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A Markowitz Portfolio Approach to Options Trading
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Abstract—In this paper, we study the problem of option port-
folio design under the Markowitz mean-variance framework. We
extend the common practice of a pure-stock portfolio and include
options in the design. The options returns are modeled statistically
with first- and second-order moments, enriching the conventional
delta-gamma approximation. The naive mean-variance formula-
tion allows for a zero-risk design that, in a practical scenario with
parameter estimation errors, is totally misleading and leads to bad
results. This zero-risk fallacy can be circumvented with a more re-
alistic robust formulation. Transaction cost is also considered in the
formulation for a proper practical design. We propose an efficient
BSUM-M-based algorithm to solve the optimization problem. The
proposed algorithm can perform as well as the off-the-shelf solvers
but with a much lower computational time—up to one order of
magnitude lower. Numerical results based on real data are con-
ducted and the performance is presented in terms of Sharpe ratio,
cumulative profit and loss, drawdown, overall return over turnover,
value at risk, expected shortfall, and certainty equivalent.

Index Terms—Option portfolio, transaction cost, robustness,
BSUM-M, Sharpe ratio.

I. INTRODUCTION

PORTFOLIO design has attracted great attention from re-
searchers ever since Markowitz introduced the mean-

variance portfolio optimization framework in 1952 [1] (for
which he got the Nobel price in 1990). This framework plays a
fundamental role in modern portfolio theory by using a statisti-
cal modeling in the portfolio formulation. It aims at achieving a
trade-off between expected return and risk (measured by portfo-
lio variance). This framework is well-known for its flexibility:
if an investor is willing to take a risk, more weight is given to
the expected return; otherwise, more weight is placed on risk.

In the open literature, most works merely considered stocks
in the portfolio design. The reason for this is very straightfor-
ward: stock data is readily available online and seems relatively
easy to understand and manipulate. One can easily estimate
the expected return and covariance matrix of a certain number
of stocks (albeit usually with a dubious quality of estimates).
However, the applicability of the Markowitz framework is not
limited to stocks. It would be desirable to extend it to include
derivatives. For the sake of concreteness, we focus on a specific
kind of derivative named “options” (vanilla options, to be exact),
but the approach can be straightforwardly employed with other
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derivatives. Traditionally, derivatives are regarded as hedging
instruments, but, in this paper, we will reveal their potential for
investment under the Markowitz framework.

A. Preliminaries on Options

Admittedly, derivatives, especially options, are more compli-
cated than stocks, see [2]–[4] for popular textbooks on deriva-
tives. A standard (vanilla) option contract consists of the fol-
lowing parameters: option price, the underlying asset (mostly
stocks), expiration date, and strike price. A call (put) option
gives the option holder the right, rather than obligation, to buy
(sell) the underlying asset by the expiration date for the strike
price. American options can be exercised at any time before
expiration, while European options can only be exercised on the
expiration date. Most of the trading options on exchanges are
American style.

The price of an option is associated with the following factors:
current price of the underlying asset S0 , strike price K, risk-
free interest rate rfree, time to expiration T , and (underlying)
volatility σ. One popular approach to evaluating a European
call or put option is the Black-Scholes-Merton formula [5], [6]
(for which another Nobel price was awarded in 1997):

Call Price = S0N (d1) − Ke−rT N (d2)

Put Price = Ke−rT N (−d2) − S0N (−d1) , (1)

where

d1 =
log (S0/K) +

(
rfree + σ2/2

)
T

σ
√

T
,

d2 =
log (S0/K) +

(
rfree − σ2/2

)
T

σ
√

T
= d1 − σ

√
T , (2)

and N(x) is the cumulative distribution function for standard
Gaussian distribution. Let us look at a toy example to gain some
insight into how much an option is worth.

Example 1: Suppose the current price of the underlying
stock is $105, the strike price is $100, the risk-free interest
rate is 2% per annum, and the volatility is 20% per annum. The
option is European style and expires in 6 months. Thus, by ap-
plying the Black-Scholes-Merton formula, we obtain the option
price as follows:

{
Call Price = $9.24
Put Price = $3.24.

(3)

There are several reasons why one may want to include op-
tions in the portfolio design. The first reason is the compar-
atively higher return, which can be seen from the aforemen-
tioned example. We already calculated the call option price:
$9.24. Suppose the stock price increases by $1 on the next
trading day, and thus the call option price moves up to $9.93
according to the Black-Scholes-Merton formula. The return in
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stock is only 1/105 = 0.95%, while the return in the option is
(9.93 − 9.24)/9.24 = 7.47%, which is much more attractive.
We should note that the comparatively higher return of options
comes at the cost of higher tail and kurtosis risk because options
prices are known to be heavily-tailed and not log-normal dis-
tributed in practice.1 Options are a convenient method to make
directional bets on stocks without too much exposure. The sec-
ond reason is the convenience of taking a short position. When
an investor believes the market will go down, he has no other
choice than to short sell if he only trades stocks. During the
short selling period, he has to maintain a margin account so that
the deposit is not lower than the minimum requirement. On the
other hand, if options are considered in the trading, he can con-
veniently buy a few put options instead, and no extra money is
required. While many advantages can be identified, we still need
to point out that options are not a panacea. The option market
often experiences a larger percentage change than the stock mar-
ket, so frequent adjustment or rebalancing of the option position
is a must. Another weakness is concerned with the expiration
date. If the market takes an unexpected large move opposite to
the investor’s belief and the expiration date is drawing near, the
loss will be inevitable.

B. Related Works

So far, there have been two prevailing philosophies for option
portfolio design. The first one is based on the single period port-
folio optimization framework [7]–[9]. The investors delicately
design an option portfolio at the current time in the hope of
maximizing the expected return or minimizing the value at risk
(VaR) on the expiration date [8]. This philosophy works well
with European options because they cannot be executed until
expiration. One weakness of this philosophy is that it fails to
consider the trading of option contracts: options can be bought
and sold as well as executed. Moreover, this philosophy is faced
with the difficulty of long-term return estimation. In order to
make the estimation result reliable, it is recommended that only
near-expiration options are chosen. The final concern relates
to the risk management. The option market is more volatile in
terms of percentage change and it is very risky to conduct a
one-shot investment without further adjustments. Any adverse
market move before the expiration date could result in a big loss
for the investors.

In view of all the drawbacks, we would prefer to design a
dynamic option portfolio that is subject to daily adjustment, i.e.,
actively trading the options rather than passively executing them.
This is exactly the second prevailing philosophy, which is based
on the delta-gamma approximation of the function of the op-
tion price (not necessarily the Black-Scholes-Merton formula)
[9]–[11]. This approximation is by nature a first-order Taylor
expansion in time difference and second-order in stock price
difference and can be rederived from the stochastic differential
equation perspective, as we will elaborate in later sections. We
will approximate the option price difference up to the second or-
der and ignore any higher order statistics. The biggest advantage
of adopting this philosophy is the flexibility. We can include vir-
tually all the vanilla options in the portfolio, whether the lifespan
is short or long and the style is European or American. Besides,
we can conduct daily adjustments very conveniently. The ap-
proximation is renewed on a daily basis, so the portfolio is

1We ignore the heavy-tail issue and higher-order risk (risk higher than the
second order) in this paper and leave them for future work.

dynamically updated. The possible weakness of this philosophy
is also obvious: we need extra information on the partial deriva-
tives and we need to update them frequently to ensure a valid
approximation. Fortunately, some powerful terminals, e.g., the
Bloomberg terminal, offer such statistical information. Some
software libraries can also compute options-related quantities
such as QuantLib [12]. On top of that, the designed portfolio
strongly depends on the current-moment data, so the investment
decision could be myopic.

C. Contribution

The major contributions of this paper are:
1) We derive the expressions of mean and variance for a

portfolio with mixed stocks and options. To the best of
our knowledge, we are the first to apply the Markowitz
mean-variance framework in option portfolio design by
means of exploiting both first- and second-order statistics
of option returns using stochastic differential equations.
Conventionally, the delta-gamma approximation focuses
on the expected return of options, which corresponds to the
mean term of the proposed optimization problem. Thus,
we enrich the traditional delta-gamma approximation by
further considering second-order statistics, i.e., the vari-
ance of option return. It is also worth noticing that modern
portfolio selection practice involves more sophisticated
measures of risk, e.g., VaR or CVaR (Conditional VaR).
We will look into these more realistic approaches in our
future work.

2) We identify a weakness in the variance term of the option
portfolio in the form of a zero-risk subspace, which in
theory seems good but in practice crumbles due to esti-
mation errors in the parameters (we call this phenomenon
the zero-risk fallacy). We then introduce different kinds
of robustness to fix this problem. Eventually, we present a
unified formulation including all the proposed modifica-
tions. We additionally propose a Black-Litterman model
with specific views derived from the stock-options rela-
tionships.

3) We additionally consider transaction costs in the formu-
lation.

4) We propose an efficient BSUM-M-based algorithm to
solve the portfolio design problem. It is especially use-
ful when the off-the-shelf solvers are not available on
some online financial programming platforms. According
to synthetic simulation results, the proposed algorithm can
achieve as good solutions as MOSEK (an off-the-shelf
solver) and the computational time is within 0.3 seconds
when the problem size is smaller than 500, around one
half or one order of magnitude faster, depending on the
choice of parameters.

