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Abstract— Interference management is a fundamental issue
in device-to-device (D2D) communications whenever the
transmitter-and-receiver pairs are located in close proximity and
frequencies are fully reused, so active links may severely interfere
with each other. This paper devises an optimization strategy
named FPLinQ to coordinate the link scheduling decisions among
the interfering links, along with power control and beamforming.
The key enabler is a novel optimization method called matrix
fractional programming (FP) that generalizes previous scalar
and vector forms of FP in allowing multiple data streams
per link. From a theoretical perspective, this paper provides
a deeper understanding of FP by showing a connection to the
minorization-maximization (MM) algorithm. From an applica-
tion perspective, this paper shows that as compared to the existing
methods for coordinating scheduling in the D2D network, such
as FlashLinQ, ITLinQ, and ITLinQ+, the proposed FPLinQ
approach is more general in allowing multiple antennas at
both the transmitters and the receivers, and further in allowing
arbitrary and multiple possible associations between the devices
via matching. Numerical results show that FPLinQ significantly
outperforms the previous state-of-the-art in a typical D2D com-
munication environment.

Index Terms— Device-to-device (D2D) networks, link schedul-
ing, power control, beamforming, matrix fractional programming
(FP), minorization-maximization (MM) algorithm.

I. INTRODUCTION

SPECTRUM sharing in an interference-limited wireless
communication environment is one of the most fundamen-

tal problems in network engineering, for which no efficient
global optimum algorithm is yet available. This problem
is challenging especially when a large number of mutually
interfering links are present. One essential difficulty lies in
deciding which links should be active at any given time,

Manuscript received March 29, 2019; revised August 7, 2019; accepted
September 20, 2019; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor C. W. Tan. Date of publication October 8, 2019; date of
current version October 15, 2019. This work was supported in part by the Nat-
ural Science and Engineering Research Council (NSERC), in part by Huawei
Technologies Canada, in part by the Hong Kong RGC 16208917 Research
Grant, and in part by the Hong Kong Telecom Institute of Information
Technology Visiting Fellowship. This article was presented in part at the IEEE
International Symposium on Information Theory (ISIT), Aachen, Germany,
June 2017 [1]. (Corresponding author: Kaiming Shen.)

K. Shen and W. Yu are with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
kshen@ece.utoronto.ca; weiyu@ece.utoronto.ca).

L. Zhao and D. P. Palomar are with the Department of Electrical and
Computer Engineering, The Hong Kong University of Science and Technology
(HKUST), Hong Kong, China (e-mail: lzhaoai@connect.ust.hk; palomar@
ust.hk).

Digital Object Identifier 10.1109/TNET.2019.2943561

Fig. 1. D2D network with white circles denoting the transmitters and
black circles denoting the receivers. In the fixed single association model
(a), the transmitters have a fixed one-to-one mapping to the receivers. This
paper considers a more general setting (b) in which each transmitter has the
flexibility of associating with one of the multiple receivers, and each receiver
has the flexibility of associating with one of the multiple transmitters.

i.e., how to schedule. But the optimal scheduling is also
intimately related to power control and beamforming, if the
communication links are equipped with multiple antennas,
as power and beam pattern have significant effect on the
interference. This coordinated scheduling, beamforming, and
power control problem is important in the emerging device-
to-device (D2D) communication paradigm in which arbitrary
peer-to-peer transmissions can take place, but also relevant in
traditional cellular networks in which coordination among the
cells can significant improve the network performance.

This paper devises a novel optimization technique based on
fractional programming (FP) for solving this classic problem.
The problem formulation is that of maximizing a weighted
sum rate of links across a D2D network, in which the weights
account for fairness and the links are selectively activated in
order to alleviate interference. In addition, this paper considers
a model that allows each transmitter to have the flexibility
of associating with one of the multiple receivers, and each
receiver to have the flexibility of associating with one of the
multiple transmitters, as illustrated in Fig. 1. This overall
scheduling, power control, and beamforming problem is a
difficult combinatorial and nonconvex optimization, because
the scheduling decision of each link depends strongly on the
activation states and the transmission parameters (e.g., power
and beamforming pattern) of the nearby links.

