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Abstract

Learning a graph with a specific structure is essential for interpretability and
identification of the relationships among data. It is well known that structured
graph learning from observed samples is an NP-hard combinatorial problem. In
this paper, we first show that for a set of important graph families it is possible
to convert the structural constraints of structure into eigenvalue constraints of the
graph Laplacian matrix. Then we introduce a unified graph learning framework,
lying at the integration of the spectral properties of the Laplacian matrix with
Gaussian graphical modeling that is capable of learning structures of a large class
of graph families. The proposed algorithms are provably convergent and practically
amenable for large-scale semi-supervised and unsupervised graph based learning
tasks. Extensive numerical experiments with both synthetic and real data sets
demonstrate the effectiveness of the proposed methods. An R package containing
code for all the experimental results is available at https://cran.r-project.
org/package=spectralGraphTopology.

1 Introduction
Graph models constitute an effective representation of data available across numerous domains
in science and engineering [1]. Gaussian graphical modeling (GGM) encodes the conditional
dependence relationships among a set of p variables. In this framework, an undirected graph is
associated to the variables, where each vertex corresponds to one variable, and an edge is present
between two vertices if the corresponding random variables are conditionally dependent [2, 3]. GGM
is a tool of increasing importance in a number of fields including finance, biology, statistical learning,
and computer vision [4, 5].

For improved interpretability and precise identification of the structure in the data, it is desirable to
learn a graph with a specific structure. For example, gene pathways analysis are studied through
multi-component graph structures [6, 7], as genes can be grouped into pathways, and connections
within a pathway might be more likely than connections between pathway, forming a cluster; a
bipartite graph structure yields a more precise model for drug matching and topic modeling in
document analysis [8, 9]; a regular graph structure is suited for designing communication efficient
deep learning architectures [10, 11]; and a sparse yet connected graph structure is required for graph
signal processing applications [12].
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Structured graph learning from sample data involves both the estimation of structure (graph connec-
tivity) and parameters (graph weights). While there are a variety of methods for parameter estimation
(e.g., maximum likelihood), structure estimation is arguably very challenging due to its combinatorial
nature. Structure learning is NP-hard [13, 14] for a general class of graphical models and the effort
has been on characterizing families of structures for which learning can be feasible. In this paper,
we present one such characterization based on the so-called spectral properties of a graph Laplacian
matrix. Under this framework, structure learning of a large class of graph families can be expressed
as the eigenvalue problem of the graph Laplacian matrix. Our contributions in this paper are threefold.
First, we introduce a problem formulation that converts the combinatorial problem of structured graph
learning into an optimization problem of graph matrix eigenvalues. Secondly, we discuss various
theoretical and practical aspects of the proposed formulation and develop computationally efficient
algorithms to solve the problem. Finally, we show the effectiveness of the proposed algorithm with
numerous synthetic and real data experiments.

As a byproduct of our investigation, we also reinforce the known connections between graph structure
representation and Laplacian quadratic methods (for smooth graph signals) by introducing a procedure
that maps a priori information of graph signals to the spectral constraints of the graph Laplacian. This
connection enables us to use computationally efficient spectral regularization framework for standard
graph smoothing problems to incorporate a priori information.

The rest of the paper is organized as follows. In Section 2, we present related background, the
problem formulation, and its connection to smooth graph signal analysis. In Section 3, we first
propose a tractable formulation for the proposed problem and then we develop an efficient algorithm
and discuss its various theoretical and practical aspects. In Section 4, we show experimental results
with real datasets and present additional experiments and the associated convergence proof into the
supplementary material. An R package containing the code for all the simulations is made available
as open source repository.

2 Background and Proposed Formulation

In this section, we review Gaussian graphical models and formulate the problem of structured graph
learning via Laplacian spectral constraints.