5) We demonstrate via real-data numerical simulations the
superior performance of our proposed stock-option port-
folio compared to the pure-stock portfolio design (in some
cases achieving a Sharpe ratio of 3.60 compared to the
0.73 of the benchmark).

D. Organization and Notation

The rest of the paper is organized as follows. In Section II,
we present the price model and derive the problem formula-
tion. In Section III, we improve the original naive formulation
by introducing different kinds of robustness so as to fix the
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zero-risk fallacy. In Section IV, we provide an efficient algo-
rithm to solve the robust formulation, which serves as an alter-
native to the off-the-shelf solvers. Finally, Section V presents
numerical results, and the conclusions are drawn in Section VI.

The following notation is adopted. Boldface upper-case letters
represent matrices, boldface lower-case letters denote column
vectors, and standard lower-case or upper-case letters stand for
scalars. R denotes the real field.� stands for the Hadamard prod-
uct. [x]+ = max(x, 0). ‖ · ‖p denotes the �p -norm of a vector.
∇(·) represents the gradient of a multivariate function. 1 stands
for the all-one vector and I stands for the identity matrix. XT ,
Tr(X), rank(X), and λmax(X) denote the transpose, trace, rank,
and the largest eigenvalue of X, respectively. σi(X) is the ith
largest singular value of X. Diag(x) is a diagonal matrix with
x filling its principal diagonal. Block diagonal matrix

⎡

⎢
⎢
⎣

x1
x2

. . .
xI

⎤

⎥
⎥
⎦

is compactly rewritten as Blkdiag({xi}I
i=1). X � 0 means X

is positive semidefinite. ‖X‖σp and ‖X‖a,b denotes the matrix
Schatten p-norm and �a,b -norm of X, respectively.

sgn(x) =

{1 x > 0
0 x = 0
−1 x < 0

.

II. PRICE MODELING AND PROBLEM STATEMENT

A. Price Modeling

We denote the stock price at time t as St and make the fol-
lowing assumption on the stock price process.

Assumption 1 ([2]): The stock price St satisfies the follow-
ing geometric Brownian motion:

dSt = μStdt + σStdzt , (4)

where μ and σ are given parameters standing for the mean and
volatility of the percentage change of St , and zt is the Wiener
process.

We denote the price of a particular derivative (could be op-
tions, futures, etc.) at time t as Ft . We impose the following
assumption on Ft .

Assumption 2: Let Ft be a function of time and the price of
its underlying, i.e., Ft = Ft(St, t) where 0 ≤ t ≤ T and T is
the time from now to the expiration date.

According to Itô’s lemma [2, Sec. 14.6], the differential of
Ft is

dFt =
(

∂Ft

∂St
μSt +

∂Ft

∂t
+

1
2

∂2Ft

∂S2
t

σ2S2
t

)
dt +

∂Ft

∂St
σStdzt .

(5)
In practice, we can hardly expect to obtain stock data on a

continuous time basis, so we modify the stochastic differential
equations to their discrete counterparts. The notations in (4) and
(5) are changed as follows: Δt in place of dt, Δzt in place of
dzt , ΔSt in place of dSt , and ΔFt in place of dFt . Now that
Δt is no longer arbitrarily small, the expressions of ΔSt and
ΔFt are merely an approximation. We assume the following
approximation is valid.

Assumption 3: In discrete time, the underlying stock price
approximately satisfies a geometric Brownian motion

ΔSt � μStΔt + σStΔzt , (6)

with the percentage drift μ and volatility σ staying constant for
a short-term period Δt. The difference of Ft is assumed to be
validly approximated by its continuous differential counterpart,
i.e.,

ΔFt �
(

∂Ft

∂St
μSt +

∂Ft

∂t
+

1
2

∂2Ft

∂S2
t

σ2S2
t

)
Δt +

∂Ft

∂St
σStΔzt .

(7)
Higher order statistics (Greeks) are not considered in this paper.

We can estimate the value of μ and σ from historical stock
prices. Note that (7) could be the price change of any derivative.
In this paper, we specify the derivatives as vanilla call and put
options for the sake of concreteness, whose prices are denoted
as Ct and Pt , respectively. The expressions of ΔCt and ΔPt

can be readily obtained from (7):

ΔCt �
(

ΔC,tμSt + ΘC,t +
1
2
ΓC,tσ

2S2
t

)
Δt + ΔC,tσStΔzt

(8)
and

ΔPt �
(

ΔP,tμSt + ΘP,t +
1
2
ΓP,tσ

2S2
t

)
Δt + ΔP,tσStΔzt ,

(9)
where ΔC,t = ∂Ct

∂St
, ΔP,t = ∂Pt

∂St
, ΘC,t = ∂Ct

∂ t , ΘP,t = ∂Pt

∂ t ,

ΓC,t = ∂ 2 Ct

∂S 2
t

, and ΓP,t = ∂ 2 Pt

∂S 2
t

. Note that the first term of ΔCt

or ΔPt is exactly the well-known delta-gamma approximation.
Although the Black-Scholes-Merton formula only applies to
European options, the aforementioned analysis can be extended
to American options as well as any other derivative that follows
the form Ft = Ft(St, t).

Remark 2: In continuous time, we can easily see in (5) that
the source of the variance of the option is the underlying stock
because they share the same stochastic source dzt . In discrete
time, for any 0 < t < T , the option value Ft is a determin-
istic function of time index t and its underlying stock price
St based on the evaluation of future pay-out. Now for t + 1,
we do not know St+1 yet. If we knew it, then Ft+1 would
be deterministic and Ft+1 − Ft � ΔFt would be determinis-
tic as well. However, St+1 is only characterized statistically
with some mean and variance. This translates into the stochas-
tic nature of St+1 − St � ΔSt . We can see from eq. (6) and
(7) that ΔSt and ΔFt share the same stochastic source Δzt .
This indicates that the source of the variance of the option is
the underlying stock. Moreover, this source is consistent with
the Black-Scholes world. We can rederive the Black-Scholes-
Merton formula with Assumptions 1 and 2, Itô’s lemma, and the
boundary conditions for vanilla call or put options. Technical
details can be found in [2, Chap. 15.6].

Remark 3: Now let us look into these partial derivatives.
These partial derivatives are named Greeks in the financial in-
dustry, namely, Δ, Θ, and Γ. They are used to measure the
sensitivity of the price of options to a change in the underlying
stock price. To simplify notation, we omit the subscript “t” for
the moment. Δ is defined as the rate of change of the option
price with respect to the underlying stock price. Θ is known as
the time decay parameter. It is the rate of change of the option
value with respect to the passage of time. The definition of Γ is
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the rate of change of the option’ s Δ with respect to the under-
lying stock price. If Γ is small, Δ changes mildly; if Γ is large,
Δ is sensitive to the underlying stock price. To sum up, each of
these Greeks measures a different dimension to the risk in an
option position. Interested readers can refer to [2, Chap. 19] for
more details.

B. Warm-up: Rederivation of Markowitz Mean-Variance
Framework for Stocks

Suppose we construct a portfolio consisting of I stocks, with
the proportion of the total budget B allocated to the ith stock wi

(note that by definition
∑I

i=1 wi = 1). The value of the portfolio
is then Π =

∑I
i=1 Bwi = B. For simplicity of notation, we

drop the time subscript “t” for the moment. Now we study the
percentage change of Π:

ΔΠ
Π

=

∑I
i=1 Bwi

ΔSi

Si

B

(a)�
I∑

i=1

wi
μiSiΔt + σiSiΔzi

Si

=
∑I

i=1
wiμiΔt

︸ ︷︷ ︸
deterministic

+
∑I

i=1
wiσiΔzi

︸ ︷︷ ︸
stochastic

(10)

where (a) follows from (6). Recall that zi’s are Wiener pro-
cesses with E[Δzi ] = 0, E[ΔziΔzj ] = ρijΔt with ρij being
correlation coefficients. Thus,

E
[
ΔΠ
Π

]
�

I∑

i=1

wiμiΔt � wT μ × Δt, (11)

Var
[
ΔΠ
Π

]
� E

⎡

⎣

(
I∑

i=1

wiσiΔzi

)2
⎤

⎦� E
[(

wT Diag (σ) Δz
)2]

= wT Diag (σ) E
[
ΔzΔzT

]
Diag (σ)w

= wT Diag (σ)

⎡

⎢
⎣

ρ11 · · · ρ1I

...
. . .

...
ρI1 · · · ρII

⎤

⎥
⎦Diag (σ)w × Δt

� wT Σw × Δt, (12)

where μ is the expected stock return and Σ is the covariance
of the stock returns. In order to achieve a tradeoff between
the portfolio expected return (E[ΔΠ

Π ]) and risk (Var[ΔΠ
Π ]), we

eventually obtain the Markowitz mean-variance optimization
problem [1] [13, Sec. 5.1.1].