Motivated by the crucial role of the signal-to-interference-
plus-noise ratio (SINR) in the communication system design,
this paper proposes a fractional programming based link
scheduling (FPLinQ) strategy to address the coordinated
scheduling, beamforming, and power control problem in an
interference network. While the use of FP for scheduling,
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beamforming, and power control originated from our previous
work [2], [3], the method proposed in [2], [3] is restrictive in
the sense that: (i) only scalar and vector cases are treated so
that each communication link can only have one single data
stream; (ii) the application regime is restricted to the cellular
setting in which each user is associated with one single fixed
base-station.

The present paper generalizes [2], [3] in several nontrivial
directions. The key theoretical development here is a novel
matrix FP technique for dealing with ratios involving matrices,
in contrast to earlier FP techniques that deal with only the
scalar ratio, thus allowing the full capacity of the multiple-
input multiple-output (MIMO) channel to be realized with
multiple data streams. Furthermore, this paper tackles a more
general scheduling problem in which each transmitter/receiver
has the flexibility in associating with each other. Moreover,
this paper makes a theoretical contribution by interpreting
the proposed FP approach as a minorization-maximization
(MM) algorithm, thus allowing convergence to be readily
established. An interesting finding of this paper is that the FP
transforms can be interpreted as novel surrogate functions in
the MM context.

A. Related Work

Interference-aware scheduling, power control and beaform-
ing for wireless networks have attracted considerable research
interests over the years, e.g., [4]–[12]. In the multiple-antenna
cellular network context, the well-known weighted minimum
mean square error (WMMSE) algorithm [13], [14] is able
to attain a stationary point of the joint power control and
beamforming problem; furthermore, under some special con-
dition for the single-cell case, the global optimum solution can
sometimes be found [15]. But the cellular model is different
from the model considered in this paper, because spatial
multiplexing can typically be implemented at a cellular base-
station, while the D2D model of this paper only allows one-
to-one mapping between each transmitter and each receiver.

In the D2D context, there are a vast array of works in the
existing literature exploring a variety of different directions,
including geometric programming [16], game theory [17],
stochastic geometry [18], [19], evolution theory [20], and
dynamic programming [21]. While some of existing works
[4], [22], [23] adopt a quality-of-service (QoS) model for
the scheduling problem, many other works (including this
paper) consider maximizing the weighted sum rate across the
D2D network, where the fairness is taken into account by
appropriate setting of the weights.

This paper is most closely related to a series of works that
propose algorithms called FlashLinQ [24], ITLinQ [25], and
ITLinQ+ [26], which address the D2D scheduling problem
using greedy search while utilizing information theoretic intu-
ition based on generalized degrees-of-freedom (GDoF); we
review these algorithms in detail in Section II-C.

An important benchmark method for the problem consid-
ered in this paper is the block coordinate descent (BCD)
approach, which is proposed for the cellular network in [27],
but can also be adopted for the D2D model. However, BCD
is prone to being trapped in the local optimum solution, as we
discussed in Section II-B. Using the greedy algorithm and the
BCD method as the benchmarks, the aim of this paper is to
show that an optimization motivated approach based on FP
can significantly outperform these state-of-the-art methods.

B. Main Contributions

The main contributions of this paper are summarized below:
• Multiple-Antenna Flexible-Association D2D Network

Model: This work considers a D2D network setup
with multiple antennas at both the transmitters and the
receivers, thus each link can carry multiple data streams.
Further, the model considered here allows the flexibility
among multiple possible associations between the trans-
mitters and the receivers. This is a more general model
than the ones considered in the previous works [2], [3],
[24]–[26].

• Matrix FP Transforms: This paper introduces the matrix
FP which treats

√
A

†
(x)B−1(x)

√
A(x) as a ratio

between the positive (semi)definite matrix-valued func-
tions A(x) and B(x), whereas the previous FP theory
focuses on the scalar ratio A(x)/B(x) between the real-
valued functions A(x) ≥ 0 and B(x) > 0 [28] or the
vector case a†(x)B−1(x)a(x) with the vector function
a(x) [2], [3]. We extend the FP transforms of [2], [3] to
the matrix case.

