatial channel correlation
matrix using very low-rate (again, 1-bit) feedback from the re-
ceiver has been recently proposed in [11]. The idea behind [11]
is to exploit binary above/below target signal-to-interference-
plus-noise ratio (SINR) feedback together with ‘exploratory’
beamforming to acquire increasingly accurate information about
the downlink channel vector from the feedback bitstream. This
requires adaptive design of the beamforming vector sequence
and the target SINR thresholds used by the receiver, in order to
enable channel correlation matrix identification, which is sub-
sequently used for so-called long-term transmit beamforming.

The starting point of this paper is that all existing and emerg-
ing wireless communication systems provide basic Received
Signal Strength (RSS) / Channel Quality Indicator (CQI) feed-
back, to compensate for temporal channel variations. RSS/CQI
service is provided independently from and parallel to any chan-
nel estimation, for power control, rate adaptation, routing, and
other network functions. But is it possible to estimate the vec-
tor MISO channel from RSS/CQI feedback alone? If the an-
swer is affirmative, the upshot is very clear: first, since most
wireless communication systems are already equipped with
RSS/CQI feedback hardware and protocols, no drastic system-
level modifications are needed to implement the algorithms;
second, RSS/CQI feedback costs very little overhead, and thus
is ideal for estimating and tracking downlink channels in mas-
sive MIMO systems.

Contributions: In this work, a novel channel estimation and
tracking framework based on RSS/CQI feedback is proposed.
The problem formulation leverages time-varying beamforming,
phase modulation, and phase retrieval [14], [15]—a classical
tool in optics and crystallography, which has recently drawn
renewed interest in machine learning and statistical signal pro-

cessing. Three effective algorithms are proposed to handle the
problem of interest. The detailed contributions are as follows:
• Novel Problem Formulation: Our first major contribution

lies in discovering the intriguing connection between phase
retrieval and RSS/CQI feedback-based channel estimation. As
mentioned, RSS/CQI-based channel estimation, if possible,
entails low-overhead operations and convenient implementa-
tion. However, it is a priori unclear if this idea is fundamentally
feasible. Our work shows that estimating and even tracking
channels from RSS/CQI feedback alone is viable—using
(pseudo-)random transmit beamforming vectors and building
upon identifiability of random measurements-based phase re-
trieval [15]. Interestingly, using randomized (as opposed to
Fourier) measurements is considered impractical in optics and
crystallography, which are the major applications of phase re-
trieval. The situation is very different in our context, because
the choice of transmit beamforming vectors is entirely up to the
communication system designer.
• Lightweight Tracking Algorithm: Based on the connection

between phase retrieval and static channel estimation, we take
a step further to consider channel tracking. A forgetting factor-
based formulation is proposed to take previous channel informa-
tion into consideration while discounting its importance accord-
ing to temporal distance to the current time slot. Consequently, a
tracking algorithm reminiscent of recursive least squares (RLS)
filtering [16] is obtained. To update the channel, the proposed
algorithm mainly consists of a simple rank-one update of the
pseudoinverse of a matrix and several matrix-vector multiplica-
tions, and thus is very lightweight. Convergence properties of
the algorithm are also studied.
• Model-Based High-Performance Tracking Algorithm: We

also consider the case where the channel progression model
is known. Specifically, under a first-order auto-regressive (AR)
model [17] that is widely employed for modeling the temporal
correlation of wireless channels in consecutive time slots, a
generalized maximum likelihood estimator (GMLE) is proposed
to estimate and track the downlink channel. Two algorithms are
proposed to handle the formulated GMLE, which exhibit even
better performance compared to the RLS-based algorithm since
they exploit prior information of the channel progression model.

The rest of this paper is organized as follows. Section II
briefly introduces the phase retrieval problem and algorithms
for handling it. The channel estimation and tracking problem is
introduced in Section III. The first proposed algorithm, namely
recursive phase retrieval, is presented in Section IV. Two more
algorithms are derived in Section V based on an AR channel
progression model. Simulations are provided in Section VI, and
conclusions are drawn in Section VII.

Notation: Boldface upper case letters (e.g., X,A) denote
matrices, boldface lower case letters (e.g., x,a) denote column
vectors, and italics (e.g., x, a) denote scalars. R and C denote
the field of real-valued numbers and the field of complex-valued
numbers, respectively. For any complex-valued number x, |x|
denotes its magnitude, arg(x) denotes its phase, Re{x} denotes
its real part, and Im{x} denotes its imaginary part. The su-
perscripts (·)T , (·)∗, and (·)H denote transpose, conjugate, and
conjugate transpose, respectively. X−1 (X†) denotes the inverse
(pseudoinverse) of a matrix X. Diag(x) is a diagonal matrix
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with the vectorx on its main diagonal. For a vectorx ∈ CN , [x]n
(or xn ) denotes its nth element, and ‖x‖2 :=

√∑N
n=1 |xn |2

denotes its Euclidean norm. For a matrix X ∈ CM×N , [X]mn

(or xmn ) denotes its element at the mth row and the nth col-

umn, and ‖X‖F :=
√∑M

m=1
∑N

n=1 |xmn |2 denotes its Frobe-
nius norm. As usual, 0 is the vector with all elements 0, IN is
the N ×N identity matrix, and λmax(X) denotes the largest
eigenvalue of a Hermitian matrix X.

II. PRELIMINARIES ON PHASE RETRIEVAL

In this section, we briefly review the core ideas of phase
retrieval [14], [15], which will help understand the channel es-
timation method to be proposed. Phase retrieval is the problem
of retrieving a complex-valued signal xo ∈ CN from the mag-
nitude of several (noisy) linear measurements:

ym =
∣∣aH

mxo

∣∣ + nm ∈ R, ∀m = 1, . . . ,M, (1)

where the measuring vectors {am ∈ CN }Mm=1 are given and
{nm ∈ R}Mm=1 denotes additive noise. The phase retrieval tech-
niques aim at retrieving the unknown signal xo up to a global
phase ambiguity—since xoe

jφ for any φ will yield the same
magnitude information {ym}Mm=1 , and thus the global phase
ambiguity cannot be removed.