C. Extension to Portfolio with Mixed Stocks and Options

Now we construct a portfolio of mixed stocks and options
and we only consider vanilla call and put options. We include I
stocks in the portfolio and for each stock, e.g., the ith stock, we
consider Mi call options and Ni put options. We redefine the
normalized portfolio vector w as

w =
[
wT

1 · · · wT
i · · · wT

I

]T
, (13)

where

wi =

[
wS,i︸︷︷︸
stock

wC,1i · · · wC,Mi i︸ ︷︷ ︸
call options

wP,1i · · · wP,Ni i︸ ︷︷ ︸
put options

]T

. (14)

The expression of the percentage change of Π is (time subscript
“t” is dropped for simplicity of notation)

ΔΠ
Π

=

∑I
i=1

(
BwS,i

ΔSi

Si
+
∑Mi

m=1 BwC,mi
ΔCm i

Cm i

+
∑Ni

n=1 BwP,ni
ΔPn i

Pn i

)

B

(a)�
I∑

i=1

[
wS,i

Si
(μiSiΔt + σiSiΔzi)

+
Mi∑

m=1

wC,mi

Cmi
ΔC,miσiSiΔzi +

Ni∑

n=1

wP,ni

Pni
ΔP,niσiSiΔzi

+
Mi∑

m=1

wC,mi

Cmi

(
ΔC,miμiSi + ΘC,mi +

1
2
ΓC,miσ

2
i S2

i

)
Δt

+
Ni∑

n=1

wP,ni

Pni

(
ΔP,niμiSi + ΘP,ni +

1
2
ΓP,niσ

2
i S2

i

)
Δt

]

(15)

where (a) follows from the expressions of ΔCmi and ΔPni in
(8) and (9) and ΔC,mi , ΔP,ni , ΘC,mi , ΘP,ni , ΓC,mi , and ΓP,ni

follow the same definition as in (8) and (9) up to a subscript
difference. Thus,

E
[
ΔΠ
Π

]
�

I∑

i=1

[

wS,iμiΔt

+
Mi∑

m=1

wC,mi

Cmi

(
ΔC,miμiSi + ΘC,mi +

1
2
ΓC,miσ

2
i S2

i

)
Δt

+
Ni∑

n=1

wP,ni

Pni

(
ΔP,niμiSi + ΘP,ni +

1
2
ΓP,niσ

2
i S2

i

)
Δt

]

� wT u × Δt, (16)

where

u =
[
uT

1 · · · uT
i · · · uT

I

]T
, (17)

and

ui =
[
μi,

1
C1i

(
ΔC,1iμiSi + ΘC,1i +

1
2
ΓC,1iσ

2
i S2

i

)
, . . . ,

1
CMi i

(
ΔC,Mi iμiSi + ΘC,Mi i +

1
2
ΓC,Mi iσ

2
i S2

i

)
,

1
P1i

(
ΔP,1iμiSi + ΘP,1i +

1
2
ΓP,1iσ

2
i S2

i

)
, . . . ,

1
PNi i

(
ΔP,Ni iμiSi + ΘP,Ni i +

1
2
ΓP,Ni iσ

2
i S2

i

)]T

;

(18)
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Var
[
ΔΠ
Π

]
� Var

[
I∑

i=1

(

wS,i +
Mi∑

m=1

wC,mi

Cmi
ΔC,miSi

+
Ni∑

n=1

wP,ni

Pni
ΔP,niSi

)

σiΔzi

]

(a)
= Var

[
wT VDiag (σ) Δz

]

= wT VDiag (σ) E
[
ΔzΔzT

]
Diag (σ)VT w

(b)
= wT VΣVT w × Δt, (19)

where (a) follows from defining V = Blkdiag({vi}I
i=1) and vi

= [1 ΔC , 1 i Si

C1 i
· · · ΔC , M i i Si

CM i i

ΔP , 1 i Si

P1 i
· · · ΔP , N i i Si

PN i i
]T and (b)

from the definition of Σ as in (12).
Remark 4 (No risk-free arbitrage): We denote N � I +∑I
i=1(Mi + Ni). Note that the length of w is N , the size of V

is N × I , and the size of Σ is I × I . This means that the covari-
ance matrix VΣVT is highly rank-deficient and has a nontrivial
null space. This result makes sense because the prices of options
are perfectly determined from those of their underlying stocks.
Under the assumption of no riskless arbitrage opportunities (the
Black-Scholes world), any stock-option portfolio in that null
subspace (i.e., with a zero risk) shall achieve a zero excess re-
turn. Furthermore, any stock-option portfolio with a nonzero
risk can achieve a nonzero excess return but in theory the same
return can be achieved with only stocks. The only hope to con-
struct a stock-option portfolio with a better performance than
only stocks is that the original assumption of no riskless arbi-
trage does not hold. In addition, in a practical case, one has
to deal with the errors of parameter estimation. Admittedly, in
the absence of estimation error, one can find an arbitrage port-
folio, just like what [14] conjectured. With estimation error,
this naive risk measurement can be disastrous since the claimed
zero risk fails to materialize in practice. We name this phe-
nomenon “zero-risk fallacy” and it will be properly addressed in
Section III. Paper [15] suggests that there may exist an efficient
asset subset with which we can achieve the same performance.

Remark 5 (Investment opportunities): In the Black-Scholes
world, it is assumed that no riskless arbitrage opportunities ex-
ist and the true values of the parameters are known to all the
financial market participants and are applied by everyone in
the evaluation of different securities. In the practical financial
world, the assumption of no riskless arbitrage does not seem to
hold. There exist undervalued and overpriced assets. Some peo-
ple can do better in recognizing the mispricing than others due
to a better knowledge, so we can have some hope to construct
a stock-option portfolio with a better performance than only
stocks. The true statistical parameters are hidden to everyone.
Every financial market participant is trying to make a better
mean-variance estimation so as to take advantage of others’
mispricings.

D. Transaction Cost Concerns

Trading of stocks or options incurs transaction costs. Take
the commission rule of Interactive Brokers2 for example. The
transaction cost for stocks is the minimum of USD 0.005 per
share and 0.5% of the trade value if this number is larger than

2https://www.interactivebrokers.com

USD 1.00; otherwise the cost is USD 1.00. The transaction
cost caused by trading options of fewer than 10,000 monthly
contracts (one contract represents 100 shares of stocks) is

� USD 0.70 per contract if the premium (option price) is no
less than USD 0.10,

� USD 0.50 per contract if the premium is between USD
0.05 and 0.10, and

� USD 0.25 per contract if the premium is smaller than USD
0.05

if this number is larger than USD 1.00. For simplicity, we assume
our trading volume is always large enough to exceed USD 1.00,
whether stocks or options. Also, the trading volume of options
is always smaller than 10,000 monthly contracts. In this case,
the transaction cost of trading wS dollars of stocks at price S is

Transaction Cost = 0.5% × wS /max (1, S) , (20)

while the transaction cost of trading wC (wP ) dollars of call
(put) options at price C (P ) is

Transaction Cost =
{

η (C) × wC /C call

η (P ) × wP /P put
, (21)

where

η(C or P ) =

⎧
⎪⎨

⎪⎩

0.70/100 C or P ≥ 0.1
0.50/100 0.05 ≤ C or P < 0.1
0.25/100 C or P < 0.05

.

To sum up, the expression of transaction cost can be compactly
written as

B ‖(w − w0) � q‖1 , (22)

where w is the target portfolio, w0 is the current portfolio, and

q =
[
qT

1 · · · qT
i · · · qT

I

]T
, (23)

with

qi =
[

0.5%
max(1,Si)

η (C1 i)
C1 i

· · · η(CMi i)
CM i i

η (P1 i)
P1 i

· · · η(PN i i)
PN i i

]T

.
(24)

The transaction cost penalty coincides with the LASSO estima-
tion technique [16], [17].

E. Problem Formulation

The ideal investment portfolio has the following characteris-
tics: 1) high (expected) return, 2) low risk, and 3) low turnover.
The first two characteristics are self-explanatory. As for low
turnover, the true motivation is to lower the transaction cost
caused by rebalancing. Since we can already model transaction
cost, we can directly minimize this quantity. In order to design a
desirable portfolio, we want to achieve a tradeoff between high
expected return (E[ΔΠ

Π ]), low risk (measured by Var[ΔΠ
Π ]), and

low transaction cost (B‖(w − w0) � q‖1). Thus we naturally
formulate the optimization problem as

minimize
w

− wT u + λwT VΣVT w

+ ξB ‖(w − w0) � q‖1

subject to 1T w = 1

w ≥ 0, (25)

where λ and ξ are positive regularization parameters. The scal-
ing factor Δt that appears in (16) and (19) is removed in E[ΔΠ

Π ]
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and Var[ΔΠ
Π ] and it is absorbed in the parameter ξ. We addition-

ally impose the long-only constraint because 1) short selling
of stocks and options requires an extra margin deposit [2, Sec.
10.7] which we do not want to consider (although it could be
allowed in the formulation); 2) short selling of options can be
very risky, especially for risk-averse investors [8].