2.1 Gaussian Graphical Models
Let x = [x1, x2, . . . , xp]

T be a p−dimensional zero mean random vector associated with an undi-
rected graph G = (V, E), where V = {1, 2, . . . , p} is a set of nodes corresponding to the elements of
x, and E ∈ V × V is the set of edges connecting nodes. The GGM method learns a graph by solving
the following optimization problem:

maximize
Θ∈Sp++

log det(Θ)− tr
(
ΘS
)
− αh(Θ), (1)

where Θ ∈ Rp×p denotes the desired graph matrix, Sp++ denotes the set of p× p positive definite
matrices, S ∈ Rp×p is the sample covariance matrix (SCM) obtained from data, h(·) is the regu-
larization term, and α > 0 is the regularization parameter. The optimization in (1) corresponds to
the penalized maximum likelihood estimation of the inverse covariance (precision) matrix and also
known as Gaussian Markov Random Field (GMRF). With the graph G inferred from Θ, the random
vector x follows the Markov property, meaning Θij 6= 0 ⇐⇒ {i, j} ∈ E ∀ i 6= j: implies xi and
xj are conditionally dependent given the rest [2, 3].

2.2 Graph Laplacian
A matrix Θ ∈ Rp×p is called a combinatorial graph Laplacian matrix if it belongs to the following
set:

SΘ =
{

Θ|Θij ≤ 0 for i 6= j,Θii = −
∑
j 6=i

Θij

}
. (2)

The Laplacian matrix Θ is a symmetric, positive semi definite matrix with zero row sum [15]. The non-
zero entries of the matrix encode positive edge weights as −Θij and Θij = 0 implies no connectivity
between vertices i and j. The importance of the graph Laplacian has been well recognized as a tool
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for embedding, manifold learning, spectral sparsification, clustering and semi-supervised learning
[16, 17, 18, 19, 20, 21, 22]. In addition, structural properties of a large class of important graph
families are encoded in the eigenvalues of the graph Laplacian matrix, and utilizing these under the
GGM setting is the main goal of the present work.

2.3 Structured Gaussian Graphical Models
A general scheme is to learn matrix Θ as a Laplacian matrix under some eigenvalue constraints,
which are motivated from the a priori information for enforcing structure on the graphs to be learned.
Now, we introduce a general optimization framework

maximize
Θ

log gdet(Θ)− tr
(
ΘS
)
− αh(Θ),

subject to Θ ∈ SΘ, λ(Θ) ∈ Sλ,
(3)

where gdet(Θ) denotes the generalized determinant [23] defined as the product of the non-zero
eigenvalues of Θ, S is the SCM (with the mean removed, i.e., S = xxT ) obtained from data x, SΘ

is the Laplacian matrix structural constraint (2), λ(Θ) denotes the eigenvalues of Θ, and Sλ is the
set containing spectral constraints on the eigenvalues, which allows to enforce structural properties
onto the learned graph matrix Θ. From the probabilistic perspective, when the data is generated
from a Gaussian distribution x ∼ N (0,Θ†), then (3) can be viewed as a penalized maximum
likelihood estimation of the structured precision matrix of an improper attractive GMRF model
[23]. For any arbitrarily distributed data, formulation (3) corresponds to minimizing a penalized
log-determinant Bregman divergence problem, and hence this formulation yields a meaningful graph
even for distributions that are not GMRFs.

2.3.1 Laplacian quadratic and smooth graph signals
In the context of graph signal modeling, the widely used assumption is that the signal/data residing
on graphs change smoothly between connected nodes [20, 24, 25, 26]. The trace term in (3) relates
to the graph Laplacian quadratic form tr

(
ΘxxT

)
=
∑
i,j −Θij(xi − xj)2 also known as quadratic

energy function, which is used for quantifying smoothness of the graph signals [20]. Smooth graph
signal methods are an extremely popular family of approaches for semi-supervised learning. The type
of graph used to encode relationships in these learning problems is often a more important decision
than the particular algorithm or loss function used, yet this choice is not well-investigated in the
literature [24]. Our proposed framework that can learn a graph with a specific structure based on a
priori information of the problem at hand is indeed a promising direction for strengthening these
approaches.