There are many ways of handling the problem. For example,
one popular approach proposed by Gerchberg and Saxton [18]
finds an estimate of the unknown signal as the solution of the
following optimization problem:

minimize
x∈CN

M∑
m=1

(
ym −

∣∣aH
mx

∣∣)2
. (2)

This problem is not convex. Introducing new variables {φm}Mm=1
to represent the missing phase information, (2) is equivalent to

minimize
x∈CN ,{φm }Mm = 1

M∑
m=1

∣∣ym ejφm − aH
mx

∣∣2 . (3)

Even though (3) is not jointly convex in x and {φm}Mm=1 , it is
quadratic and convex in x when the phase completion variables
{φm}Mm=1 are fixed. Therefore, the reformulated problem can
be handled via alternating optimization. The solution to the x-
subproblem given {φm}Mm=1 is

x̂ =

(
M∑

m=1

amaH
m

)−1

·
M∑

m=1

am ym ejφm ; (4)

while the solution to the {φm}Mm=1-subproblem given x is

φ̂m = arg
(
aH

mx
)− π · 1ym <0 , ∀m = 1, . . . ,M, (5)

where 1ym <0 is equal to 1 if ym < 0 and 0 otherwise—note
that the magnitude information ym can be negative due to the
additive noise nm according to (1). Together these yield the
following simple update of the complex-valued variable x in
Problem (2):

x(t+1) =

(
M∑

m=1

amaH
m

)−1

·
M∑

m=1

am |ym | ej arg(aH
m x( t ) ), (6)

where x(t) denotes the tth iteration of x. The simple algorithm
presented in (6) is often referred to as the Gerchberg-Saxton
algorithm. There are also variants of this algorithm, e.g., the
AltMinPhase algorithm [19].

Phase retrieval is a classical problem in optics and physics,
which has been studied since the 1960s [20]. There, xo repre-
sents an object that an optical device aims to measure, and the
measurement vectors {am}Mm=1 form an oversampled Fourier
transform matrix A := [a1 , . . . ,aM ]H , due to the nature of the
optical measurement apparatus. Many popular algorithms such
as Fienup (or HIO) [21], Gerchberg-Saxton [18], and Hologra-
phy [22], were proposed during the 1960s and the 1970s, and
have served as workhorses for solving this problem in prac-
tice ever since. These algorithms have been quite successful—
although properties of the algorithms (e.g., convergence and
optimality) are not fully understood, especially when A rep-
resents a Fourier transform matrix. In recent years, there has
been a surge of renewed interest in phase retrieval, as this
problem can be nicely related to semidefinite relaxation and
matrix completion, if the elements of A are i.i.d. and fol-
low the zero-mean unit-variance Gaussian distribution. Using
random measurements, many algorithms that guarantee suc-
cessful phase retrieval with high probability have been pro-
posed [19], [23]–[27]. Interestingly, there has been an (on-
going) debate about how practical the random measurements-
based phase retrieval algorithms are—since most optical devices
naturally measure magnitude of the Fourier transform of the
objects [15].

III. PROBLEM STATEMENT AND PROPOSED APPROACH

Let us now turn our attention to the downlink channel
estimation problem. Consider a multiple-input single-output
(MISO) wireless communication system where the transmitter
is equipped with N transmit antennas and the receiver has one
receive antenna. This is a typical downlink scenario in wireless
communications, where the transmitter is often a base station,
which has enough space and power to support many antennas,
while the receiver is a mobile device that usually uses much
fewer antennas. Under this setting, the wireless channel from the
transmitter to a receiver is a complex-valued vector h ∈ CN . In
the next generation wireless communication systems, the base
stations are expected to be equipped with a large number of
antennas (or a massive antenna array). Consequently, h is a
high-dimensional vector. Our goal here is to estimate and track
h at the transmitter using a special type of limited feedback in-
formation. Specifically, we aim to estimate h from the Received
Signal Strength (RSS) / Channel Quality Indicator (CQI) feed-
back, motivated by the fact that most existing communication
devices can easily measure RSS/CQI and send it back to the
transmitter without modifying the devices and protocols.

To formulate the problem, consider Fig. 1, which illustrates
the time-slotted frame structure of the RSS/CQI feedback sys-
tem. In time slot m, the transmitter sends a unit-power (constant-
modulus) symbol s(m) ∈ C to the receiver, using beamforming
vector w(m) ∈ CN , and afterwards the transmitter transmits
the data symbols, using different beamforming vectors based on
the channel estimation result. Note that any constant modulus
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Fig. 1. The time-slotted frame structure of the Received Signal Strength (RSS)
/ Channel Quality Indicator (CQI) feedback system, adapted from [10].

modulation, such as coherently decoded phase-shift keying
(PSK) or incoherently decoded differential PSK (DPSK), or
even analog frequency modulation will serve our purposes. The
channel for time slot m is h(m) ∈ CN , modeling the vector
MISO channel between the N transmit antennas and the single
receive antenna. The received signal corresponding to s(m) is
then

z(m) = wH (m)h(m)s(m) + v(m) ∈ C, (7)

where v(m) ∼ CN (0, σ2
v ) models the additive white Gaus-

sian noise. The receiver feeds back to the transmitter the RSS
|z(m)|2 , in analog or digital form, through a low-rate analog
or digital feedback channel. Note that RSS is related to CQI
via (|z(m)|2 − σ2

v )/σ2
v ; and that instead of |z(m)|2 the receiver

can feed back |z(m)|. The goal is then to estimate and track the
channel vector h(M) at each time slot M = 1, 2, . . . given the
current and all previous feedback signal magnitude information
{|z(m)|}Mm=1 .

The feedback signal magnitude information satisfies

y(m) := |z(m)| = |z(m)s∗(m)|
=

∣∣wH (m)h(m) + v(m)s∗(m)
∣∣ , ∀m, (8)

where we have used s(m)s∗(m) = 1, owing to the PSK
modulation. Introducing auxiliary phase completion variables
{φ(m)}m , we have

y(m)ejφ(m ) = wH (m)h(m) + n(m), ∀m. (9)

Note that v(m) is i.i.d. circularly symmetric complex Gaus-
sian, and so is n(m) := v(m)s∗(m)—phase rotations do not
affect the noise statistics. Therefore, we propose to estimate the
channel vectors {h(m)}Mm=1 via

minimize
{h(m ),φ(m )}Mm = 1

M∑
m=1

∣∣∣y(m)ejφ(m ) −wH (m)h(m)
∣∣∣
2
. (10)

The above is equivalent to

minimize
{h(m )}Mm = 1

M∑
m=1

(
y(m)− ∣∣wH (m)h(m)

∣∣)2
, (11)

which is a phase retrieval problem with time-varying variables.