III. ROBUST RISK MEASUREMENT

In Section II-C, we derived the expression of Var[ΔΠ
Π ], which

is regarded as a measure of risk: Var[ΔΠ
Π ] ∝ wT VΣVT w. This

quantity could be zero even if w �= 0 because VΣVT is rank
deficient. This zero-risk phenomenon cannot be realized in prac-
tice since we are investing in risky assets, and thus we name this
phenomenon risk-free fallacy. We see two reasons to account
for the risk-free fallacy. The first reason is that, assuming the
covariance VΣVT can be perfectly estimated, the portfolio is
still exposed to a higher order risk despite that it is risk-free to a
lower order. There do exist methods for hedging a higher order
risk, but such methods often introduce new heavier tail risks
that are even harder to hedge. Including higher order moments
enriches the risk measurement so that the overall risk will never
achieve zero. The second reason is that the covariance VΣVT

contains the estimation error due to the estimation error in V
and Σ. Higher order statistics are not easy to obtain in practice,
so an alternative is to work on the covariance to suppress the
effect of estimation error. In the following, we propose intro-
ducing different types of robustness so as to force the risk term
never to become zero.

A. Stochastic Robustness

One way to deal with the zero-risk fallacy is to make the
quadratic matrix full rank, and the most straightforward way
is to introduce stochastic robustness, i.e., model the parame-
ters as random variables around the noisy estimates. We bor-
row the idea from [18], a wireless communications application,
where the authors acknowledged the imperfectness of channel
state information (as opposed to naively assuming the estimates
were perfect) and modeled the parameters statistically. In their
modeling scheme, the channel parameter consists of a determin-
istic component equal to the estimate and a zero-mean stochastic
component modeling the estimation error.

Let’s start from the definition of covariance. We define the
asset return as r = [rT

1 , . . . , rT
I ] with

rT
i =

[
rS,i︸︷︷︸

stock return

, rC,1i , . . . , rC,Mi i︸ ︷︷ ︸
returns of call options

, rP,1i , . . . , rP,Ni i︸ ︷︷ ︸
returns of put options

]
.

(26)
For stock return, rS = ΔS

S ; for options return, rC = ΔC
C and

rP = ΔP
P . The expressions can be found in (15). Applying the

law of total covariances, we get

Cov [r] = Cov [E [r|Σ,V]] + E [Cov [r|Σ,V]]

� Cov [u] + E
[
VΣVT

]
, (27)

where the expected return u comes from (17) and the ap-
proximation results from (16) and (19). Following the logic
of stochastic robustness, we can use the same modeling on the
three parameters u, V, and Σ. We model u = ū + m where
ū is the estimation of u (the μ’s come from sample mean and
the Greeks are obtained from the Bloomberg terminal) and m
is elementwisely independent and identically distributed with

E[m] = 0 and Cov[m] = Dm , a diagonal matrix. One way to
construct Dm is to impose variance on μ, Δ, Θ, and Γ inde-
pendently and then figure out the overall variance for each rS ,
rC , and rP so as to form Dm ’s principal diagonal. Recall that
V = Blkdiag({vi}I

i=1) , so we can assume ∀i, vi = v̄i + ni

where v̄i is deterministic and ni is stochastic with
⎧
⎪⎨

⎪⎩

E [ni ] = 0

E
[
ninT

j

]
= 0, i �= j

E
[
ninT

i

]
= Ri � 0.

(28)

Thus,

V = Blkdiag
(
{vi}I

i=1

)

= Blkdiag
(
{v̄i}I

i=1

)
+ Blkdiag

(
{ni}I

i=1

)

� V̄ + N. (29)

We similarly model Σ: Σ = Σ̄ + Ξ with E[Ξ] = 0. We addi-
tionally assume u, V, and Σ are statistically independent. In
the first stage of derivation, we merely rewrite the covariance
matrix in terms of the stochastic model just described and obtain

Var
[
wT r

]
= wT Cov [r]w = wT

(
Cov [u] + E

[
VΣVT

])
w

= wT Dmw + wT E
[
(
V̄ + N

) (
Σ̄ + Ξ

) (
V̄T + NT

)
]
w

= wT Dmw + wT E
[
(
V̄ + N

)
Σ̄
(
V̄T + NT

)
]
w

= wT Dmw + wT E
[
V̄Σ̄V̄T

]
w + 2wT E

[
V̄Σ̄NT

]
w

+ wT E
[
NΣ̄NT

]
w. (30)

We notice that 1) wT E[V̄Σ̄V̄T ]w = wT V̄Σ̄V̄T w and 2)
wT E[V̄Σ̄NT ]w = 0. Therefore,

Var
[
wT r

]
= wT Dmw + wT V̄Σ̄V̄T w + wT E

[
NΣ̄NT

]
w.

(31)
The second stage of derivation is reflected in the following
lemma.

Lemma 6: Suppose N = Blkdiag({ni}I
i=1) satisfies (28).

Then,

E
[
NΣ̄NT

]
= Blkdiag

({
Σ̄iiRi

})
� Dn . (32)

Proof: The proof is straightforward and is omitted due to
space restrictions. �

With stochastic robustness, we modify the original ideal and
naive risk term wT VΣVT w to a more realistic and meaningful
one: wT (V̄Σ̄V̄T +D)w where D=Dm +Dn . Dm is a diago-
nal matrix and Dn is a block diagonal matrix, so D is block dia-
gonal. V̄Σ̄V̄T +D is a full rank covariance matrix. This mod-
eling scheme indeed avoids the zero-risk fallacy, but it seems to
have no effect on the parameter Σ except for a notational dif-
ference. This is because wT VΣVT w is linear in Σ. By taking
the expectation, we can only get its deterministic component.

Remark 7: The initial risk measurement is wrongly esti-
mated in practice and suffers from zero-risk fallacy due to lack
of higher order statistics and estimation error in parameters.
After we introduce stochastic robustness, the new risk measure-
ment overcomes the zero-risk fallacy and is observed to enjoy
better performance. The introduced robustness helps to suppress
the effect of estimation error and, in a sense, make a slightly
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TABLE I
SUMMARY OF MODIFIED RISK EXPRESSIONS

better prediction on risk than before so that we are able to take
advantage of others’ mispricings.

B. One Step Further: Worst-Case Robustness

Since stochastic robustness provides no protection from the
inaccurate estimation of Σ, we consider further imposing worst-
case robustness so as to take into account the uncertainty of
Σ. We assume Σ has a nominal value Σ̄ and lies within an
uncertainty set UΣ , which we specify in the following.

1) Matrix Norm (Schatten p-Norm) Uncertainty: We define
the Schatten p-norm as

‖A‖σp =

⎛

⎝
rank(A)∑

i=1

[σi (A)]p

⎞

⎠

1
p

. (33)

We introduce the following lemma to show the impact of Schat-
ten p-norm uncertainty.

Lemma 8: When UΣ = {Σ|‖Σ − Σ̄‖σp ≤ ε},

max
Σ∈UΣ

(
wT V̄ΣV̄T w

)
= wT V̄

(
Σ̄ + εI

)
V̄T w. (34)

Proof: The proof is straightforward and is omitted due to
space restrictions. �

2) Matrix Norm (�a,b -norm) Uncertainty: We define the ma-
trix �a,b -norm (a ≥ 1 and b ≥ 1) as

‖A‖a,b =

⎛

⎝
∑

j

(
∑

i

|aij |a
)b

a

⎞

⎠

1
b

=

⎛

⎝
∑

j

‖Aei‖b
a

⎞

⎠

1
b

. (35)

Note that when a = b, we have ‖A‖a,a = ‖vec(A)‖a . Now we
present the following lemma.

Lemma 9: When UΣ = {Σ|‖Σ − Σ̄‖a,b ≤ ε},

max
Σ∈UΣ

(
wT V̄ΣV̄T w

)

= wT V̄Σ̄V̄T w + ε
∥
∥V̄T w

∥
∥

a
a −1

∥
∥V̄T w

∥
∥

b
b−1

. (36)

Proof: The proof is straightforward and is omitted due to
space restrictions. �

Remark 10: It can be observed that 1) if a = b, the
expression ‖V̄T w‖ a

a −1
‖V̄T w‖ b

b−1
= ‖V̄T w‖2

a
a −1

is convex

in w; if a = b = 2, ‖V̄T w‖ a
a −1

‖V̄T w‖ b
b−1

= ‖V̄T w‖2
2 =

wT V̄V̄T w, which boils down to the Schatten p-norm case.
Remark 11: Now that a ≥ 1 and b ≥ 1, the ranges of a

a−1 and
b

b−1 are also [1,+∞). With a slight abuse of notation, we replace
‖V̄T w‖ a

a −1
with ‖V̄T w‖a and ‖V̄T w‖ b

b−1
with ‖V̄T w‖b for

simple notation when presenting the formulation.
3) Elementwise Uncertainty: We introduce the following

lemma to show the impact of elementwise uncertainty.
Lemma 12: When UΣ ={Σ||Σij −Σ̄ij |≤εij , ∀i, j} where

εij = εji ,

max
Σ∈UΣ

(
wT V̄ΣV̄T w

)
= wT V̄Σ̄V̄T w +

∑

i,j

εij

∣
∣wT

i v̄i

∣
∣
∣
∣wT

j v̄j

∣
∣

(37)
(Recall that V̄ = Blkdiag({v̄i})).

Proof: The proof is straightforward and is omitted due to
space restrictions. �

C. Summary of Modified Formulations

We summarize the aforementioned modified risk expressions
in Table I. We may rewrite some of the expressions for the sake
of clarity.

