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Graphical modeling G = (V , E ,W)
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Representing knowledge through graphical model
• A graph is an intuitive way of representing and visualizingthe relationships between entities.
•Nodes: V = {1, 2, . . . , p} correspond to the entities.
• Edges: E = {(1, 2), (1, 3), . . . , (3, p), . . .} encode the relation-
ships between entities.

• Elements of the weight matrix W encode the strength of therelationships.

Graph learning from data
Let Y ∈ Rn×p = [y1,y2, . . . ,yp] be data matrix, each column
yi ∈ Rn resides on one of p nodes of a graph G, while each ofthe n rows of Y is an observation corresponding to one of thenodes of the graph.
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Gaussian graphical modeling (GGM)
Sample covariance matrix S = 1

nY
>Y .

maximize
Θ∈Sp++

log det(Θ)− tr(SΘ
)
− αh(Θ),

•When the data follows a Gaussian distribution x ∼ N (0,Θ−1),it is the penalized MLE of the precision matrix.
• The entries of Θ determines a conditional graph G = (V , E) :

xi ⊥ xj|x/(xi, xj) ⇐⇒ Θ = 0

Θij 6= 0 ⇐⇒ {i, j} ∈ E ∀ i 6= j.

• x = [x1, x2, . . . , xp] is a Gaussian Markov random field (GMRF).
• Also a log det(·) regularized learning.
• If Θij ≤ 0 ∀ i 6= j then X is an attractive GMRF.
Limitations: Existing GGM based methods cannot learn agraph Θ with specific structure [1, 2]. Enforcing structure isin general NP-hard.

Structured graphs

Multi-component graph Regular graph Modular graph

Bipartite graph Grid graph Tree graph
Graph Laplacian matrix
• Laplacian matrix Θ belongs to the following set:

SΘ =
{

Θ|Θij = Θji ≤ 0 for i 6= j,Θii = −
∑
i 6=j

Θij

}
.

• Smoothness: tr(SΘ) is used to quantify smoothness of sig-nals: a smaller tr(SΘ) indicating a smoother signal.
• The structural properties of many important graph struc-tures can be inferred from eiegnvalues of the Laplacian ma-trix λ(Θ).

Sλ = {λ ∈ Rp|{λi = 0}ki=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2
}
.
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three zero eigenvalues
corresponding to a 3−component graph

The number of zero eigenvalues denote the number of com-ponents in the graph.

Proposed formulation for structured graph
learning

maximize
Θ

log gdet(Θ)− tr(SΘ)− α‖Θ‖1,o�
subject to Θ ∈ SΘ, λ(Θ) ∈ Sλ

• Connected graph: Sλ = {λ1 = 0, c1 ≤ λ2 ≤ · · · ≤ λp ≤ c2}with a proper choice of c1 > 0, c2 > 0.
•Grid, Modular, Erdos-Renyi and other connected structurescan also be learned under the connected spectral constraint.

• k-component graph: Sλ = {{λi}ki=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤
c2}.

• d−regular graph: Sλ = {{λi = 0}ki=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤
c2} and Diag(Θ) = dI

• Cospectral graphs
Laplacian operator: L
L maps a weight vector w = [w1, w2, w3, w4, w5, w6]> to theLaplacian matrix.

Lw =


∑
i=1,2,3wi −w1 −w2 −w3

−w1
∑
i=1,4,5wi −w4 −w5

−w2 −w4
∑
i=2,4,6wi −w6

−w3 −w5 −w6
∑
i=3,5,6wi

 .

Problem reformulation

maximize
w,λ,U

log gdet(Diag(λ))− tr(KLw)− β

2
‖Lw − UDiag(λ)U>‖2F ,

subject to w ≥ 0, λ ∈ Sλ, U>U = I.

where K = S + α(I − 11>).
Proposed algorithm
Variables X = (w,λ, U): we develop a block majorization-minimization (block-MM) based algorithm.Sub-problem for w :

minimize
w≥0

1

2
‖Lw‖2F − c>w.

where c = L∗
(
UDiag(λ)U> − β−1K

). This is a constrained
convex quadratic program, we solve it using the MM approach.Sub-problem for U :

maximize
U

tr(U>(Lw)UDiag(λ)
) subject to U>U = I.

Sub-problem for λ :

minimize
λ∈Sλ

− log gdet(Diag(λ)) +
β

2
‖U>(Lw)U− Diag(λ)‖2F .

A convex isotonic regression problem, we develop a fast iter-ative algorithm that converges within (p− k) iterations.
Algorithm summary
1: Input: SCM S and Sλ.
2: while Stopping criteria not met do
3: wt+1 =

(
wt − 1

2p

(
L∗(Lwt)− c

))+

4: U t+1 = eigenvectors(Lwt+1)

5: λt+1 : Update via isotonic regression maxm iter (p− k).
6: end while
7: Return wt+1

The worst-case computational complexity O(p3).
Theorem: The sequence

(
wt, U t,λt

)
generated by this algo-

rithm converges to the set of KKT points of the optimization prob-
lem.

Learning k-component structures
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Learned matrix

True graph Noisy graph Learned graph

CLR [3] SGL with k = 5

Clustering with cancer data:Clustering accuracy (ACC): CLR = 0.98 and SGL = 0.99.
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