From (10), we note that if the channel is static for all of
the collected measurements, i.e., h(m) = h,∀m, then, Prob-
lem (11) is exactly a phase retrieval problem as in (2)—and it
is clear that the channel is identifiable (up to a global phase
ambiguity) from the RSS feedback alone.1 This connection is
already very interesting, yet we still have two major difficulties
in practice. First, phase retrieval techniques typically need more
than 4N measurements to retrieve an N -dimensional complex-
valued vector [28], [29], and this is costly in terms of uplink
communication overhead since N is the number of transmit an-
tennas. Second, the channel is never static in practice, and thus
directly applying the phase retrieval techniques may not return
satisfactory results. Fortunately, wireless MISO channels usu-
ally exhibit strong temporal correlation, which can be exploited
to circumvent these difficulties.2 In the next two sections, we
propose three phase retrieval-inspired channel tracking algo-
rithms. Under the tracking mode, temporal channel variations
are taken into consideration—the channel vector is updated us-
ing past channel information and the current feedback—which
greatly reduces the uplink overhead.

One side comment is that there are various different formula-
tions and algorithms for phase retrieval, such as the semidefinite
relaxation based approach [23], Gerchberg and Saxton’s formu-
lation [18] (i.e., Problem (10)), and some recently proposed
robust formulations [31]. In this work, we will focus on modi-
fying the formulation in (10) to come up with efficient tracking
algorithms—since the structure of (10) is particularly friendly
for designing computationally lightweight tracking algorithms,
as we will see shortly.

Remark 1: Before going into the algorithm design part,
we would like to make an interesting remark. Unlike the
phase retrieval problem where the measurement vectors {am}m
are determined by the measurement apparatus (usually, they are
rows of the discrete Fourier transform matrix), in our context,
the transmitter actually has the freedom of picking the beam-
forming vectors {w(m)}m to suit its purposes. One choice is to
select pseudo-random Gaussian vectors, i.i.d. across space and
time. To the best of our knowledge, this is very likely the only
practical application of phase retrieval where the assumption of
i.i.d. complex Gaussian measurement vectors is reasonable.

IV. RECURSIVE PHASE RETRIEVAL

A. Forgetting Factor-Based Formulation

To estimate and track the channel, we start with Problem (10).
Note that the problem is extremely ill-posed in general: For
every h(m) ∈ CN , only one measurement y(m) ∈ R is avail-
able. Under such an underdetermined setting, retrieving h(m)
is impossible—even without phase loss. In wireless communi-
cations, however, because the channels are strongly correlated

1The global ambiguity is easy to resolve in practice; e.g., in the transmission
stage, one can always let the first transmit bit to be 1 as part of the protocol.
Then the global phase ambiguity can be read out by looking at the first received
bit.

2A different way of modeling similarity is the low-rank phase retrieval for-
mulation in [30], however linear dependence (channel vectors living in a low-
dimensional subspace) neither implies nor is implied by strong temporal corre-
lation, and the latter is far more widely accepted in wireless communication.
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over time, channel estimation and tracking are feasible via ex-
ploiting information obtained at previous time slots.

Our first idea is to take insights from adaptive filtering, in
particular, the recursive least squares (RLS) filter [16]. To be
specific, we propose to modify the objective function in (10) to
the following estimation criterion at time slot M :

minimize
h,{φ(m )}Mm = 1

M∑
m=1

λM−m
∣∣∣y(m)ejφ(m ) −wH (m)h

∣∣∣
2
. (12)

Denoting (h� , {φ�(m)}Mm ) as the solution of Problem (12), we
let ĥ(M) = h� be our estimate of the vector MISO channel at
time slot M . In (12), λ ∈ (0, 1] is a forgetting factor weighting
the squared error terms for past time slots; the closer m is
to the current time slot M , the larger weight is put on the
corresponding squared error term. In practice, a large λ ∈ (0, 1]
is used when the channel is believed to be changing slowly; e.g.,
when the channel is static, λ = 1 recovers the phase retrieval
formulation as in (10). In other words, we effectively treat all
the channel vectors as h(m) = h(M) for m = 1, . . . , M − 1,
but discount the ‘credibility’ of the measurements obtained at
time slots that are far away from slot M . This way, we have
made use of the temporal channel correlation to circumvent the
underdetermination issue in (10), while the temporal channel
variations are also taken into account—which is inspired by the
insight of RLS filtering. The difference is that in our formulation,
we have a phase compensation element ejφ(m ) for each time slot,
resulting in a recursive phase retrieval formulation.

B. An Efficient Recursive Algorithm

To handle (12), our idea is to alternately solve Problem (12)
with respect to (w.r.t.) {φ(m)}Mm=1 and h when fixing the
other, respectively. To explain the algorithm, we define yM :=
[y(1), . . . , y(M)]T ∈ RM , ϕM := [φ(1), . . . , φ(M)]T ∈ RM ,
and λM := [λ

M −1
2 , λ

M −2
2 , . . . , λ

M −M
2 ]T ∈ RM . Using these

notations, (12) can be re-written in a more compact form:

minimize
h,ϕM

∥∥Dλ
M Dy

M ejϕM −Dλ
M WM h

∥∥2
2 , (13)

where Dλ
M := Diag(λM ), Dy

M := Diag(yM ), and WM :=
[w(1), . . . ,w(M)]H ∈ CM×N is a matrix consisting of the
beamforming vectors at the M th and the previous time slots.
The vector ejϕM is defined as ejϕM = [ejφ(1) , . . . , ejφ(M ) ]T .

Denoting the objective function in (13) as f(h,ϕM ), our al-
gorithm is a two-block coordinate descent algorithm as follows:

ϕ
(t+1)
M ← arg min

ϕM

f
(
h(t) ,ϕM

)
, (14a)

h(t+1) ← arg min
h

f
(
h,ϕ

(t+1)
M

)
, (14b)

where (h(t) ,ϕ
(t)
M ) denotes the tth iterate of the variables. Let

us start with the partial minimization w.r.t. ϕM , i.e., Problem
(14a). The problem is nonconvex, but the optimal solution is
easy to find, i.e.,

ϕ
(t+1)
M = arg

(
WM h(t)

)
, (15)

where the arg(x) is a vector that holds the phases of the elements
of the vector x. When fixing ϕM , the subproblem in (14b) is a
least squares problem, and the solution is

h(t+1) =
(
WH

M Dλ
M Dλ

M WM

)−1
WH

M Dλ
M Dλ

M Dy
M ejϕ

( t + 1 )
M .