2.3.2 Graph Structure via Laplacian Spectral Constraints
Now, we introduce various choices of Sλ that will enable (3) to learn some important graph structures.

• k-component graph: A graph is said to be k−component connected if its vertex set can be
partitioned into k disjoint subsets such that any two nodes belonging to different subsets are not
connected. The eigenvalues of any Laplacian matrix can be expressed as:

Sλ = {{λj = 0}kj=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2} (4)

where k ≥ 1 denotes the number of connected components in the graph, and c1, c2 > 0 are constants
that depend on the number of edges and their weights [15, 19].

• connected sparse graph: A sparse graph is simply a graph with not many connections among the
nodes. Often, making a graph highly sparse can split the graph into several disconnected components,
which many times is undesirable [12, 27]. The existing formulation cannot ensure both sparsity
and connectedness, and there always exists a trade-off between the two properties. We can achieve
sparsity and connectedness by using the following spectral constraint:

Sλ = {λ1 = 0, c1 ≤ λ2 ≤ · · · ≤ λp ≤ c2} (5)

with a proper choice of c1 > 0, c2 > 0.

• k-component d-regular graph: All the nodes of a d-regular graph have the same weighted degree
d, i.e.,

∑
j∈Ni −Θij = d, ∀ i = 1, 2, . . . , p, where Ni is the set of neighboring nodes connected to

node i. This states that the diagonal entries of the matrix Θ are d, diag(Θ) = d1. A k−component
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regular graph structure can be learned by forcing diag(Θ) = d1 along with the following spectral
constraints

Sλ = {{λj = 0}kj=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2}, diag(Θ) = d1. (6)

• cospectral graphs: In many applications, it is motivated to learn Θ with specific eigenvalues which
is also known as cospectral graph learning [28]. One example is spectral sparsification of graphs
[19, 29] which aims to learn a graph Θ to approximate a given graph Θ̄, while Θ is sparse and its
eigenvalues λi satisfy λi = f(λ̄i), where {λ̄i}pi=1 are the eigenvalues of the given graph Θ̄ and
f is some specific function. Therefore, for cospectral graph learning, we introduce the following
constraint

Sλ = {λi = f(λ̄i), ∀i ∈ [1, p]}. (7)

2.4 Related work and discussion
The complexity of structure learning depends critically on the underlying graph structure and the focus
has been on characterizing classes of structures for which learning is feasible. The seminal work [30]
established that structure learning for tree-structured graph reduces to a maximum weight spanning
tree problem, while the work in [14] presented a characterization based on the local separation
property, and proposed a greedy method based on thresholding of sample statistics for learning the
following graph structures: Erdos-Renyi random graphs, power law graphs, small world graphs, and
other augmented graphs. Under the GGM model (1), based on sparse characterization, a uniform
sparsity structure is learned by introducing an `1-norm penalty term [31]. Sparse graph learning has
been widely studied in a high-dimensional setting such as Graphical Lasso (GLasso) [32]. But a
uniform sparsity is not enough when a specific structure is desired [33, 34]. Recent works extended
the GGM to include other structures such as factor models [35], scale-free [36], degree-distribution
[37], and overlapping structure with multiple graphical models [34, 38], those methods are restrictive
to the particular case and it is difficult to extend them to learn other structures.

For k−component graph structure, a feasible characterization that can enable structured graph
learning is still lacking. Existing methods employ a relaxation based approach where they focus on
either structure estimation or parameter estimation. The work in [39] can only do structure estimation,
while the works in [40, 41, 42] estimate parameters with structure information known already. A
recent approach based on the integration of expectation maximization [6] with GMM method is able
to perform both tasks. However, the method follows a two-stage approach which is computationally
prohibitive for large scale problems.

