Structured Graph Learning via Laplacian Spectral Constraints

Graphical modeling $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{W})$

Representing knowledge through graphical model

- A graph is an intuitive way of **representing** and **visualizing** the relationships between entities.
- Nodes: $\mathcal{V} = \{1, 2, \dots, p\}$ correspond to the **entities**.
- Edges: $\mathcal{E} = \{(1,2), (1,3), \dots, (3,p), \dots\}$ encode the relation**ships** between entities.
- Elements of the weight matrix W encode the **strength** of the relationships.

Graph learning from data

Let $Y \in \mathbb{R}^{n \times p} = [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_p]$ be data matrix, each column $\mathbf{y}_i \in \mathbb{R}^n$ resides on one of p nodes of a graph \mathcal{G} , while each of the n rows of Y is an observation corresponding to one of the nodes of the graph.

Gaussian graphical modeling (GGM)

Sample covariance matrix $S = \frac{1}{n}Y^{\top}Y$.

maximize $\log \det(\Theta) - \operatorname{tr}(S\Theta) - \alpha h(\Theta)$, $\Theta \in \mathcal{S}^p_+$

- When the data follows a Gaussian distribution $\mathbf{x} \sim \mathcal{N}(0, \Theta^{-1})$, it is the penalized **MLE** of the **precision matrix**.
- The entries of Θ determines a **conditional** graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

$$\begin{aligned} x_i \perp x_j | \mathbf{x}/(x_i, x_j) & \Longleftrightarrow \ \Theta = 0 \\ \Theta_{ij} \neq 0 & \Longleftrightarrow \ \{i, j\} \in \mathcal{E} \ \forall \ i \neq j. \end{aligned}$$

- $\mathbf{x} = [x_1, x_2, \dots, x_p]$ is a Gaussian Markov random field (GMRF).
- Also a $\log \det(\cdot)$ regularized learning.
- If $\Theta_{ij} \leq 0 \ \forall i \neq j$ then X is an **attractive** GMRF.

Limitations: Existing GGM based methods cannot learn a graph Θ with specific structure [1, 2]. Enforcing structure is in general **NP-hard**.

Sandeep Kumar, Jiaxi Ying, José Vinícius de M. Cardoso, and Daniel P. Palomar

An R package for this paper is available at: https://cran.r-project.org/package=spectralGraphTopology. For more information visit: https://www.danielppalomar.com

Structured graphs

Multi-component graph

Regular graph

Grid graph

Modular graph

Bipartite graph

Graph Laplacian matrix

• Laplacian matrix Θ belongs to the following set:

$$\mathcal{S}_{\Theta} = \Big\{ \Theta | \Theta_{ij} = \Theta_{ji} \le 0 \text{ for } i \neq j, \Theta_{ii} = -\sum_{i \neq j} \Theta_{ij} \Big\}.$$

- **Smoothness**: $tr(S\Theta)$ is used to quantify smoothness of signals: a smaller $tr(S\Theta)$ indicating a smoother signal.
- The structural properties of many important graph structures can be inferred from eiegnvalues of the Laplacian matrix $\boldsymbol{\lambda}(\Theta)$.

$$\mathcal{S}_{\lambda} = \{ \boldsymbol{\lambda} \in \mathbb{R}^p | \{ \lambda_i = 0 \}_{i=1}^k, c_1 \leq \lambda_{k+1} \leq \cdots \leq \lambda_p \leq c_2 \}.$$

The number of zero eigenvalues denote the number of components in the graph.

Proposed formulation for structured graph learning

maximize $\log gdet(\Theta) - tr(S\Theta) - \alpha \|\Theta\|_{1,off}$ subject to $\Theta \in \mathcal{S}_{\Theta}, \ \lambda(\Theta) \in \mathcal{S}_{\lambda}$

- Connected graph: $S_{\lambda} = \{\lambda_1 = 0, c_1 \leq \lambda_2 \leq \cdots \leq \lambda_p \leq c_2\}$ with a proper choice of $c_1 > 0, c_2 > 0$.
- Grid, Modular, Erdos-Renyi and other connected structures can also be learned under the connected spectral constraint.

- c_2 }.

Laplacian operator: \mathcal{L}

 $\mathcal{L}\mathbf{v}$

Problem reformulation

Proposed algorithm

Sub-problem for λ :

A convex **isotonic** regression problem, we develop a **fast** iterative algorithm that converges within (p-k) iterations.

Algorithm summary

- 3:

- 7: Return \mathbf{w}^{t+1}
- lem.