(16)
Putting together (15) and (16), the update rule of h can be
expressed as follows:

h(t+1) =
(
WH

M Dλ
M Dλ

M WM

)−1
WH

M Dλ
M Dλ

M Dy
M

· ej arg(WM h( t ) ). (17)

It is worth mentioning that the algorithm in (17) can be carried
out quite efficiently in practice, which is reminiscent of RLS.
To see this, let us define the matrix QM as

QM := WH
M Dλ

M Dλ
M WM ∈ CN×N . (18)

It is readily seen that

QM = λQM−1 + w(M)wH (M). (19)

According to the matrix inversion lemma, Q−1
M can be updated

from Q−1
M−1 as

Q−1
M = λ−1

(
Q−1

M−1 −
Q−1

M−1w(M)wH (M)Q−1
M−1

λ + wH (M)Q−1
M−1w(M)

)
.

(20)
By updating Q−1

M using the above, the inversion of an N ×N
matrix—which typically takes O(N 3) flops—can be avoided.
The rank-one update of Q−1

M in (20) takes only O(N 2) flops,
which is one order of magnitude cheaper compared to directly
inverting QM . Similarly, the term WH

M Dλ
M Dλ

M Dy
M in (17)

can also be updated efficiently from the one at the previous time
slot; i.e., we have

PM := WH
M Dλ

M Dλ
M Dy

M = [λPM−1 , y(M)w(M)] . (21)

Therefore, the major components for updating h in (17) can be
obtained from the previous time slot using recursive updates.

Note thatQM ∈ CN×N ,∀M . When M < N ,QM is rank de-
ficient so Q−1

M does not exist. Hence the update should not start
before the N th time slot. The procedure of estimating the chan-
nel vector h(M) at time slot M is summarized in Algorithm 1.
The initialization h(0) is set to be ĥ(M − 1), i.e., the channel
vector estimated at the previous time slot. As long as the channel
changes slowly, such an initialization is very effective, as will be
shown in the simulations. One can see that once Q−1

M and PM

are updated, the remaining operations are simply taking phases
of a vector and multiplying the corresponding phase vector by
a matrix (cf. line 7 in Algorithm 1). Therefore, the algorithm is
very lightweight and ideal for channel tracking.

C. Convergence Properties

Algorithm 1 is a two-block alternating optimization algo-
rithm. Therefore, the objective value of f(h,ϕM ) decreases at
each iteration, and thus the objective sequence {f(h(t) ,ϕ

(t)
M )}t

converges since the cost function is bounded from below. In
terms of convergence of the solution sequence {(h(t) ,ϕ

(t)
M )}t ,
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Algorithm 1: Recursive Phase Retrieval (RPR) at time
slot M .

Input: λ, WM , Q−1
M−1 , PM−1 , y(M), and ĥ(M − 1);

1: Q−1
M ← λ−1

(
Q−1

M−1 −
Q−1

M −1 w (M )wH (M )Q−1
M −1

λ+wH (M )Q−1
M −1 w (M )

)
;

2: PM ← [λPM−1 , y(M)w(M)];
3: HM ← Q−1

M PM ;
4: h(0) ← ĥ(M − 1);
5: t← 0;
6: repeat
7: h(t+1) ← HM ej arg(WM h( t ) );
8: t← t + 1;
9: until stopping criterion;

Output: ĥ(M)← h(t) .

however, the classical analytical tools for generic alternating
optimization such as those in [32]–[34] cannot be applied to
show convergence. The reason is that the analyses in [32]–[34]
rely on convexity of the subproblems, but the ϕM -subproblem
in (14a) is not convex. Fortunately, since our algorithm only has
two blocks, convergence of {(h(t) ,ϕ

(t)
M )}t can still be shown,

following the argument of the maximum block improvement
(MBI) framework [35] that does not require the subproblems to
be convex. Formally, we have the following statement:

Proposition 1: At each time slot, every limit point of the
solution sequence produced by Algorithm 1 is a stationary point
of Problem (12).

The idea of proof is straightforward and thus is omitted: as
observed in [36], [37], block coordinate descent and MBI are
equivalent in the two-block case. Hence, following the conver-
gence results of MBI, Algorithm 1 is readily shown to converge
to a stationary point of Problem (13).

V. GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION

The RPR algorithm proposed in the previous section did not
make any assumption on the channel evolution model. The up-
shot is that the RPR algorithm is quite general—it can handle
all the scenarios where the channel vector does not change too
quickly. On the other hand, if some prior information on the
temporal correlation of the channels is known, making use of
such information may greatly improve the performance—while
the RPR algorithm is not able to exploit such prior information.
In this section, we propose channel tracking algorithms that are
tailored to the first-order temporal auto-regressive (AR) channel
model. The model is widely employed in the literature for mod-
eling the temporal progression of wireless channels and thus is
well-motivated [10], [38]–[41].

A. Problem Formulation Under an AR Model

We consider the following AR model between two consecu-
tive time slots:

h(m) = αh(m− 1) + u(m), ∀m = 1, 2, . . . , (22)

where α ∈ (0, 1) is a constant and u(m) ∼ CN (0, σ2
uIN ) mod-

els the spatially uncorrelated process noise [39], [41]. Under the
considered AR model, one can easily incorporate previously
obtained measurements y(m) for m = 1, . . . , M − 1 into esti-
mating h(M) at time slot M . To see this, first notice that the
channel vector h(m) for past time slots indexed by m < M can
be written as a function of h(M):

h(m) = αm−M h(M)−
M−m−1∑

k=0

αm−M +ku(M − k). (23)

Therefore, every measurement y(m) for m = 1, . . . ,M can be
represented as a function of h(M); i.e., for m = 1, . . . ,M , we
have

y(m) =
∣∣wH (m)h(m) + n(m)

∣∣
=

∣∣αm−M wH (m)h(M) + ñ(m)
∣∣ , (24)

in which we define ñ(M) := n(M) and

ñ(m) := n(m)−
M−m−1∑

k=0

αm−M +kwH (m)u(M − k) (25)

for m = 1, . . . ,M − 1.
One may notice that the expression of y(m) in (24) looks

similar to that in (8) and attempt to construct an estimator as
follows:

minimize
h(M ),{φ(m )}Mm = 1

M∑
m=1

∣∣∣y(m)ejφ(m ) − αm−M wH (m)h(M)
∣∣∣
2
.