• Interpretation of Matrix FP as MM: This paper shows
that, from an MM algorithm perspective, the proposed
matrix FP transforms can be thought of as constructing
surrogate functions for the original problem. In this sense,
this work puts forward a novel way of minorizing the
logarithmic objective function and the fractional function,
in contrast to the traditional application of MM, which
relies on the second-order Taylor expansion.

• FPLinQ Algorithm: This paper proposes an efficient FP
based numerical algorithm for the iterative optimization
of scheduling, beamforming, and power control for a
D2D network. It achieves a higher network utility than
the previous state-of-the-art. We observe that the direct
optimization of these variables, using for example the
WMMSE algorithm [13], [14], may incur a premature
link turning-off problem. In addition, as compared to
FlashLinQ, ITLinQ, and ITLinQ+ [24]–[26], we point
out that the information theoretic justification for ITLinQ
actually does not guarantee the optimality of scheduling,
and further the proposed FPLinQ strategy also has an
advantage in that it does not require any tuning of design
parameters. The proposed FPLinQ strategy is based on
the decoupling of a matrix ratio. There are in fact
multiple different possible decoupling strategies, but the
one adopted for FPLinQ is best suited for algorithmic
implementation.

C. Paper Organization and Notation

The rest of this paper is organized as follows. Section II
states the problem formulation for the wireless joint
link scheduling, beamforming, and power control problem.
Section III introduces the matrix FP. We provide two useful
transforms and also connect them to the MM algorithm.
Section V derives the proposed FPLinQ algorithm. Section VI
provides numerical results to validate the performance of the
proposed algorithm. Finally, Section VII concludes the paper.

We use lower case, e.g., s, to denote scalars, bold lower
case, e.g., x, to denote vectors, and bold upper case, e.g.,
V, to denote matrices. We use R to denote the set of real
numbers, C to denote the set of complex numbers, H++

(or H+) to denote the set of Hermitian positive definite (or
semidefinite) matrices, I to denote the identity matrix, and
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0 to denote the zero matrix. We use (·)† to denote matrix
conjugate transpose, �{·} to denote the real part of a complex
number, and tr(·) to denote matrix trace. We use underline to
denote a collection of variables, e.g., x = {x1,x2, . . . ,xn}
and Y = {Y1,Y2, . . . ,Yn}.

II. JOINT SCHEDULING, BEAMFORMING, AND POWER

CONTROL IN D2D NETWORK
A. Problem Formulation

Consider a wireless D2D network with a set of transmitters
I and a set of receivers J . We assume that each transmitter
may have data to transmit to one or more receivers, and like-
wise each receiver may wish to receive data from one or more
transmitters. Thus, the communication scenario considered
in this paper is a generalization of traditional D2D network
with fixed single association between each pair of transmitter
and receiver to a scenario with multiple possible associations
between the transmitters and the receivers as shown in Fig. 1.
We assume that in each scheduling time slot, each transmitter
(or receiver) can only communicate with at most one of its
associated receivers (or transmitters),1 respectively, so that the
mapping between the transmitters and the receivers is one-to-
one. The task of scheduling is to identify which set of links
over the network to activate in each slot. Further, we assume
that the transmitters and the receivers are each equipped with
N antennas and permit multiple data streams to be carried
via MIMO transmission. The task of beamforming and power
control is to design the transmit beamformers for each of these
multiple data streams in each active link in the scheduling slot.

Mathematically, let Kj ⊆ I be the set of transmitters
associated with each particular receiver j ∈ J . Likewise, let
Li ⊆ J be the set of receivers associated with each transmitter
i ∈ I. Let Hji ∈ CN×N be the channel from transmitter
i to receiver j in the scheduling slot. The joint scheduling,
beamforming, and power control problem can be written down
as that of optimizing two sets of variables: sj , the index of
the transmitter scheduled at receiver j, and Vi ∈ CN×N ,
the collection of beamforming vectors at transmitter i in
each scheduling slot so as to maximize some network wide
objective function. Throughout this paper, we assume that
the channel state information (CSI) is completely known and
network optimization is performed in a centralized manner.
We note that this network optimization problem is NP-hard,
even under such idealized assumptions [29], [30].