• k-component graph: $\mathcal{S}_{\lambda} = \{\{\lambda_i\}_{i=1}^k, c_1 \leq \lambda_{k+1} \leq \cdots \leq \lambda_p \leq n\}$

• *d*-regular graph: $S_{\lambda} = \{\{\lambda_i = 0\}_{i=1}^k, c_1 \leq \lambda_{k+1} \leq \cdots \leq \lambda_p \leq \}$ c_2 and Diag $(\Theta) = d\mathbf{I}$ Cospectral graphs

 $\mathcal L$ maps a weight vector $\mathbf w = [w_1, w_2, w_3, w_4, w_5, w_6]^ op$ to the Laplacian matrix.

	$\sum_{i=1,2,3} w_i$	$-w_1$	$-w_2$	$-w_3$	
$\mathbf{v} =$	$-w_1$	$\sum_{i=1,4,5} w_i$	$-w_4$	$-w_5$	
	$-w_2$	$-w_4$	$\sum_{i=2,4,6} w_i$	$-w_6$	•
	$-w_3$	$-w_5$	$-w_6$	$\sum_{i=3,5,6} w_i$	

 $\underset{\mathbf{w}, \boldsymbol{\lambda}, U}{\text{maximize}} \quad \log \text{gdet}(\text{Diag}(\boldsymbol{\lambda})) - \text{tr}(K\mathcal{L}\mathbf{w}) - \frac{\beta}{2} \|\mathcal{L}\mathbf{w} - U\text{Diag}(\boldsymbol{\lambda})U^{\top}\|_{F}^{2},$ subject to $\mathbf{w} \geq 0, \ \boldsymbol{\lambda} \in \boldsymbol{S}_{\lambda}, \ U^{\top}U = I.$

where $K = S + \alpha (I - \mathbf{11}^{+})$.

Variables $\mathcal{X} = (\mathbf{w}, \boldsymbol{\lambda}, U)$: we develop a block majorizationminimization (**block-MM**) based algorithm. Sub-problem for \mathbf{w} :

 $\underset{\mathbf{w}>0}{\text{minimize}} \quad \frac{1}{2} \|\mathcal{L}\mathbf{w}\|_F^2 - \mathbf{c}^\top \mathbf{w}.$

where $\mathbf{c} = \mathcal{L}^* \left(U \mathsf{Diag}(\boldsymbol{\lambda}) U^\top - \beta^{-1} K \right)$. This is a constrained convex quadratic program, we solve it using the MM approach. Sub-problem for U:

maximize $\operatorname{tr}\left(U^{\top}(\mathcal{L}\mathbf{w})U\mathsf{Diag}(\boldsymbol{\lambda})\right)$ subject to $U^{\top}U = I$.

 $\underset{\boldsymbol{\lambda} \in \mathcal{S}_{\lambda}}{\text{minimize}} \ -\log \text{gdet}(\text{Diag}(\boldsymbol{\lambda})) + \frac{\beta}{2} \| U^{\top}(\mathcal{L}\mathbf{w})\mathbf{U} - \text{Diag}(\boldsymbol{\lambda}) \|_{F}^{2}.$

1: **Input:** SCM S and S_{λ} .

2: while Stopping criteria not met do

 $\mathbf{w}^{t+1} = \left(\mathbf{w}^t - \frac{1}{2p}\left(\mathcal{L}^*(\mathcal{L}\mathbf{w}^t) - \mathbf{c}\right)\right)^{-1}$

 $U^{t+1} = eigenvectors(\mathcal{L}\mathbf{w}^{t+1})$

 λ^{t+1} : Update via isotonic regression maxm iter (p-k). 6: end while

The **worst-case** computational complexity $O(p^3)$.

Theorem: The sequence $(\mathbf{w}^t, U^t, \boldsymbol{\lambda}^t)$ generated by this algorithm converges to the set of KKT points of the optimization prob-

- 825-841, 2017.
- tems (NeurIPS), 2019.
- 2019.

nal of Selected Topics in Signal Processing, vol. 11, no. 6, pp.

3. F. Nie, X. Wang, M. I. Jordan, and H. Huang, "The constrained laplacian rank algorithm for graph-based clustering," in *Thirtieth AAAI Conference on Artificial Intelligence*, 2016.

4. S. Kumar, J. Ying, J. V. d. M. Cardoso, and D. Palomar, "Structured graph learning via Laplacian spectral constraints," in Advances in Neural Information Processing Sys-

5. ——, "A unified framework for structured graph learning via spectral constraints," *arXiv preprint arXiv:1904.09792*,