(26)
The above is a reasonable option, but it is likely to be sub-
optimal (in terms of maximum likelihood estimation) because
the noise ñ(m) is colored across different m’s. Fortunately,
since the statistics of u(m) are available, one can easily derive
the statistics of ñ(m)—which can be utilized to construct a
(generalized) maximum likelihood estimator of h(M). To be
specific, we first consider the mean of ñ(m), which is readily
seen to be zero because n(m), w(m), and u(M − k) are all
zero-mean and independent of each other. Second, the expected
power of ñ(m) can be expressed as follows:

E {ñ(m)ñ∗(m)}

= Var {n(m)}+ Var

{
M−m−1∑

k=0

αm−M +kwH (m)u(M − k)

}

= σ2
v +

M−m−1∑
k=0

α2(m−M +k)Var
{
wH (m)u(M − k)

}

= σ2
v +

α2(m−M ) − 1
1− α2 σ2

uw
H (m)w(m), (27)

where we have used the fact that n(m), w(m), and u(m) are
independent and n(m) = v(m)s∗(m) ∼ CN (0, σ2

v ). Similarly,
the cross-correlation of ñ(p) and ñ(q) for 1 ≤ p 	= q ≤M is

E {ñ(p)ñ∗(q)} =
αp+q−2M − α−|q−p |

1− α2 σ2
uw

H (p)w(q). (28)
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Hence, at time slot M , the noise vector ñ(M) = [ñ(1), . . . ,
ñ(M)]T ∈ CM is a multivariate complex Gaussian vector with
zero mean and covariance matrix CM with elements

[CM ]p,q = E {ñ(p)ñ∗(q)} , 1 ≤ p, q ≤M. (29)

Therefore, given y(m) for m = 1, . . . ,M and the derived statis-
tics of the noise vector ñ(M), the generalized maximum likeli-
hood estimator (GMLE) of h(M) is as follows:

(
ĥ(M), {φ(m)}m

)

= arg min
h,ϕM

∥∥∥C−1/2
M

(
Dy

M ejϕM −Dα
M WM h

)∥∥∥
2

2
, (30)

where Dα
M := Diag(αM ) is a diagonal matrix with main di-

agonal αM := [α1−M ,α2−M , . . . , αM−M ]T ∈ RM and Dy
M ,

ϕM , and WM are defined as before. Note that we call the
above estimator GMLE instead of MLE because we have intro-
duced a phase completion term ejϕM , which is different from
the classical MLE.

B. Alternating Optimization for GMLE

As in the forgetting factor-based formulation, we also employ
alternating optimization to handle the formulated GMLE; that
is, we update h and ϕM by the following rules:

ϕ
(t+1)
M ← arg min

ϕM

g
(
h(t) ,ϕM

)
, (31a)

h(t+1) ← arg min
h

g
(
h,ϕ

(t+1)
M

)
, (31b)

where g(h,ϕM ) denotes the objective function in (30), and we
solve the two subproblems in (31a) and (31b) alternately until
some convergence criterion is reached.

Solving the h-subproblem in (31b) is simple, since it is again
an unconstrained quadratic programming problem that has the
following analytical solution:

h(t+1) =
(
C−1/2

M Dα
M WM

)†
C−1/2

M Dy
M ejϕ

( t + 1 )
M

=
(
WH

M Dα
M C−1

M Dα
M WM

)−1
WH

M Dα
M C−1

M Dy
M ejϕ

( t + 1 )
M

= H̃M ejϕ
( t + 1 )
M , (32)

where H̃M := (WH
M Dα

M C−1
M Dα

M WM )−1WH
M Dα

M C−1
M Dy

M .
When h is fixed, the subproblem in (31a) is equivalent to the
following:

minimize
ϕM

(
ejϕM

)H
FM ejϕM − 2Re

{(
ejϕM

)H
GM h(t)

}
,

(33)
where we have FM := Dy

M C−1
M Dy

M and GM := Dy
M C−1

M Dα
M

WM . Problem (33) has no analytical solution in general. One
may employ some standard nonlinear programming algorithms,
e.g., gradient descent, to handle it since the objective function is
continuously differentiable w.r.t. ϕM . However, this leads to an
iterative process to solve the ϕM -subproblem, which is unde-
sired in terms of efficiency. In addition, since this subproblem is
nonconvex, directly solving it has no guarantee of the solution

quality and thus the overall alternating optimization algorithm
is not guaranteed to converge to a meaningful point (e.g., a KKT
point) in general.

Here, we provide an algorithm that updates ϕM using a simple
update strategy while guaranteeing convergence of the overall
alternating optimization procedure. First, let us re-write Problem
(33) as

minimize
u∈CM

uH FM u− 2Re
{
uH GM h(t)

}

subject to |um | = 1,∀m = 1, . . . ,M. (34)

Notice that Problem (34) and Problem (33) are equivalent: the
solutions of the latter have a one-to-one correspondence with
those of the former, i.e., ϕM = arg(u). Therefore, the update
in (31a) can be written as

u(t+1) ← arg min
|um |=1,∀m

g
(
h(t) ,u

)
, (35)

where we have substituted ejϕM with u. Re-writing the problem
does not reduce the difficulty—but it allows us to handle it using
a simpler update strategy. Specifically, we propose to update u
via solving a majorizing surrogate of Problem (34) [42], [43]:

u(t+1) ← arg min
|um |=1,∀m

ḡ
(
h(t) ,u

)
. (36)

The objective function in (36) is

ḡ
(
h(t) ,u

)
:= g

(
h(t) ,u(t)

)

+ Re
{(
∇ug

(
h(t) ,u(t)

))H (
u− u(t)

)}

+
1
ρ

∥∥∥u− u(t)
∥∥∥

2

2
, (37)

where 0 < ρ < 1/λmax(FM ) is a pre-specified parameter and

∇ug
(
h(t) ,u(t)

)
= 2FM u(t) − 2GM h(t) . (38)

Note that Problem (36) has a closed-form solution [44], [45]:

u(t+1) = ej arg(u( t )− ρ
2 ∇u g(h( t ) ,u( t ) )). (39)

The algorithm is summarized in Algorithm 2. Since we es-
sentially employ a one-step gradient projection to update u, we
name the algorithm GMLE-G. There are several good properties
of the algorithm. First, the update of u is very simple. Second,
the overall alternating optimization procedure is guaranteed to
converge to a KKT point of Problem (30). To be specific, we
have the following statement:

Proposition 2: At each time slot, every limit point of the
solution sequence produced by Algorithm 2 is a Karush-
Kuhn-Tucker (KKT) point of Problem (30) given that 0 < ρ <
1/λmax(FM ).

Note that the above convergence property is not obvious: the
constraint of the u-subproblem (34) is nonconvex, and thus most
popular inexact alternating optimization frameworks [32], [33]
cannot cover it. Nevertheless, when 0 < ρ < 1/λmax(FM ),
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Algorithm 2: GMLE-G under the AR model (at time
slot M ).