This paper uses the weighted sum rate as the optimization
objective in each scheduling slot, where the weights are
adjusted from slot to slot in an outer loop in order to maximize
a network utility of long-term average rates. We assume that
interference is treated as noise, so that the achievable data rate
in each scheduling slot can be computed from the receiver’s
perspective, i.e., for each receiver j, as [31]

Rj = log
∣∣∣I + V†

sj
H†

jsj
F−1

j Hjsj Vsj

∣∣∣ (1)

with the interference-plus-noise term

Fj = σ2I +
∑

j′∈J\{j}
Hjsj′ Vsj′ V

†
sj′ H

†
jsj′

, (2)

1Note that the D2D model considered in this paper is more general than
the traditional wireless cellular network model of [3] in effectively allowing
multiple and arbitrary associations between the base-stations and the mobile
terminals, but on the other hand, is also more restrictive in that it does not
allow spatial multiplex at either the receiver or the transmitter.

where σ2 is the power of thermal noise. Given a set of
nonnegative weights wji ≥ 0, the optimization problem is
therefore

maximize
V, s

∑
j∈J

wjsj Rj (3a)

subject to tr
(
V†

iVi

) ≤ Pmax, ∀i ∈ I, (3b)

sj ∈ Kj ∪ {∅}, ∀j ∈ J , (3c)

sj 
= sj′ or sj = ∅, ∀j 
= j′, (3d)

where we have assumed a per-scheduling-slot and per-node
power constraint Pmax and ∅ denotes the decision of not
scheduling any transmitter at receiver j. We remark that Hjsj ,
Vsj , and wjsj are set to zero if sj = ∅. Constraint (3d) states
that the same transmitter cannot be scheduled for more than
one receiver at a time, as required by the assumption that
the association between the transmitters and the receivers in
the D2D network must be one-to-one. Problem (3) involves
a discrete optimization over s and a nonconvex continuous
optimization over V, which make it a challenging optimiza-
tion problem. Below, we first review several conventional
approaches including the BCD algorithm and the greedy
algorithms.

B. Block Coordinate Descent

The joint scheduling, beamforming, and power alloca-
tion problem as formulated in (3) is a mixed discrete-
continuous programming problem. To reach a reasonable
solution, we could optimize the discrete scheduling variable
s and the continuous beamforming variable V separately and
alternatively in a form of the BCD algorithm [27]. When
s is held fixed, optimizing V alone in (3) is the conven-
tional beamforming problem for which existing methods (e.g.,
the WMMSE algorithm [13], [14]) can be applied. When V
is held fixed, optimizing s alone in (3) can be recognized as a
weighted bipartite matching problem which can be solved by
standard methods.

However, we point out that the BCD approach is prone to
a potentially serious premature turning-off problem. Suppose
that none of the links related to a particular transmitter i is
scheduled at the early stage of the iterative optimization, then
the beamforming variable Vi would be set to zero. As a result,
when s is optimized via matching for the fixed V in the next
iteration, the matching weights related to i would all be equal
to zero, so the corresponding links can never be turned back
on. Therefore, premature scheduling decisions can adversely
affect the overall performance of the algorithm.

C. FlashLinQ, ITLinQ, and ITLinQ+
We further examine the state-of-the-art methods for D2D

link scheduling in the literature: FlashLinQ [24], ITLinQ [25],
and ITLinQ+ [26]. These works assume that each terminal
has a single antenna, and further that each transmitter (or
receiver) is only associated with one receiver (or transmitter)
respectively, namely the fixed single association case shown
in Fig. 1(a).

Because deciding the ON-OFF state for all the links at
the same time is difficult, all three algorithms propose to
schedule the links in a greedy fashion sequentially, as stated
in Algorithm 1. The main difference between FlashLinQ [24],
ITLinQ [25], and ITLinQ+ [26] lies in the criterion for
deciding whether the new link conflicts with already scheduled
ones in Step 3 of Algorithm 1.
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Algorithm 1 Sequential Link Selection

1 Initialize the set of activated links A to ∅ ;
2 for each link (i, j) do
3 if (i, j) does not “conflict” with any link in A then
4 Schedule link (i, j) and add it to A;
5 end
6 end

1) FlashLinQ [24]: The FlashLinQ scheme [24] applies a
threshold θ to SINR, assuming that adding link i to A does
not cause conflict if and only if all the activated links have
their SINRs higher than θ. The performance of FlashLinQ is
highly sensitive to the value of θ, but choosing θ properly can
be difficult in practice. Further, using the same θ for all the
links is usually suboptimal when the weight varies from link
to link.