We notice that Expressions III and IV are not convex in
general. For simplicity and convenience, we only focus on the
scenarios where the modified problems are convex. For Expres-
sion III, we set a = b and additionally confine a to 1, 2, and +∞
because these values are most commonly used. For Expression
IV, we simply let εij = ε and thus E = ε11T .

It is easy to see that Expressions I, II, and III can be unified into
Expression III: when ε = 0, Expression III becomes Expression
I; when a = b = 2, Expression III becomes Expression II. Now
that in Expression IV we set E = ε11T , we obtain

wT
(
V̄Σ̄V̄T + D

)
w +

∣
∣V̄T w

∣
∣T E

∣
∣V̄T w

∣
∣

= wT
(
V̄Σ̄V̄T + D

)
w + ε

∣
∣V̄T w

∣
∣T 11T

∣
∣V̄T w

∣
∣

= wT
(
V̄Σ̄V̄T + D

)
w + ε

(
1T
∣
∣V̄T w

∣
∣)2

= wT
(
V̄Σ̄V̄T + D

)
w + ε

∥
∥V̄T w

∥
∥2

1 , (38)

which means, when a = b = 1, Expression III becomes
Expression IV.
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D. A Unified Formulation

To this end, we have been able to unify the four expressions
in Table I into one if the aforementioned parameter settings are
applied. The unified problem formulation is formally presented
as follows:

minimize
w

− wT u + λ
[
wT Aw + ε

∥
∥V̄T w

∥
∥2

a

]

+ ξB ‖(w − w0) � q‖1

subject to 1T w = 1

w ≥ 0, (39)

where A = V̄Σ̄V̄T + D and a = 1, 2, or +∞. Note that if
one seeks to maximize the Sharpe Ratio of the portfolio, the
robustness discussion will stay the same.

E. Black-Litterman Extension

We consider incorporating the idea of the Black-Litterman
portfolio [19], which involves financial views. The view vector
ν is modeled on the random return r [20]:

ν = Pr + e, (40)

where P is a view-based parameter and e measures er-
ror. Thus, the expected return u and robustified covari-
ance A (A = V̄Σ̄V̄T + D, as is defined in Sec. III-D) are
modified as

uBL = u + APT
(
PAPT + Ω

)−1
(ν − Pu) (41)

and

ABL = A − APT
(
PAPT + Ω

)−1
PA. (42)

The view-based parameter P is decided by relating the stocks
with the corresponding options. Taking one stock S and one
option C, for example, we have

[−SΔ C ]
[

rS

rC

]
� Θ +

1
2
Γσ2S2 , (43)

inferring from (6) and (8) (rS = ΔS/S and rC = ΔC/C). In
this case, we obtain p = [−SΔ C ] (now P is a row-vector) and
ν = Θ + 1

2 Γσ2S2 (now ν is a scalar). The parameter Ω can be
chosen as a scaled identity.

IV. EFFICIENT ALGORITHMS FOR PORTFOLIO OPTIMIZATION:
AN ALTERNATIVE TO SOLVERS

With problem (39) being convex, we could conveniently call
an off-the-shelf solver, e.g., MOSEK [21], SeDuMi [22], or
SDPT3 [23], to obtain a global optimal solution. However, it
can be tedious to rewrite the problem formulation in the correct
format of the solver. For that purpose, one can conveniently use
a “modeling framework” to do this tedious reformulation like
cvx [24], which is available for Matlab, R, Python, and Julia.
This convenience comes at the cost of a higher computational
cost.

While the off-the-shelf solvers can be applied, they may not
support all the simulation platforms. There are many widely
used online financial programming platforms, e.g., Worldquant,
Quantopian, JoinQuant, Ricequant, and Uquant, and not all of
them may support appropriate solvers. In the following we de-
velop a specialized algorithm simple to implement that does not
require any off-the-shelf solver. Not only such an algorithm is

convenient but it is even faster than solvers (according to the
simulations about one half or one order of magnitude faster).

From the constraint of (39) we find there exists a coupling
linear constraint 1T w = 1, which could be tackled with the
popular approach of alternating direction method of multipliers
(ADMM) [25]. In this paper, we consider an advanced version
of ADMM named BSUM-M [26] for algorithm design. Let us
take a look at this general method.

A. BSUM-M Overview

Consider the following general convex problem:

minimize
{xk }K

k = 1

f ({xk}) +
K∑

k=1

gk (xk )

subject to
K∑

k=1

Hkxk = h

xk ∈ Xk , k = 1, 2, . . . ,K (44)

where f is a smooth convex function, gk is a nonsmooth convex
function, and Xk is a convex set for any k. Define

x(l)
−k �

(
x(l)

1 , . . . ,x(l)
k−1 ,x

(l−1)
k+1 , . . . ,x(l−1)

K

)
. (45)

The BSUM-M algorithm is briefly described in the following
table.

At each iteration l ≥ 1 :⎧
⎪⎪⎨

⎪⎪⎩

y(l+1) = y(l) + α(l)
(
h −∑K

k=1 Hkx
(l)
k

)

x(l+1)
k = arg minxk ∈Xk

uk

(
xk ;x(l)

k ,x(l+1)
−k

)
(46)

− [y(l+1)
]T

Hkxk + gk (xk )

where α(l) > 0 is the step size for dual update and uk is an
upper bound of f({xk}) + ρ

2 ‖h −∑K
k=1 Hkxk‖2

2 at a

given iterate (x(l)
k ,x(l+1)

−k ).

Convergence: The main result of convergence of BSUM-
M is elaborated in [26, Theorem 2.1]. Every limit point of
{{x(l)

k }K
k=1 ,y

(l)} is a primal and dual optimal solution. The
upper bound function uk must satisfy a few conditions [26,
Assumption B], so that the convergence criteria are satisfied.
The conditions are given as follows. We denote

H−kx
(l)
−k =

k−1∑

k ′=1

Hk ′x(l)
k ′ +

K∑

k ′=k+1

Hk ′x(l−1)
k ′ (47)

and uk must satisfy
1) uk (x(l)

k ;x(l)
k ,x(l+1)

−k ) = f(x(l)
k ,x(l+1)

−k ) + ρ
2 ‖h − Hkx

(l)
k

− H−kx
(l)
−k‖2

2 , ∀x(l)
k being feasible, ∀k,

2) uk (xk ;x(l)
k ,x(l+1)

−k ) ≥ f(xk ,x(l+1)
−k ) + ρ

2 ‖h − Hkxk −
H−kx

(l)
−k‖2

2 , ∀xk ,x(l)
k ,x(l+1)

−k being feasible, ∀k,

3) ∇xk
uk (xk ;x(l)

k ,x(l+1)
−k )|xk =x( l )

k

= ∇xk
(f(xk ,x(l+1)

−k ) +
ρ
2 ‖h − Hkxk − H−kx

(l)
−k‖2

2)|xk =x( l )
k

, ∀x(l)
k ,x(l+1)

−k being fea-

sible, ∀k,
4) uk (xk ;x(l)

k ,x(l+1)
−k ) is continuous in xk and (x(l)

k ,x(l+1)
−k )

and also strongly convex in xk ,
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5) uk (xk ;x(l)
k ,x(l+1)

−k ) has a Lipchitz continuous gradient.
Interested readers may refer to [26] for more technical details.

B. Implementation of BSUM-M

We find the convergence conditions in [26, Theorem 2.1] are
either readily satisfied or can be satisfied via doing a change of
variables, so we are guaranteed to obtain the optimal solution.
We observe in (39) that a could be 1, 2, or +∞, so we look into
each case by case in the following. We start with a = 2, which
is the simplest case.

1) Case I, a = 2: When a = 2, the objective of (39) can be
rewritten as

−wT u + wT Bw + ξB ‖(w − w0) � q‖1 , (48)

where

B = λA + λεV̄V̄T . (49)

Here f(w) = −wT u + wT Bw and uw (w;w(l)) should be an
upper bound of f(w) + ρ

2 (1 − 1T w)2 . We introduce the fol-
lowing lemma to derive its upper bound function.

Lemma 13 ([27, Lemma 1]): The quadratic function xT Px
+ pT x + const (P is real symmetric) is upper bounded at
x0 by

λmax (P)xT x + rT x + const′, (50)

where r = 2Px0 − 2λmax(P)x0 + p, and this upper bound
function satisfies the aforementioned convergence conditions.

By applying Lemma 13, we obtain

f (w) +
ρ

2
(
1 − 1T w

)2

= wT
(
B +

ρ

2
11T

)
w − (ρ1 + u)T w +

ρ

2

≤ λuwT w + bT w + const, (51)

where λu = λmax(M) > 0, b = 2Mw(l) − 2λuw(l) − ρ1 −
u, and M = B + ρ

2 11T . So we set uw (w;w(l)) = λuwT w +
bT w + const.

Therefore, the update steps of BSUM-M are

ν(l+1) = ν(l) + α(l)
(
1 − 1T w(l)

)
(52)

and

w(l+1) = arg min
w≥0

λuwT w + bT w

− ν(l+1)1T w + ξB ‖(w − w0) � q‖1 , (53)

i.e., ∀k,

w
(l+1)
k = arg min

wk ≥0
λuw2

k +
(
bk − ν(l+1)

)
wk

+ ξBqk |wk − w0,k | . (54)

We introduce the following lemma to give the closed form so-
lution of w

(l+1)
k .