Input: WM , α, σ2
u , σ2

v , yM , β ∈ (0, 1), and ĥ(M − 1);
1: FM ← Dy

M C−1
M Dy

M ;
2: GM ← Dy

M C−1
M Dα

M WM ;

3: H̃M ←
(
WH

M Dα
M C−1

M Dα
M WM

)−1 GH
M ;

4: ρ← β/λmax (FM );
5: h(0) ← ĥ(M − 1);
6: ϕ

(0)
M ← arg

(
WM h(0)

)
;

7: t← 0;
8: repeat

9: ϕ
(t+1)
M ← arg

(
ejϕ

( t )
M − ρ

(
FM ejϕ

( t )
M −GM h(t)

))
;

10: h(t+1) ← H̃M ejϕ
( t + 1 )
M ;

11: t← t + 1;
12: until stopping criterion;
Output: ĥ(M)← h(t) .

we have

ḡ
(
h(t) ,u(t)

)
= g

(
h(t) ,u(t)

)
, (40a)

ḡ
(
h(t) ,u

)
≥ g

(
h(t) ,u

)
, ∀u, (40b)

∇u ḡ
(
h(t) ,u(t)

)
= ∇ug

(
h(t) ,u(t)

)
. (40c)

Therefore, the algorithm falls into the category of two-block
alternating optimization with one nonconvex block constraint
as those in [31], [45], [46]. Applying the same analysis in [46,
Proposition 1], one can show that the algorithm converges to a
KKT point of Problem (30).

C. Diagonal Approximation

The GMLE-G algorithm is simple and it is guaranteed to con-
verge. On the other hand, it needs to compute the largest eigen-
value of an M ×M Hermitian matrix FM at each time slot,
which is cumbersome when M is relatively large. In addition,
since the step size ρ is limited to be smaller than 1/λmax(FM ) to
ensure convergence, the progress of u can be slow when FM is
ill-conditioned. In this subsection, we propose another solution
to update ϕM that well approximates the solution of Problem
(33) under the setting of massive MISO. The approximation is
based on the observation that FM is approximately diagonal
when the number of transmit antennas is large and the channels
are spatially uncorrelated. Specifically, we have the following
statement:

Proposition 3: Under the model u(m) ∼ CN (0, σ2
uIN ),

when N → +∞, the following holds almost surely (a.s.):
1) CM is a diagonal matrix;
2) The optimal solution of (33) is

ϕ�
M = arg

(
WM h(t)

)
. (41)

The proof of Proposition 3 is relegated to the Appendix. Ac-
cording to Proposition 3, when the AR process driving noise

TABLE I
THE DIAGONAL-TO-OFF-DIAGONAL-RATIO (DODR) OF CM FOR DIFFERENT

NUMBER OF TRANSMIT ANTENNAS N ; M = 500, α = 0.998, σu = 0.01,
AND σv = 0.1; AVERAGED OVER 100 MONTE-CARLO TRIALS

u(m) is spatially uncorrelated and the number of transmit an-
tennas is large (which is exactly the case in massive antenna
systems), it is legitimate to employ the simple solution in (41)
when updating ϕM , i.e.,

ϕ
(t+1)
M = arg

(
WM h(t)

)
. (42)

Although the above solution is merely an approximation
when N is finite, we observe quite satisfactory results in the
simulations—as will be demonstrated shortly in the next sec-
tion.

Remark 2: Note that N →∞would not be possible in prac-
tice. However, Proposotion 3 explains the good performance of
(41) that treats CM as a diagonal matrix (as will be seen shortly
in the next section). The interesting implication of Proposition 3
is that when the number of transmit antennas is large, the up-
date of ϕM is not affected by the conditioning of FM —which
is desired. Some numerical support of this approximation is
presented in Table I, where the diagonal-to-off-diagonal-ratio
(DODR) of CM is presented for different numbers of antennas
when M = 500. The DODR is defined as

DODR =
‖dCM

‖22 /M

‖CM −DM ‖2F /(M 2 −M)
, (43)

where dCM
denotes the main diagonal of CM and DM :=

Diag(dCM
). The DODR measures the ratio between the average

squared magnitude of the diagonal elements and that of the off-
diagonal elements in CM . One can see that the matrix CM

is already fairly diagonal dominant even when the number of
antennas is small.

Finally, putting (32) and (42) together, a compact formula for
updating h can be expressed as

h(t+1) = ĤM ej arg(WM h( t ) ), (44)

where ĤM := (WH
M Dα

M D−1
M Dα

M WM )−1WH
M Dα

M D−1
M Dy

M ;
i.e., we have substituted CM with DM .

Algorithm 3 summarizes the simplified procedures at time
slot M . The vector h(0) is also initialized as the channel vector
ĥ(M − 1) estimated at the previous time slot. The algorithm is
named GMLE-Diagonal Approximation (GMLE-D).

Remark 3: Algorithm 3 appears fairly similar to Algorithm 1,
which also has a very simple update rule of h (namely, matrix-
vector multiplication and phase extraction only). The difference
is that, in Algorithm 3, the matrix ĤM cannot be updated re-
cursively as the matrix HM in Algorithm 1, which means that
the computational complexity of Algorithm 3 is higher. On the
other hand, what we have gained is performance: by taking the
channel progression model into consideration, higher channel
estimation accuracy can be achieved, as will be shown shortly.
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Algorithm 3: GMLE-D under the AR model (at time
slot M ).

Input: WM , α, σ2
u , σ2

v , yM , and ĥ(M − 1);
1: ĤM ←

(
WH

M Dα
M D−1

M Dα
M WM

)−1 WH
M Dα

M D−1
M Dy

M ;

2: h(0) ← ĥ(M − 1);
3: t← 0;
4: repeat
5: h(t+1) ← ĤM ej arg(WM h( t ) );
6: t← t + 1;
7: until stopping criterion;

Output: ĥ(M)← h(t) .

VI. SIMULATIONS

In this section, we use extensive simulations to showcase
the effectiveness of the proposed channel tracking algorithms.
All simulations are conducted on a computer with a 3.20 GHz
Intel Core i5-4570 CPU and 8.00 GB RAM. The algorithms are
implemented in Matlab R2014b.