2) ITLinQ [25] and ITLinQ+ [26]: From an information
theory perspective, a seminal study [32] on the multi-user
Gaussian interference channel provides a sufficient (albeit not
necessary) condition for the optimality of treating interference
as noise (TIN) for maximizing the GDoF as follows:

log |hji| ≥ max
j′ �=j

{log |hj′i|} + max
i′ �=i

{log |hji′ |} , (4)

where hji ∈ C is the channel of the single-antenna case.
We refer to this result as the TIN condition.

The central idea of ITLinQ and ITLinQ+ is to schedule a
subset of links that meet this TIN condition. Because the TIN
condition in (4) is often too stringent to activate sufficient num-
ber of links, ITLinQ and ITLinQ+ both introduce relaxation
based on design parameters. Like FlashLinQ, the performance
of ITLinQ and ITLinQ+ is heavily dependent on the choice of
design parameters, but they are difficult to choose optimally
in practice. For example, [26] adopts two different sets of
parameters for ITLinQ+ for two different network models.
It is often not clear how to adapt ITLinQ and ITLinQ+ to the
particular network environment of interest.

It is important to point out that the theoretical basis of
ITLinQ and ITLinQ+, i.e., the TIN condition, only helps
decide whether for some particular schedule, treating interfer-
ence as noise is the optimal coding strategy from a GDoF
perspective. It does not, however, guarantee that if some
schedule satisfies the TIN condition, then it must be the GDoF
optimal schedule. Thus, for a particular network, a schedule
that does not satisfy the TIN condition can outperform one
that does.

This subtle point is illustrated in the three-link D2D network
example shown in Fig. 2. Let the desired signal strength be
P and interfering signal strength be P 0.6. At most one link
can be activated according to (4), so under the TIN condition,
the total GDoF ≤ 1. But, a higher sum GDoF of 1.2 can be
achieved by simply activating all the links. Therefore, the TIN
condition does not guarantee even the GDoF optimality of
a given schedule. Considering further the significant gap
between GDoF and the actual achievable rate, ITLinQ and
ITLinQ+ can often produce quite suboptimal solutions.

In contrast to FlashLinQ, ITLinQ, and ITLinQ+, this paper
takes an optimization theoretic approach of recognizing the
optimization objective function as a matrix FP (since it
involves a matrix ratio inside a logarithm), then proposes
an iterative method via a series of matrix FP transforms.

Fig. 2. Power strength is P for each solid signal and is P 0.6 for each dashed
signal. Thus, the sum GDoF equals to 1 if only one link is on, and equals to
1.2 if all links are on.

The proposed iterative method involves the update of all the
scheduling variables in one step at the same time and the opti-
mization of beamforming and power variables in subsequent
steps. One advantage of this optimization motivated approach
as compared to FlashLinQ, ITLinkQ and ITLinQ+ is that it
does not require the tuning of any design parameters.

III. MATRIX FRACTIONAL PROGRAMMING

To develop the matrix FP transform, we first present the
scalar case as proposed in [2], [3], then provide the matrix
generalization.

A. Scalar FP Transforms

For scalar FP, the following transform is proposed in [2] in
order to facilitate optimization by decoupling the numerators
and denominators of the scalar fractional terms in the objective
function of an FP.

Proposition 1 (Quadratic Transform [2]): Given a non-
empty constraint set X as well as a sequence of nonnegative
functions Am(x) ≥ 0, strictly positive functions Bm(x) > 0,
and monotonically nondecreasing functions fm(z) : R �→ R,
for m = 1, 2, . . . , M , the sum-of-functions-of-ratio problem

maximize
x

M∑
m=1

fm

(
Am(x)
Bm(x)

)
(5a)

subject to x ∈ X (5b)

is equivalent to

maximize
x, y

M∑
m=1

fm

(
2ym

√
Am(x) − y2

mBm(x)
)

(6a)

subject to x ∈ X , (6b)

where ym ∈ R is an auxiliary variable introduced for each
ratio term Am(x)/Bm(x).