Lemma 14: There holds

arg min
x≥0

αx2 + βx + γ |x − x0 |

=

⎧
⎪⎪⎨

⎪⎪⎩

[
γ−β
2α

]

+
x0 ≥ γ−β

2α

− γ+β
2α x0 ≤ − γ+β

2α

x0 − γ+β
2α < x0 < γ−β

2α

�
[
[x0 ]

γ −β
2 α

− γ + β
2 α

]

+
, (55)

where α > 0, γ > 0, and x0 ≥ 0.
Proof: The proof is straightforward and is omitted due to

space restrictions. �
Thus, we can compactly express w

(l+1)
k as

w
(l+1)
k =

[

[w0,k ]
ξ B q k −b k + ν ( l + 1 )

2 λu

− ξ B q k + b k −ν ( l + 1 )

2 λu

]

+

. (56)

2) Case II, a = 1: Now we look into a slightly more involved
case. When a = 1, we rewrite (39) as

minimize
w ,t,s1 ,s2

− wT u + wT (λA)w + λε
(
1T t
)2

+ ξB ‖(w − w0) � q‖1

subject to V̄T w + s1 = t, s1 ≥ 0

V̄T w − s2 = −t, s2 ≥ 0

1T w = 1

w ≥ 0. (57)

Here f(w, t, s1 , s2) = −wT u + wT (λA)w + λε(1T t)2 and
we need to design three upper bound functions: uw , ut , and us
(i.e., u(s1 ,s2 )) for BSUM-M implementation. We introduce the
following lemma to obtain the upper bound functions.

Lemma 15: The upper bound functions for f(w, t, s1 , s2) +
ρ
2 [‖V̄T w + s1 − t‖2

2 + ‖V̄T w − s2 + t‖2
2 + (1 − 1T w)2 ]

are given as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uw

(
w;w(l) , t(l) , s(l)

1 , s(l)
2

)

= λmax (M) · wT w + bT w + const

ut

(
t;w(l+1) , t(l) , s(l)

1 , s(l)
2

)

= tT
(
ρI + λε11T

)
t − ρ

(
s(l)
1 + s(l)

2

)T
t + const

us

(
s1 , s2 ;w(l+1) , t(l+1) , s(l)

1 , s(l)
2

)

= ρ
2 s

T
1 s1 +ρ

(
V̄T w(l+1) − t(l+1)

)T
s1 + ρ

2 s
T
2 s2

−ρ
(
V̄T w(l+1) + t(l+1)

)T
s2 + const,

(58)
where

M = λA + ρV̄V̄T +
ρ

2
11T (59)

and

b = 2Mw(l) − 2λuw(l) + ρV̄
(
s(l)
1 − s(l)

2

)
− ρ1 − u. (60)

All of them satisfy the aforementioned convergence conditions.
Proof: The proof is straightforward and is omitted due to

space restrictions. �
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Therefore, the update steps of BSUM-M are

⎧
⎪⎪⎨

⎪⎪⎩

z(l+1)
1 = z(l)

1 + α(l)
(
t(l) − V̄T w(l) − s(l)

1

)

z(l+1)
2 = z(l)

2 + α(l)
(
−t(l) − V̄T w(l) + s(l)

2

)

ν(l+1) = ν(l) + α(l)
(
1 − 1T w(l)

)
,

(61)

the update of w follows (56),

t(l+1) = arg min tT
(
ρI + λε11T

)
t − ρ

(
s(l)
1 + s(l)

2

)T

t

+
[
z(l+1)

1 − z(l+1)
2

]T
t

=
1
2
(
ρI + λε11T

)−1
[
ρ
(
s(l)
1 + s(l)

2

)
− z(l+1)

1 + z(l+1)
2

]

=
1
2

(
ρ−1I − λε

ρ2 + ρλε1T 1
11T

)
·

[
ρ
(
s(l)
1 + s(l)

2

)
− z(l+1)

1 + z(l+1)
2

]
, (62)

and
(
s(l+1)
1 , s(l+1)

2

)

= arg min
s1 ,s2 ≥0

ρ

2
sT
1 s1 + ρ

(
V̄T w(l+1) − t(l+1)

)T

s1

+
ρ

2
sT
2 s2 − ρ

(
V̄T w(l+1) + t(l+1)

)T

s2

−
[
z(l+1)

1

]T
s1 +

[
z(l+1)

2

]T
s2

=
([

−V̄T w(l+1) + t(l+1) + z(l+1)
1 /ρ

]

+
,

[
V̄T w(l+1) + t(l+1) − z(l+1)

2 /ρ
]

+

)
. (63)

3) Case III, a = +∞: When a = +∞, problem (39) is re-
formulated as

minimize
w ,t,s1 ,s2

− wT u + wT (λA)w + λεt2

+ ξB ‖(w − w0) � q‖1

subject to V̄T w + s1 = t1, s1 ≥ 0

V̄T w − s2 = −t1, s2 ≥ 0

1T w = 1

w ≥ 0, (64)

which is very similar to (64), so we present the update steps of
BSUM-M directly as follows:

⎧
⎪⎪⎨

⎪⎪⎩

z(l+1)
1 = z(l)

1 + α(l)
(
t(l)1 − V̄T w(l) − s(l)

1

)

z(l+1)
2 = z(l)

2 + α(l)
(
−t(l)1 − V̄T w(l) + s(l)

2

)

ν(l+1) = ν(l) + α(l)
(
1 − 1T w(l)

)
,

(65)

Algorithm 1: BSUM-M-based Portfolio Optimization
Algorithm, a = 2.

Require: Initialization: ν(0) , w(0) , l = 0, ρ;
1: B = λA + λεV̄V̄T ;
2: M = B + ρ

2 11T ;
3: λu = λmax(M);
4: repeat
5: ν(l+1) = ν(l) + α(l)(1 − 1T w(l));
6: b = 2Mw(l) − 2λuw(l) − ρ1 − u;
7: Compute w

(l+1)
k using (56), ∀k;

8: l = l + 1;
9: until convergence

the update of w follows (56),

t(l+1)

= arg min
(
ρ1T 1 + λε

)
t2 − ρ

(
s(l)
1 + s(l)

2

)T

1t

+
[
z(l+1)

1 − z(l+1)
2

]T
1t

=
1
2
(
ρ1T 1 + λε

)−1
[
ρ
(
s(l)
1 + s(l)

2

)
− z(l+1)

1 + z(l+1)
2

]T
1,

(66)

and
(
s(l+1)
1 , s(l+1)

2

)

= arg min
s1 ,s2 ≥0

ρ

2
sT
1 s1 + ρ

(
V̄T w(l+1) − t(l+1)1

)T

s1

+
ρ

2
sT
2 s2 − ρ

(
V̄T w(l+1) + t(l+1)1

)T

s2

−
[
z(l+1)

1

]T
s1 +

[
z(l+1)

2

]T
s2

=
([

−V̄T w(l+1) + t(l+1)1 + z(l+1)
1 /ρ

]

+
,

[
V̄T w(l+1) + t(l+1)1 − z(l+1)

2 /ρ
]

+

)
. (67)

We summarize the efficient algorithms for portfolio optimiza-
tion in Algorithms 1 and 2. Some steps may be reorganized for
code efficiency.

C. Computational Complexity

We present an analysis on the computational complexity of
Algorithms 1 and 2 in this subsection and later in section V
we will show numerical results. The analysis is done on a per-
iteration basis. First we study Algorithm 1. Each iteration con-
sists of three steps: updating ν, b, and w sequentially. Recall
that the length of w is I +

∑I
i=1(Mi + Ni) = N . The most

costly step in the update of ν is the summation of w(l) , of
complexity O(N). The most costly step in the update of b is
the matrix multiplication Mw(l) (M ∈ RN ×N ), of complexity
O(N 2). The computation of w(l+1) is by nature elementwise.
According to Lemma 14, updating one element of w(l+1) needs
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Algorithm 2: BSUM-M-based Portfolio Optimization
Algorithm, a = 1 or +∞.

Require: Initialization: ν(0) , w(0) , l = 0, ρ;
1: M = λA + ρV̄V̄T + ρ

2 11T ;
2: λu = (M);
3: repeat
4: Dual update: if a = 1, cf. (61); if a = +∞, cf. (65);
5: b = 2Mw(l)− 2λuw(l) + ρV̄(s(l)

1 − s(l)
2 ) − ρ1−u;

6: Compute w
(l+1)
k using (56), ∀k;

7: Update t or t: if a = 1, cf. (62); if a = +∞, cf. (66);
8: Update s1 , s2 : if a = 1, cf. (63); if a = +∞, cf. (67);
9: l = l + 1;

10: until convergence

O(1), thus in total O(N). Therefore, the overall computational
complexity of Algorithm 1 per iteration is O(N 2), neglecting
lower-order terms.