Finally, several recent publications considered learning different types of graph Laplacians of the
form (2) under the GGM setting [26, 43, 44]; however, they do not include spectral constraints and
are not able to enforce specific structures onto the graph. Specifically, all these methods are limited
to learning a connected graph without structural constraints, or just learn Laplacian weights for a
graph with given structure estimates.

2.4.1 Discussion
The present work identifies that the spectral characteristics of graph matrices are natural, as well as
an efficient tool for learning structured graphs. The proposed idea is to use the spectral characteristics
directly into a graph learning framework. Here, the focus is on utilizing Laplacian spectral constraints
under the GMRF-type model but the proposed machinery has a much wider appeal. For example,
the proposed framework can be easily extended to learn more non-trivial structures (e.g., bipartite
and clustered bipartite graph structures) by considering spectral properties of other graph matrices,
e.g., adjacency, normalized Laplacian, and signless Laplacian [15, 45, 46, 47]; furthermore, the
scope of spectral methods can be easily extended to other important statistical models such as the
Ising model [48], Gaussian covariance graphical models [49], Gaussian graphical models with latent
variables [50], least-square formulation for graph learning [51], structured linear regression, vector
auto-regression models [52], and also for structured graph signal processing [21, 53, 54].

3 Optimization Method
We reformulate the optimization problem presented in (3) by introducing a graph Laplacian linear
operator L and spectral penalty which, by consequence, transforms the combinatorial Laplacian
structural constraints into easier to handle algebraic constraints.
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3.1 Graph Laplacian operator L

The Laplacian matrix Θ belonging to SΘ satisfies i) Θij = Θji ≤ 0, ii) Θ1 = 0, implying the target
matrix is symmetric with degrees of freedom of Θ equal to p(p− 1)/2. Therefore, we introduce a
linear operator L that transforms a non-negative vector w ∈ Rp(p−1)/2

+ to the matrix Lw ∈ Rp×p
that satisfies the Laplacian constraints ([Lw]ij = [Lw]ji ≤ 0, for i 6= j and [Lw] · 1 = 0) as in (2).

Definition 1. The linear operator L : w ∈ Rp(p−1)/2
+ → Lw ∈ Rp×p is defined as

[Lw]ij =


−wi+dj i > j,

[Lw]ji i < j,∑
i6=j [Lw]ij i = j,

where dj = −j + j−1
2 (2p− j).

We derive the adjoint operator L∗ of L to satisfy 〈Lw, Y 〉 = 〈w,L∗Y 〉.

Lemma 1. The adjoint operator L∗ : Y ∈ Rp×p 7→ L∗Y ∈ R
p(p−1)

2 is defined by

[L∗Y ]k = yi,i − yi,j − yj,i + yj,j ,

where i, j ∈ Z+ satisfy k = i− j + j−1
2 (2p− j) and i > j.

Lemma 2. The operator norm ‖L‖2 is
√

2p, where ‖L‖2 = sup‖x‖=1 ‖Lx‖F with x ∈ Rp×(p−1)/2.

Proof. Follows from the definitions of L and L∗: see supplementary material for detailed proof.

By the definition of the Laplacian operator L in (1), the set of graph Laplacian constraints in (2) can
be expressed as SΘ = {Lw|w ≥ 0}, where w ≥ 0 means each entry of w is non-negative. We
represent the Laplacian matrix Θ ∈ SΘ as Lw.

To ensure sparsity of edges in the learned graph, we use the `1-regularization function. Observe
that the sign of Lw is fixed by the constraints Lwij ≤ 0 for i 6= j and Lwij ≥ 0 for i = j, the
regularization term α ‖Lw‖1 can be written as tr (LwH), where H = α(2I − 11T ), which implies
tr
(
ΘS
)

+ αh(Lw) = tr
(
LwK

)
, where K = S +H .