The above transform is called the quadratic transform,
because it involves a quadratic function of the auxiliary vari-
ables. The quadratic transform decouples the numerator and
the denominator of the fraction, thereby enabling the iterative
optimization between x and ym after the transformation. This
strategy works well for a variety of optimization problems,
including scalar version of the scheduling, beamforming, and
power control problem.

Although not immediately recognized at the time [2] was
published, the above quadratic transform (at least for the case
where the functions are trivial, i.e., fm(z) = z for each
m) is very similar to the earlier work of Benson [33], [34],
as restated below.

Proposition 2 (Benson’s Transform [33], [34]): Given a
nonempty constraint set X as well as a sequence of non-
negative functions Am(x) ≥ 0 and strictly positive functions
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Bm(x) > 0, m = 1, 2, . . . , M , the sum-of-ratios problem

maximize
x

M∑
m=1

Am(x)
Bm(x)

(7a)

subject to x ∈ X (7b)

is equivalent to

maximize
x,u,v

M∑
m=1

(
2um

√
Am(x) − vmBm(x)

)
(8a)

subject to x ∈ X , (8b)

u2
m − vm ≤ 0, ∀m = 1, 2, . . . , M, (8c)

where um ∈ R and vm ∈ R are introduced as the auxiliary
variables for each ratio term Am(x)/Bm(x).

The above transform is proposed by Benson [33], [34] in
order to facilitate a branch-and-bound search for the global
optimum of the sum-of-ratios problem. It can be shown that
at the optimum, we must have u2

m = vm, thus if we had made
them equal a priori, this reduces to the quadratic transform of
Proposition 1.

In many practical applications, we wish to optimize func-
tions of ratios. If the functions are monotonic, then one can
apply the quadratic transform directly as stated in Theorem 1.
However in case of logarithmic function, as often encountered
in communication system design, a better alternative is to
apply the following transform, proposed in [3], to “move” the
ratio terms to the outside of logarithm. This has an advantage
when discrete (such as scheduling) variables are involved,
as it allows matching algorithms to be used for discrete
optimization.

Proposition 3 (Lagrangian Dual Transform [3]): Given a
nonempty constraint set X as well as a sequence of nonnega-
tive functions Am(x) ≥ 0, strictly positive functions Bm(x) >
0, and nonnegative weights wm ≥ 0, for m = 1, 2, . . . , M ,
the sum-of-logarithmic-ratios problem

maximize
x

M∑
m=1

wm log
(

1 +
Am(x)
Bm(x)

)
(9a)

subject to x ∈ X (9b)

is equivalent to

maximize
x, γ

fr(x, γ) (10a)

subject to x ∈ X , (10b)

where the new objective function is

fr(x, γ) =
M∑

m=1

wm log(1 + γm) −
M∑

m=1

γmwm

+
M∑

m=1

(1 + γm)wmAm(x)
Am(x) + Bm(x)

(11)

with an auxiliary variable γm ∈ R introduced for each ratio
term Am(x)/Bm(x).

The main result of [3] is that the quadratic transform
and the Lagrangian dual transform can be applied together
to decouple the ratio terms in the rate expression for wire-
less cellular networks, thus making the network optimization
problem much easier to tackle especially in the presence of
discrete scheduling variables. To summarize, two different

FP techniques are introduced. Proposition 1 decouples the
numerator and denominator of the ratio. Proposition 3 moves
the ratio from inside of the logarithm to the outside.

The earlier conference version of this paper [1] further
uses the above transforms for scalar FP to solve the optimal
scheduling problem in the D2D context, but only the case in
which each transmitter or receiver is equipped with a single
antenna. This paper aims to develop a matrix extension for the
MIMO case.

B. Matrix FP Transforms

The definition of ratio can be naturally generalized to the
matrix case. Recall that

√
A ∈ Cn×n is a square root of matrix

A ∈ H
n×n
+ if

√
A
√

A
†

= A. For any pair of A ∈ H
n×n
+ and

B ∈ H
n×n
++ , let

√
A be a square root of A, then

√
A

†
B−1

√
A

is said to be a matrix ratio between A and B. The FP
transforms of Propositions 1 and 3 can now be generalized.
We state these new results in the following.