Settings: We generate time-varying channel vectors {h(m) ∈
CN }500

m=1 according to (22), where h(0) is generated follow-
ing the unit-variance zero-mean circularly-symmetric Gaussian
distribution. The beamforming vectors {w(m)}500

m=1 are also
drawn from the i.i.d. unit-variance zero-mean Gaussian distri-
bution. The feedback signal magnitude information {y(m)}500

m=1
is measured following (8). All of the algorithms are initialized
randomly at the beginning of the tracking process. The updates
of the proposed algorithms start at time slot M = N . At every
time slot, the algorithms stop when the following criterion is
met: ∥∥h(t) − h(t−1)

∥∥
2∥∥h(t−1)

∥∥
2

< 10−4 . (45)

Baselines. To benchmark the proposed algorithms, we present
the performance of three variations of the Kalman filter [47]—
which is a classical tool for estimating and tracking the state
of linear dynamical systems. The classical Kalman filter works
with linear measurements of h(m) rather than the magnitude
measurements as under our setting. To circumvent this issue, we
present the following three versions of modified Kalman filter
to serve as baselines:

� KF-P: First, we present the performance of the Kalman
filter with perfect phase information (KF-P). At each time
slot m, we assume that the Kalman filter knows the ex-
act phase information and thus the classical Kalman filter
can be applied. Notice that assuming perfect phase knowl-
edge is unrealistic since the phase information is lost when
measuring the magnitude. Nevertheless, the performance
of KF-P can serve as a lower bound of the channel estima-
tion error.

� KF-A: In addition, we present a more practical modifica-
tion of the Kalman filter, which is an alternating optimiza-
tion approach (namely, KF-A) that alternately estimates
{φ(m)}Mm=1 using a phase estimator and {h(m)}Mm=1 by
applying the classical Kalman filter.

� KF-S: We also incorporate the Rauch-Tung-Striebel (RTS)
smoother [48] on top of KF-A, resulting in the KF-S
method. The RTS smoother performs forward-backward
smoothing together with channel estimation and is known
to be able to enhance the performance of the Kalman filter
in the estimation mode.

Due to the page limitation, we put the detailed pseudo codes
and derivations of these three baselines in the supplementary
material.

Evaluation Metric: We employ the normalized squared error
(NSE) between the estimated ĥ(M) and the ground-truth h(M)
after accounting for the global phase ambiguity:

NSE(M) = min
θ

∥∥∥ĥ(M)ejθ − h(M)
∥∥∥

2

2

‖h(M)‖22

=

∥∥∥ĥ(M)ej arg(ĥH (M )h(M )) − h(M)
∥∥∥

2

2

‖h(M)‖22
. (46)

In all the simulations, the presented NSEs are averaged over 100
Monte Carlo trials.

Fig. 2(a) shows the NSEs of different algorithms when the
standard deviations of the AR process driving noise and the
measurement noise are σu = 0.01 and σv = 0.1, respectively.
The parameter in the AR model is set to be α = 0.998. As
expected, KF-P has the best performance as it uses the ex-
act phase information—it reaches a very good NSE level after
50 time slots. The three proposed algorithms, namely RPR,
GMLE-G, and GMLE-D, all reach satisfactory NSE levels after
150 time slots. Both GMLE-G and GMLE-D reach the same
NSE eventually—which suggests that the proposed diagonal
approximation in Section V-C is fairly reasonable. RPR also
performs very well, but the NSEs are slightly higher relative to
GMLE-G and GMLE-D. This is reasonable since RPR does not
exploit the AR channel model. KF-A does not work well, since
it alternates between phase estimation and channel estimation—
and the channel estimation stage is not optimal. KF-S performs
significantly better than KF-A due to the RTS smoother—the
smoother makes the channel estimation part optimal given a
fixed phase. Nevertheless, even with the smoother, KF-S still
uses 200 more time slots to reach the same accuracy level of the
proposed methods.

Fig. 2(b) shows the performance of the algorithms when the
noise levels are lifted to σu = 0.1 and σv = 1, respectively. One
can see that all algorithms perform similarly as in the previous
case, except that GMLE-D gives worse NSEs compared to those
of GMLE-G. This suggests that the accuracy of the diagonal
approximation deteriorates when the noise level increases.

Table II presents the average CPU Time of different algo-
rithms achieving an NSE level of 0.1, under the same settings as
those in Fig. 2(a). One can see that both RPR and GMLE-D are
very efficient. GMLE-G is slower because the progress of ϕM

is limited by the step size ρ (i.e., the conditioning of FM ), as
mentioned. The KF-S algorithm, although outputs reasonable
NSEs, is significantly slower than the other methods—which
makes it unpractical.
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Fig. 2. NSE at different time slots; N = 32 and α = 0.998.

TABLE II
AVERAGE CPU TIME OVER 100 MONTE CARLO TRIALS TO ACHIEVE AN NSE

LEVEL OF 0.1; N = 32, α = 0.998, σu = 0.01, AND σv = 0.1

Fig. 3 shows the performance of the RPR algorithm with
different choices of λ under the same noise settings as those in
Fig. 2. We test five different values, namely λ = 1.00, 0.98, 0.96,
0.94, and 0.92. One can see that, when the noise levels are low,
using different choices of λ (except λ = 1 that does not consider
channel progression) gives similar results. When the noise levels
are higher, λ = 0.98 and 0.96 give more satisfactory results
since they match the real channel changing speed (α = 0.998
in this case) better. It is also important to notice that using
λ = 1 leads to fast divergence of the algorithm—the channel

Fig. 3. NSE vs. λ of the Recursive Phase Retrieval (RPR) algorithm at different
time slots; N = 32 and α = 0.998.

estimation error increases very quickly after a certain point.
This suggests that when the channel is varying (even slowly),
using a static channel model is rather harmful to the estimation
accuracy.

Fig. 4 shows the NSEs of different algorithms at time slot
M = 200, when α ranges from 0.9950 (0.9950200 ≈ 0.36705)
to 0.9995 (0.9995200 ≈ 0.9048). RPR performs well in tracking
a slowly time-varying channel (corresponding to larger α’s),
but its performance degrades when the channel changes faster.
The other two proposed algorithms GMLE-G and GMLE-D
give much lower NSEs relative to RPR when α ≤ 0.998, which
means that the AR model based methods are more robust to rapid
changes. This is not surprising—because GMLE-G and GMLE-
D exploit the channel progression model but RPR works with
more general slow-changing assumptions. KF-S gives similar
NSEs as GMLE-G and GMLE-D across the entire range of α in
this simulation. However, as mentioned, KF-S is significantly
slower than GMLE-G, GMLE-D and RPR.

Fig. 5 shows the NSEs of different algorithms at time slot
M = 200 as well, when σu varies from 1 to 0.001. Recall that
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Fig. 4. NSE vs. α at time slot M = 200; N = 32, σu = 0.01, and σv = 1.

Fig. 5. NSE vs. σu at time slot M = 200; N = 32, α = 0.998, and σv = 1.

σu is the standard deviation of the AR model process u(m); and
the smaller σu is, the slower the channel varies. As expected,
the NSEs of all the algorithms decrease as σu decreases since
using larger σu ’s poses more difficult estimation problems. Nev-
ertheless, all of the proposed approaches give much lower NSEs
relative to the benchmarking algorithms when σu > 0.05.