3.2 Reformulating problem (3) with graph Laplacian operator

To solve (3), for learning a graph Laplacian Θ with the desired spectral properties, we propose the
following Laplacian spectral constrained optimization problem

minimize
w,λ,U

− log gdet(UDiag(λ)UT ) + tr (KLw) +
β

2
‖Lw − UDiag(λ)UT ‖2F , (8)

subject to w ≥ 0, λ ∈ Sλ, UTU = I.

where Lw is the desired Laplacian matrix which seeks to admit the decomposition Lw =
UDiag(λ)UT , Diag(λ) ∈ Rp×p is a diagonal matrix containing {λi}pi=1 on its diagonal, and
U ∈ Rp×p is a matrix satisfying UTU = I . We incorporate specific spectral properties on {λi}pi=1

by the following spectral penalty term β
2 ‖Lw−UDiag(λ)UT ‖2F with Sλ containing a priori spectral

information of the desired graph structure. We introduce the term β
2 ‖Lw − UDiag(λ)UT ‖2F to

keep Lw close to UDiag(λ)UT instead of exactly solving the constraint. Note that this relaxation
can be made tight by choosing sufficiently large or iteratively increasing β. The penalty term can
also be understood as a spectral regularization term, which aims to provide a direct control over the
eigenvalues allowing to incorporate additional information via priors. This has been successfully
used in matrix factorization applications, see [55, 56, 57, 58, 59] for more details.

We consider solving (8) for learning a k−component graph structure utilizing the constraints in (4),
where the first k eigenvalues are zero. There are a total of q = p− k non-zero eigenvalues ordered
in the given set Sλ = {c1 ≤ λk+1 ≤ . . . ≤ λp ≤ c2}. Collecting the variables in three blocks as
X =

(
w ∈ Rp(p−1)/2,λ ∈ Rq, U ∈ Rp×q

)
we develop an algorithm based on the block successive

upper-bound minimization (BSUM) framework [60], which updates each block sequentially while
keeping the other blocks fixed.
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3.3 Update of w
At iteration t+ 1, treating w as a variable with fixed λ, U and ignoring the terms independent of w,
we have the following sub-problem:

minimize
w≥0

tr (KLw) +
β

2
‖Lw − UDiag(λ)UT ‖2F . (9)

The problem (9) is equivalent to the non-negative quadratic program problem

minimize
w≥0

f(w) =
1

2
‖Lw‖2F − cTw, (10)

which is strictly convex where c = L∗(UDiag(λ)(U)
T − β−1K). It is easy to check that the

sub-problem (10) is strictly convex. However, due to the non-negativity constraint (w ≥ 0), there is
no closed-form solution, and thus we derive a majorization function via the following lemma.
Lemma 3. The function f(w) in (10) is majorized at wt by the function

g(w|wt) = f(wt) + (w −wt)T∇f(wt) +
L

2

∥∥w −wt
∥∥2

where wt is the update from previous iteration, L = ‖L‖22 = 2p. The condition for the majorization
function can be easily checked [61, 62].

After ignoring the constant terms in Lemma 3, the problem (10) is majorized at wt as

minimize
w≥0

1

2
wTw − aTw, where a = wt − 1

2p
∇f(wt) and ∇f(wt) = L∗(Lwt)− c. (11)

Lemma 4. From the KKT optimality conditions we can obtain the optimal solution as

wt+1 =

(
wt − 1

2p
∇f(wt)

)+

, where (a)+ = max(a, 0). (12)

3.4 Update for U
At iteration t+ 1, treating U as a variable, and fixing w and λ, we obtain the following subproblem:

maximize
U

tr
(
UTLwUDiag(λ)

)
subject to UTU = Iq. (13)

Lemma 5. From the KKT optimality conditions the solution to (13) is given by

U t+1 = eigenvectors(Lw)[k + 1 : p], (14)

that is, the n− k eigenvectors of the matrix Lw in increasing order of eigenvalue magnitude [63, 64].