Theorem 1 (Matrix Quadratic Transform): Given a non-
empty constraint set X as well as a sequence of numerator
functions Am(x) ∈ H

n×n
+ , denominator functions Bm(x) ∈

H
n×n
++ , and nondecreasing matrix functions fm(Z) : H

n×n
+ �→

R in the sense that fm(Z′) ≥ fm(Z) if Z′ � Z, for m =
1, 2, . . . , M , the sum-of-functions-of-matrix-ratio problem

maximize
x

M∑
m=1

fm

(√
A

†
m(x)B−1

m (x)
√

Am(x)
)

(12a)

subject to x ∈ X (12b)

is equivalent to

maximize
x,Y

f̃q(x,Y) (13a)

subject to x ∈ X , (13b)

Ym ∈ C
n×n, (13c)

where the new objective function is defined as

f̃q(x,Y) =
M∑

m=1

fm

(
2�{

√
A

†
m(x)Ym} − Y†

mBm(x)Ym

)
.

(14)

Note that (14) implicitly requires that the argument of fm(·)
in (14) is a positive semidefinite matrix.

Proof: To show that (12) is equivalent to (13), we first
optimize over Ym for fixed x in (13). This can be done for
each term in the summation in f̃q separately. Since fm(·)
is assumed to be monotonic, we only need to optimize
its argument, which is a quadratic function of Ym. This
optimization has a closed-form solution by completing the
square, i.e.,

2�{
√

A
†
m(x)Ym} − Y†

mBm(x)Ym

=
√

A
†
m(x)Ym + Y†

m

√
Am(x) − Y†

mBm(x)Ym

=
√

A
†
m(x)B−1

m (x)
√

Am(x) − Δ†
mBm(x)Δm, (15)

where Δm = Ym − B−1
m (x)

√
Am(x). We then obtain the

optimal Y�
m = B−1

m (x)
√

Am(x). Substituting this Y�
m in f̃q

recovers the original problem.
The quadratic transform for FP is first developed for

the scalar case in Proposition 1, then generalized to the
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vector case in [2], where the objective function has the
form

∑M
m=1 fm(a†

m(x)B−1
m (x)am(x)), where am(x) ∈ Cn,

Bm(x) ∈ S
n×n
++ , and fm(z) : R �→ R is a nondecreasing

function.
The above result is a further generalization to the matrix

case. The scalar FP can be used to model the power control
problem for single-antenna links. The vector FP can be used to
deal with a special case of MIMO communication [2] where
each link has at most one data stream. To reap the full benefit
of MIMO, each link needs to carry multiple data streams.
In this case, the matrix FP is necessary.

Theorem 2 (Matrix Lagrangian Dual Transform): Given a
nonempty constraint set X as well as a sequence of numer-
ator functions Am(x) ∈ H

n×n
+ , denominator functions

Bm(x) ∈ H
n×n
++ , and nonnegative weights wm ≥ 0, for

m = 1, 2, . . . , M , the sum-of-weighted-logarithmic-matrix-
ratios problem

maximize
x

M∑
m=1

wm log
∣∣∣I +

√
A

†
m(x)B−1

m (x)
√

Am(x)
∣∣∣

(16a)

subject to x ∈ X (16b)

is equivalent to

maximize
x,Γ

fr(x,Γ) (17a)

subject to x ∈ X , (17b)

Γm ∈ H
n×n
+ , (17c)

where the new objective function is

fr(x,Γ)=
M∑

m=1

wm

(
log |I+Γm| − tr(Γm)+tr

(
(I + Γm) ·

√
A

†
m(x)

(
Am(x) + Bm(x)

)−1√
Am(x)

))
. (18)

Proof: First, using the Woodbury matrix iden-
tity, i.e., (D + UCV)−1 = D−1 − D−1U(C−1 +
VD−1U)−1VD−1, we can rewrite (18) as

fr(x,Γ) =
M∑

m=1

wm

(
log |I + Γm| + n − tr

(
(I + Γm) ·

(
I +

√
A

†
m(x)B−1

m (x)
√

Am(x)
)−1

))
. (19)

We then consider the optimization of the above new form of
fr. Note that the optimization over Γm can be done separately
for each term of the summation. Since each of the terms is
concave over Γm when x is fixed, the optimal Γm can be
determined by setting ∂fr/∂Γm to zero, i.e.,

(I + Γm)−1 −
(
I +

√
A

†
m(x)B−1

m (x)
√

Am(x)
)−1

= 0.