Next we look into Algorithm 2. Each iteration consists of five
steps: updating (z1 , z2 , ν), b, w, t or t, and (s1 , s2) sequentially.
The most costly step in the update of (z1 , z2) is the matrix
multiplication V̄T w(l) (V̄ ∈ RN ×I ) whether a = 1 or +∞, of
complexity O(NI). The complexity of updating ν is O(N).
The complexity of updating b is O(N 2 + NI) due to Mw(l)

and V̄(s(l)
1 − s(l)

2 ). The computation of w(l+1) is still O(N).
When a = 1, the update of t requires O(I2) (an I × I matrix
multiplies an I × 1 vector); and when a = +∞, updating t only
requires O(I) (summation of a length-I vector). Finally, the
update of (s1 , s2) requires O(NI) as well, due to V̄T w(l+1) ,
whether a = 1 or +∞. In our problem, N = I +

∑I
i=1(Mi +

Ni) � I . Therefore, the overall computational complexity of
Algorithm 2 per iteration is O(N 2), neglecting non-dominant
terms.

V. NUMERICAL SIMULATIONS

In this section, we present numerical results on both synthetic
experiments (algorithmic performance) and real-data experi-
ments (financial performance). All simulations are performed
on a PC with a 3.20 GHz i5-4570 CPU and 8 GB RAM. The off-
the-shelf solver is specified as MOSEK built in the CVX toolbox
or MOSEK directly. If the proposed algorithm (Algorithm 1 or
2) is applied, we set by default ρ = 1, α(l) = ρ/

√
l, and the ter-

mination condition is ‖w(l+1) − w(l)‖2/‖w(l)‖2 < 10−8 or the
number of iterations reaches 5 × 104 unless otherwise specified.

A. Synthetic Experiments

We study the algorithmic performance in this subsection. We
compare the performance of different methods to solve (39). The
experiment settings are as follows. We set λ = 1, ξ = 1, and ε =
0.01. We randomly generate u and V̄ according to their length
or size. We also randomly generate A as positive semidefinite,
q as elementwise positive, and w0 as a feasible point on the
simplex. When we run Algorithm 1 or 2, we randomly initialize
the dual variables: ν, z1 , and z2 if applicable; we randomly
initialize the primal variables as well, but we additionally make
them primal feasible: w, t or t, s1 , and s2 if applicable. We
regard the built-in Matlab solver fmincon as a benchmark.

1) Single Realization Scenario: We set the number of stocks
to 10 (I = 10) and the combined number of stocks and options
to 100 (N = 100 and the length of w is also 100) and run all
the computational methods once. We present the convergence
property of Algorithm 1 or 2 in Fig. 1. It can be observed that
although the objective does not decrease monotonically in all
iterations, the first ten iterations seem to be monotonic. The
converged objective always equals the optimal value computed
by CVX, and is always lower than the optimal value computed
by fmincon. It indicates that the solution computed by fmincon
is not optimal and thus fmincon does not give reliable results
when solving (39). We should use the solver MOSEK (whether
called via CVX or directly) or the proposed algorithm instead.

Next, we take a look at the computational time of different
methods. The result is presented in Table II. It can be seen
that all four methods take very little time to finish the compu-
tation, among which the proposed algorithm and MOSEK are
the fastest, almost one order of magnitude faster than the slow-
est ones. However, one realization is not sufficient to draw a
conclusion, so we move on to the next experiment.

2) Multiple Realization Scenario: Now we set I = N/10
and vary N in {50, 100, 150, . . . , 450, 500}. For a given tuple
of N and I , we run each method 100 times and the reported per-
formance is averaged over the 100 instances. We already know
from the previous experiment that the optimized objective of
fmincon is always higher than that of MOSEK and the proposed
algorithm, so we do not have to reproduce this result. Our focus
is shifted to the difference in solutions between the proposed
algorithm and MOSEK. It is observed that the gap between the
converged objective of the proposed algorithm and the opti-
mal value of MOSEK (whether called via CVX or directly) is
negligible, so we study the distance between the solutions in-
stead. We call MOSEK via CVX. Solution distance is defined as
follows:

Solution Distance =
∥
∥w�

MOSEK − w�
Proposed

∥
∥
∞ . (68)

Apart from solution distance, we are also concerned with the
computational time of different methods.

In the simulation that follows, we will present the results of the
aforementioned two performance metrics. First we present the
solution distance between the proposed algorithm and MOSEK
in Fig. 2. The solution distance is generally low for all problem
sizes, smaller than 3 × 10−3 . When a = 1 or 2, the solution
distance stays steady; when a = +∞, the solution distance dis-
plays a seemingly decreasing trend when N ≤ 350, and after
that, fluctuates in the range [4, 6] × 10−5 . Next, let us take a look
at computational time, which is displayed in Fig. 3. Among the
four methods, fmincon is always the slowest. MOSEK called via
CVX is the second slowest method because it spends extra time
on problem reformulation before calling the solver. The pro-
posed algorithm seems to be the fastest method, even faster than
MOSEK when called directly. When a = 1 or +∞, the proposed
method is about half an order of magnitude faster than MOSEK
(called directly), and when a = 2, the proposed method is about
one order of magnitude faster than MOSEK (called directly).
Taking a global view, we can find that both MOSEK and the
proposed method can provide a solution within 1 second, which
is efficient enough for financial applications, so both methods
are recommended.
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Fig. 1. Convergence plot: objective versus iteration, N = 100, I = 10; a = 1 (left), a = 2 (middle), and a = +∞ (right).

TABLE II
COMPUTATIONAL TIME (SEC) OF DIFFERENT METHODS (ONE REALIZATION),

N = 100, I = 10

Fig. 2. Solution distance versus problem size N .

Fig. 3. Computational time versus problem size N .

B. Real-Data Experiments

We move on to real data experiments. We obtain stock and
option data from the Bloomberg terminal. The trading period
goes from Nov. 18, 2014 to Jan. 20, 2017. We choose 6 stocks
as underlying assets, namely AAPL, BRKB, FB, MSFT, WMT,
and XOM; we also choose 128 liquid options (strike price close
to stock price) for portfolio design, namely AAPL: 14 calls, 14
puts; BRKB: 11 calls, 11 puts; FB: 18 calls, 18 puts; MSFT:
7 calls, 7 puts; WMT: 6 calls, 6 puts; XOM: 8 calls, 8 puts.
Note that one stock can be the underlying of many options
because there are many different strike prices and expiration
dates to choose from. The total budget B is 1 dollar. We conduct
daily rebalancing in the simulation and on each trading day,
the investment is fixed to be B = 1. In order to evaluate the
performance of trading, we adopt the following performance
metrics:

1. Cumulative PnL (t) =
t∑

i=1

[
PnLi − B ‖(wi − wi−1) � q‖1︸ ︷︷ ︸

transaction cost

]

where PnLi = BwT
i−1ri and ri denotes the return on the ith

day,

2. Sharpe Ratio (annual) =
mean ({PnLi})
std ({PnLi}) ×

√
252,

3. Drawdown (t) (in percentage)

=
min (PnLt − maxi=1,...,t PnLi , 0)

maxi=1,...,t PnLi
,

4. ROT =
Cumulative PnL (T )
∑T

i=1 B ‖wi − wi−1‖1

/10−4 . (69)

We will adopt three additional metrics on portfolio return. We
define portfolio return at time t as xt = PnLt/ Cumulative PnL
(t − 1). These three metrics are

5.VaRα (t) = min
{

xt,0

∣
∣
∣
∣Pr (xt ≤ xt,0) ≥ α

}
, α = 0.99,

6. ES (Expected Shortfall, a.k.a CVaR)=E
[
xt

∣
∣
∣
∣xt ≥VaRα (t)

]
,

7. CE (Certainty Equivalent) = U−1 (E [U (xt)]) ,

U (a) = log (1 + a) , U−1 (a) = ea − 1. (70)
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We choose the Sharpe ratio as our major performance metric,
i.e., we want this quantity as large as possible. The other metrics
are minor metrics; we present them merely as a reference. As
for the tuning parameter (λ, ε, ξ), we choose them via cross
validation. We use data from the last 20 trading days to form
the training and validation set–80 percent for training and 20
percent for validation. The estimation of stock return mean and
covariance matrix is based on the training set. The covariance
matrix is simply computed as the sample covariance matrix,
but note that many other more robust and better methods exists
[28], [29]. We select the pair (λ, ε, ξ) achieving the highest
Sharpe ratio. Since we only include 6 stocks, a training period
of 20 × 0.8 = 16 days3 is enough since T/I = 16/6 � 3.