3.5 Update for λ

We obtain the following sub-problem for the update of λ for given w and U :

minimize
λ∈Sλ

− log det(Diag(λ)) +
β

2
‖UT (Lw)U − Diag(λ)‖2F . (15)

As now λ only contains non-zero eigenvalues in increasing order, then we can replace generalized
determinant with determinant on Diag(λ). For notation brevity, we denote the indices for the non-zero
eigenvalues λi from 1 to q = p− k instead of k + 1 to p. Next the sub-problem (15) can be further
written as

minimize
c1≤λ1≤···≤λq≤c2

−
q∑
i=1

log λi +
β

2
‖λ− d‖22, (16)

where λ = [λ1, · · · , λq]T and d = [d1, · · · , dq]T , with di the i-th diagonal element of
Diag(UT (Lw)U). The sub-problem (16) is a convex optimization problem and the solution can be
obtained from the KKT optimality conditions. One can solve the convex problem (16) with a solver
but not suitable for large scale problems. We derive a tailor-made computationally efficient algorithm,
which updates λ following an iterative procedure with the maximum number of q + 1 iterations.
Please refer to the supplementary material for the detailed derivation of the algorithm.
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Algorithm 1 SGL
Input: SCM S, k, c1, c2, β
t← 0
while Stopping criteria not met do

Update wt+1 as in (12).
Update U t+1 as in (14).
Update Λt+1 as discussed in Section 3.5.
t← t+ 1

end while
Output: Θ̂t+1 = Lwt+1

3.6 SGL Algorithm Summary
Algorithm 1, which we denote by SGL, summarizes the implementation of the structured graph
learning via Laplacian spectral constraints. Note that the eigen-decomposition for the update U is the
most demanding task in our algorithm, with a complexity of O(p3). This is very efficient considering
the fact that the total number of parameters to estimate is O(p2), which also are required to satisfy
complex combinatorial-structural constraints. Computationally efficient graph learning algorithms
such as GLasso [32] and GGL [26] have similar worst-case complexity, though they learn a graph
without any structural constraints. It is implied that the algorithm would be applicable to problems
where eigenvalue decomposition can be performed–which nowadays are possible for large scale
problems.
Remark 1. Apart from learning k−component graph, the SGL algorithm can also be easily adapted
to learn other graph structures with aforementioned spectral constraints in (5) to (7). Furthermore,
SGL can also be utilized to learn classical connected graph structures (e.g., Erdos-Renyi graph,
modular graph, grid graph, etc.) just by setting the eigenvalue constraints corresponding to one
component graph (i.e., k = 1) and c1, c2 to very small and large values, respectively.

Theorem 1. The sequence (wt, U t,λt) generated by Algorithm 1 converges to the set of KKT points
of (8).

Proof: The detailed proof is deferred to the supplementary material.

4 Experiments
In this section, we illustrate the advantages of incorporating spectral information directly into a graph
learning framework with real data experiments. We apply SGL to learn similarity graphs from a
real categorical animal dataset [65] with binary entries to highlight that it can obtain a meaningful
graph for non-Gaussian data as well. We also apply our method to detect biologically meaningful
clusters from complex and high-dimensional PANCAN cancer dataset [66]. Performance is evaluated
based on visual inspection and by evaluating accuracy (ACC). Additional experiments with different
performance measures (e.g., relative error and F-score) for several structures, such as Grid, Modular,
and multi-component, noisy multi-component graph structures are shown in the supplementary
material..

4.1 Animals data set
Herein, animals data set [65, 67] is taken into consideration to learn weighted graphs. The data set
consists of binary values (categorical non-Gaussian data) which are the answers to questions such as
“is warm-blooded?,” “has lungs?”, etc. There are a total of 102 such questions, which make up the
features for 33 animal categories. Figure 1 shows the results of estimating the graph of the animals
data set using the SGL algorithm, with GGL1, and GLasso. Graph vertices denote animals, and
edge weights representing similarity among them. The input for all the algorithms is the sample
covariance matrix plus an identity matrix scaled by 1/3 (see [26]). The evaluation of the estimated
graphs is based on the visual inspection. It is expected that similar animals such as (ant, cockroach),
(bee, butterfly), and (trout, salmon) would be grouped together. Based on this premise, it can be seen
that the SGL algorithm yields a more clear graph than the ones learned by GGL and GLasso.