Fig. 6 shows the NSEs of different algorithms at M = 200
when the standard deviation of the measurement noise, i.e., σv ,
decreases from 3 to 0.01. Similar to the previous simulation,
the proposed algorithms work better when the measurement
noise is smaller. The GMLE-based approaches and KF-S give
the most favorable NSEs when σv is larger than 0.5. Interest-
ingly, KF-S does not work well when σv < 0.05. There might
be several reasons for this happening: first, the KF-S is not a
disciplined alternating optimization approach—there is no guar-
antee of convergence; second, when the AR process noise is
very small compared to the measurement noise, it could result
in an ill-conditioned state estimation problem and thus affect
the method significantly.

Fig. 7 shows the NSEs of different algorithms at time slot
M = 200, when the base station uses different numbers of
transmit antennas N . Surprisingly, although Proposition 3 sug-

Fig. 6. NSE vs. σv at time slot M = 200; N = 32, α = 0.998, and σu =
0.01.

Fig. 7. NSE vs. N at time slot M = 200; α= 0.998, σu = 0.01, and σv = 1.

gests that GMLE-D approximates the GMLE well only when
N is large, the NSEs obtained via GMLE-D and GMLE-G are
essentially the same even when N = 2 in this simulation. This
is also consistent with the observation in Fig. 2(a), when the
model process noise level is not high, GMLE-D works similarly
as GMLE-G.

In Fig. 8, we test the performance of GMLE-G and GMLE-
D when using an inaccurate α—which is most likely the case
in practice. In the simulation, α = 0.998 is used to generate
the original unknown channel, and three inaccurate coefficients
α̃ = 0.999, 0.994, and 0.990 are used in the algorithms. One
can see that the mismatch between α and α̃ does affect the
performance of GMLE-D and GMLE-G, but if the mismatch is
not large (e.g., when α̃ = 0.994 and α = 0.998), GMLE-D and
GMLE-G still give reasonable results. Interestingly, one can see
that the GMLE-D exhibits better model-robustness compared to
GMLE-G.

Fig. 9 shows the NSEs of the three proposed algorithms when
the receiver uses 1, 2 and 4 bits to quantize the RSS, respectively.
This setting is of particular practical interest, since in practice
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Fig. 8. NSE vs. inaccurate α at different time slots; N = 32, α = 0.998,
σu = 0.01, and σv = 1.

Fig. 9. NSE vs. quantization level at different time slots; N = 32, α = 0.998,
σu = 0.01, and σv = 1.

all the feedback will be quantized. While 1-bit quantization
seems to be too aggressive, GMLE-G and GMLE-D perform
surprisingly well using as few as 2-bits feedback. Compared
with the result of analog feedback, the NSEs of GMLE-G and
GMLE-D after 2-bits quantization only increase slightly due to
the quantization error. Under the 4-bit quantization, all three
proposed algorithms achieve almost identical performances to
those using analog feedback. In addition, GMLE-G and GMLE-
D achieve smaller NSE levels relative to RPR after such coarse
quantization.

To further investigate the impact of different quantization lev-
els, we plot in Fig. 10 the average NSEs of the three proposed
algorithms at time slot M = 200, when different number of bits
are used to quantize the signal magnitude. The other settings
are the same as those in Fig. 9. One can see that, if 3 bits are
employed to quantize the RSS feedback, the performance is es-
sentially the same as using analog feedback. This is because the
RSS is just a real-valued scalar and is reasonably easy to quan-

Fig. 10. NSE vs. different quantization levels at time slot M = 200; N = 32,
α = 0.998, σu = 0.01, and σv = 1.

tize accurately. This also suggests that the proposed algorithms
are fairly robust to quantization errors.

VII. CONCLUSION

In this work, the limited feedback-based downlink MISO
channel estimation and tracking problem has been revisited from
a new perspective that is inspired by recent developments in
phase retrieval. A novel limited feedback scheme has been pro-
posed. The proposed scheme only feeds back Received Signal
Strength (RSS) / Channel Quality Indicator (CQI) information
to the base station. RSS/CQI can be easily measured by any
existing mobile device—which makes real-system implementa-
tion of the proposed scheme well within reach. The RSS/CQI
measurement is merely a real-valued scalar and thus the feed-
back scheme is also very economical. Although RSS/CQI-type
feedback does not contain any phase information for the chan-
nel, a phase retrieval-based formulation has been proposed to
compensate the information loss. Under this setting, three ef-
ficient channel tracking algorithms have been proposed, which
are based on a general slow-changing channel assumption and
a widely adopted AR channel progression model, respectively.
Extensive simulations have shown that the proposed algorithms
are very effective in tracking the MISO channel.

APPENDIX

PROOF OF PROPOSITION 3

We first notice two properties of the i.i.d. circularly-symme
tric complex Gaussian beamforming vectors {w(m) ∼ CN
(0, IN )}m ; i.e., according to the strong law of large numbers,
when N → +∞,

wH (m)w(m)
N

a.s.−→ 1, ∀m, (47a)

wH (p)w(q)
N

a.s.−→ 0, ∀p 	= q. (47b)
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Therefore, for 1 ≤ p, q,m ≤M and p 	= q,

[CM ]m,m

[CM ]p,q

=
α2 (m −M )−1

1−α2 σ2
uw

H (m)w(m) + σ2
v

αp + q −2 M −α−|q −p |
1−α2 σ2

uwH (p)w(q)

=
β1wH (m)w(m)/N + σ2

v /N

β2wH (p)w(q)/N
, (48)

where β1 := α2 (m −M )−1
1−α2 σ2

u and β2 := αp + q −2 M −α−|q −p |
1−α2 σ2

u . Tak-
ing N → +∞ and using equations (47a) and (47b), we have

∣∣∣∣
β1wH (m)w(m)/N + σ2

v /N

β2wH (p)w(q)/N

∣∣∣∣
a.s.−→ +∞. (49)

This implies that CM is a diagonal matrix almost surely when
N goes to infinity. As a result, we have

(
ejϕM

)H
FM ejϕM

a.s.−→ Tr (FM ) (50)

is a constant with regard to ϕM . Under such circumstance,
Problem (33) is equivalent to

minimize
ϕM

− 2Re
{(

ejϕM
)H

GM h(t)
}

, (51)

which has a simple closed-form solution

ϕ�
M = arg

(
GM h(t)

)
= arg

(
WM h(t)

)
(52)

as Dy
M , CM , and Dα

M are real-valued diagonal matrices.
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