1) Including Options is Worthwhile: First we show that in-
cluding options in the portfolio design is worthwhile. We com-
pare the performance of including and excluding the options.
The benchmark is constructing a portfolio with stocks only (the
aforementioned 6 stocks), either allowing or forbidding short
selling. The formulation is the traditional mean-variance trade-
off with transaction cost penalty4:

minimize
w

− wT u + λwT Σw

+ ξB ‖(w − w0) � q‖1

subject to

⎧
⎨

⎩

1T w ≤ 1, w ≥ 0. (long only)
or
‖w‖1 ≤ 1. (short selling allowed)

(71)

What we propose is including different call and put options,
which is solving (25). We present the result in Fig. 4 and Ta-
ble III. As can be seen in the figure and table, the portfolio
containing both stocks and options is much more profitable than
that with pure stocks. The cumulative PnL reaches close to 8.
The Sharpe ratio is around twice as much as trading stocks (long
only) and ten times as much as trading stocks (short selling al-
lowed). This is mainly because 1) implementing a risk-hedging
trading strategy, investors can expect to obtain a higher return
using options than only stocks and 2) the transaction cost of
trading the same amount (of shares) of options and stocks is
almost the same. However, in terms of drawdown, including op-
tions improves the performance slightly but not as much as one
would desire. This could result from the aforementioned “zero
risk” fallacy in risk modeling. Additionally, we can observe that
when short selling is allowed in stock trading, the cumulative
PnL is even lower. This indicates the potential risk of short sell-
ing. For risk-averse investors, imposing a long-only constraint
is preferred. We can also observe that including options may

3For sanity check, we also tried longer periods like 40 or 80 days and we
obtained similar results.

4As can be found in [30], if short selling is allowed, the general constraint
should be 1/Levlong × 1T max(w, 0) + 1/Levshort × 1T max(−w, 0) ≤
1, where Levlong and Levshort are the leverage parameters for a long and short
position, respectively. (Note that 1/Levshort is the margin requirement for short-
ing.) For a long position, one is allowed to borrow (Levlong − 1)/Levlong
of the value of the position from the broker, so one needs to provide
1/Levlong × 1T max(w, 0) as a long budget; for a short position, one is re-
quired to have at least 1/Levshort of the short value as the initial margin to estab-
lish the short position, so one needs to provide 1/Levshort × 1T max(−w, 0)
as a short budget. If we set Levlong = Levshort = Lev, then the general con-
straint becomes ‖w‖1 ≤ Lev. If we additionally set Lev = 1, then the con-
straint becomes ‖w‖1 ≤ 1.

Fig. 4. Performance evaluation (cumulative PnL and drawdown versus trading
days) of stock-only and stock plus options.

TABLE III
PERFORMANCE EVALUATION (SHARPE RATIO, ROT, VAR, ES, AND CE (END OF

TRADE)) OF STOCK-ONLY AND STOCK PLUS OPTIONS

cause a larger potential loss judging from the metrics of VaR
and ES, although a much larger CE is achieved meanwhile.

2) Robustness is Necessary: The zero-risk fallacy was men-
tioned in Sec. III and we want to illustrate the importance of
introducing robustness. To simplify the comparison, we only
impose stochastic robustness, which is solving (39) with ε = 0.
Recall that we need to specify D, which is Blkdiag({ΣiiRi}).
We specify Ri as Diag(v2

i ) (elementwise squared, vi is defined
after (19)).5 The parameter pair (λ, ξ) is still obtained via cross
validation. We present the simulation result in Fig. 5 and Ta-
ble IV. As can be seen in the figure and table, the cumulative
PnL curve obtained from solving the nonrobust formulation (25)
is higher but more volatile; it has a lower Sharpe ratio and ROT,
a larger potential loss (lower VaR and ES), though a slightly
higher CE. Its drawdown is also larger on most trading days.
When stochastic robustness is imposed, we achieve a more sta-
ble cumulative PnL curve. Note that we have not realized the full
potential of the robust formulation (39). We still can introduce
the worst-case robustness as well. We will look into this in the
next subsection.

3) Factor Model: Factor-model-based methods are also
worth trying to modify the covariance after we introduce
stochastic robustness. For a given covariance matrix M =
VΣVT + D, we perform eigenvalue decomposition M =
UΛUT with Λ = Diag(λ) and λ1 ≥ λ2 ≥ · · · . We keep the
largest K values in λ. The remaining values naturally form a

5This is a heuristic choice that is simple and we found to perform well.
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Fig. 5. Performance evaluation (cumulative PnL and drawdown versus trading
days) of robust and nonrobust formulation, options included.

TABLE IV
PERFORMANCE EVALUATION (SHARPE RATIO, ROT, VAR, ES, AND CE (END OF

TRADE)) OF ROBUST AND NONROBUST FORMULATION, OPTIONS INCLUDED

Fig. 6. Performance evaluation (cumulative PnL and drawdown versus trading
days) of applying a factor model.

subset {λK +1 , λK +2 , · · · } and we set each λi in the subset
with the subset mean. Thus we obtain λ̃. The factor-model-
based modified covariance is given as M̃ = UDiag(λ̃)UT . We
present in the following the simulation results of adopting M
and M̃ with different choices of K. In the simulation, we set
K to be 50%, 30%, and 10% of the matrix dimension, and 1.
In Fig. 6, we can see that the curve of cumulative PnL seems to
slightly improve as K decreases, indicating that it is worthwhile
to adopt a factor-model to modify the covariance.

4) Full Potential of Robustness: To start with, we fix ε =
10−4 as the worst-case robustness parameter, which is the same

Fig. 7. Performance evaluation (cumulative PnL and drawdown versus trading
days) of different types of robustness.

TABLE V
PERFORMANCE EVALUATION (SHARPE RATIO, ROT, VAR, ES, AND CE (END OF

TRADE)) OF DIFFERENT TYPES OF ROBUSTNESS

order as the diagonal elements of Σ (the covariance matrix
of the stock returns only). For convenience, the comparison
among different types of worst-case robustness is reflected in the
choice of parameter a. We present the simulation result in Fig. 7
and Table V. As can be seen in the figure and table, imposing
different types of robustness does not change the cumulative
PnL and drawdown very much, although imposing stochastic
and worst-case robustness simultaneously with a = 1 seems to
achieve the highest cumulative PnL and Sharpe ratio and the
second highest ROT, with slightly larger drawdown. It appears
that choosing a = 1 is better than choosing a = 2 and +∞. Let
us verify this claim in the next experiment.

We choose the Sharpe ratio as the performance measure. In
Fig. 8, we plot the achieved Sharpe ratio versus the choice of
ε. If ε is no larger than 3 × 10−4 , we can safely conclude that
a = 1 is superior to the other two options. When ε ≥ 3 × 10−4 ,
the Sharpe ratio begins to drop and a = 1 is not necessarily the
best parameter. Thus, for the sake of performance, we should
not set ε too large. If ε is less than 3 × 10−4 , we can safely set
a = 1.

Finally, let us realize the full potential of robustness. We
regard ε as an additional tuning parameter and thus we ob-
tain (λ, ε, ξ) via cross validation. We also confine ε within
[0, 3 × 10−4 ] so that we can safely set a = 1 and save a tun-
ing parameter. In Fig. 9 and Table VI, we present the perfor-
mance after realizing the full potential of robustness. For com-
parison, we include four additional methods: equally weighted
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Fig. 8. Performance evaluation (Sharpe ratio versus choice of ε) of different
types of robustness.

Fig. 9. Performance evaluation (cumulative PnL and drawdown versus trading
days) of the proposed portfolio, equally weighted portfolio, and Black-Litterman
portfolio.

TABLE VI
PERFORMANCE EVALUATION (SHARPE RATIO, ROT, VAR, ES, AND CE (END OF

TRADE)) OF THE PROPOSED PORTFOLIO, EQUALLY WEIGHTED PORTFOLIO,
AND BLACK-LITTERMAN PORTFOLIO

stock-only portfolio, equally weighted stock-and-option port-
folio [31], Black-Litterman stock-only portfolio, and Black-
Litterman stock-and-option portfolio with our proposed views
as in eq. (43) (the parameter settings follow [20]). The proposed
portfolio performs better than the four benchmark portfolios
with the highest cumulative PnL and largest CE, although it
suffers from a slightly larger potential loss (a slightly lower
VaR and ES). The Black-Litterman stock-only portfolio has a
slightly larger Sharpe Ratio than the equally weighted stock-
only portfolio. The Black-Litterman stock-and-option portfolio
achieves the second highest cumulative PnL and the largest
Sharpe ratio with the smallest drawdown. This is because the
Black-Litterman portfolio takes advantage of financial views to
improve performance.

VI. CONCLUSION

In this paper, we have studied the problem of option port-
folio design under the Markowitz mean-variance framework.
The option returns have been modeled statistically with first-
and second-order moments, enriching the conventional delta-
gamma approximation. The naive mean-variance formulation
allows for the zero-risk fallacy, which has been circumvented
with a more realistic robust formulation. Transaction cost has
also been considered in the robust formulation. We have pro-
posed an efficient BSUM-M-based algorithm to solve the port-
folio design problem. It serves as an efficient alternative to such
off-the-shelf solvers as MOSEK. The proposed algorithm can
perform as well as the off-the-shelf solvers but with a faster con-
vergence speed, about one half or one order of magnitude faster
according to the simulation results. Numerical results based
on real data have demonstrated the superior performance of
our proposed stock-option portfolio compared to the pure-stock
portfolio design.
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[14] G. P. Szegö, Portfolio Theory: With Application to Bank Asset Manage-
ment. New York, NY, USA: Academic, 2014.

[15] C. Jiang, “Efficient subset selection in large-scale portfolio with singular
covariance matrix,” in Proc. 7th Int. Conf. Manage. Sci. Eng. Manage..,
2014, pp. 1443–1453.

[16] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. Roy.
Stat. Soc.. Ser. B (Methodol.), vol. 58, pp. 267–288, 1996.
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