1The state-of-the-art algorithm for learning generalized graph Laplacian [26].
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(a) GLasso [32]
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(b) GGL [26]
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(c) SGL (k = 1)
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(d) SGL(k = 5)

Figure 1: Perceptual graphs of animal connections are obtained by (a) GGL, (b) GLasso, and
(c) SGL with k = 1, and (d) SGL with k = 5. GGL, GLasso split the graph into multiple
components due to the sparsity regularization, while SGL with k = 1 (connectedness) yields a
sparse yet connected graph. (d) SGL with k = 5 obtains a graph with 5 components which depicts
a more fine-grained representation of animal connection by grouping similar animals in respective
components. Furthermore, the animal data is categorical (non-Gaussian) which does not follow the
GMRF assumption, the above result also establishes the capability of SGL under mismatch of the
data model.

4.2 Cancer Genome data set
We consider the RNA-Seq Cancer Genome Atlas Research Network [66] data set available at the
UC-Irvine Machine Learning Database [68]. This data set consists of genetic features which map 5
types of cancer namely: breast carcinoma (BRCA), kidney renal clear-cell carcinoma (KIRC), lung
adenocarcinoma (LUAD), colon adenocarcinoma (COAD), and prostate adenocarcinoma (PRAD). In
Figure 2, they are labeled with colors black, blue, red, violet, and green, respectively. The data set
consists of 801 labeled samples, in which every sample has 20531 genetic features and the goal is to
classify and group the samples, according to their tumor type, on the basis of those genetic features.

(a) CLR [51] (b) SGL(proposed)

Figure 2: Clustering with (a) CLR method–there are two miss-classified points in the black group
and 10 miss-classified points in the red group, and (b) Clustered graph learned with proposed SGL
with k = 5 shows a perfect clustering. Furthermore, the graph for the BRCA (black) data sample
highlights an inner sub-grouping: suggesting for further biological investigation.

We compare the SGL performance against the state-of-the-art method for graph-based clustering, i.e.,
constrained Laplacian rank algorithm CLR [51]. CLR uses a well-curated similarity measure as the
input to the algorithm, which is obtained by solving a separate optimization problem, while the SGL
takes the sample covariance matrix as its input. Still SGL method outperforms CLR, even though the
later is a specialized clustering algorithm. The values for clustering accuracy (ACC)[51] for both the
methods are (SGL=0.99875, CLR=0.9862). The improved performance of the SGL can be attributed
to two main reasons i) SGL is able to estimate the graph structure and weight simultaneously, which
is essentially an optimal joint procedure, ii) SGL is able to capture the conditional dependencies (i.e.,
inverse covariance matrix entries) among nodes which consider a global view of relationships, while
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the CLR encodes the connectivity via the direct pairwise distances. The conditional dependencies
relationships are expected to give an improved performance for clustering tasks [6].

To the best of our knowledge, the SGL is the first single stage algorithm that can learn a clustered
graph directly from sample covariance matrix data without any additional pre-processing (i.e., learning
optimized similarity matrix) or post-processing steps (i.e., thresholding). This makes the SGL highly
favorable for large-scale unsupervised learning applications.

5 Conclusion
In this paper, we have shown how to convert the combinatorial constraints of structured graph learning
into analytical constraints of the graph matrix eigenvalues. We presented the SGL algorithm that
can learn structured graphs directly from sample data. Extensive numerical experiments with both
synthetic and real datasets demonstrate the effectiveness of the proposed methods. The algorithm
enjoys comprehensive theoretical convergence properties along with low computational complexity.
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