(20)

Note that the derivative ∂fr/∂Γm exists in this case because
fr is a spectral function [35]. Thus, we obtain the optimal

Γ�
m =

√
A

†
m(x)B−1

m (x)
√

Am(x). Substituting this Γ�
m in

(19) recovers the original problem, thereby establishing the
theorem.

Observe that the proposed matrix quadratic transform of
Theorem 1 can be applied to decouple the ratio terms of fr

in (18) to further transform the matrix FP, as stated in the
corollary below.

Corollary 1: The problem (16) is equivalent to

maximize
x,Γ,Y

fq(x,Γ,Y) (21a)

subject to x ∈ X , (21b)

Γm ∈ H
n×n
+ , (21c)

Ym ∈ C
n×n, (21d)

where the new objective function is displayed in (22) at the
bottom of this page. Note that �{·} can be dropped for the

term
√

A
†
m(x)Ym because of trace.

Proof: Treating fm(Z) = tr
(
(I + Γm)Z

)
as the non-

decreasing function,
√

wm

√
Am(x) as the square root of the

numerator, and Am(x)+Bm(x) as the denominator, we apply
the matrix quadratic transform of Theorem 1 to the last term
of fr in (18) to obtain the above reformulation.

Note that the new objective function fq is a linear function
of each

√
wm

√
Am(x) and Bm(x), while keeping all other

terms fixed. This facilitates algorithm design for solving the
matrix FP problem. We also remark that there are also other
ways of applying the matrix quadratic transform to fr in (18)
by choosing different matrix ratios and functions fm(·). The
advantage of the above decomposition as compared to the
alternatives is discussed in detail in Section V-F.

IV. FRACTIONAL PROGRAMMING TRANSFORM AS

MINORIZATION MAXIMIZATION

An important theoretical observation of this paper is that
the matrix FP transform proposed above can be recast in the
MM framework. First, we give a brief introduction to MM.
Consider a general optimization problem:

maximize
x

f(x) (23a)

subject to x ∈ X , (23b)

where f(x) is not assumed to be concave. Because of the non-
convexity, it is not always easy to solve the problem directly.
The core idea behind the MM algorithm is to successively
solve a sequence of well-chosen approximations of the original
problem [36], [37]. Specifically, at point x̂ ∈ X , the MM
algorithm approximates problem (23) as

maximize
x

g(x|x̂) (24a)

subject to x ∈ X , (24b)

where g(x|x̂) is referred to as the surrogate function and is
defined by the following two conditions:

• C1: g(x|x̂) ≤ f(x) for any x ∈ X ;
• C2: g(x̂|x̂) = f(x̂).

fq(x,Γ,Y)=
M∑

m=1

(
wm log |I + Γm|−wmtr

(
Γm

)
+ tr

(
(I + Γm)

(
2
√

wm

√
A

†
m(x)Ym − Y†

m

(
Am(x) + Bm(x)

)
Ym

)))
.

(22)
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Fig. 3. The iterative optimization by the MM algorithm. Observe that f(x̂)
is monotonically nondecreasing after each iteration.

The MM algorithm updates x̂ iteratively as follows:

x̂t+1 = argmax
x∈X

g(x|x̂t), (25)

where subscript t is the iteration index. Note that the function
value of f(x̂) is nondecreasing after each iteration because

f(x̂t+1)
(a)

≥ g(x̂t+1|x̂t)
(b)

≥ g(x̂t|x̂t)
(c)
= f(x̂t), (26)

where (a) follows by C1, (b) follows by the optimality of x̂t+1

in (25), and (c) follows by C2. This is illustrated in Fig. 3.
The following proposition gives a convergence analysis of

the MM algorithm.
Proposition 4: Let x̂t be the solution produced by the

MM update (25) after t iterations. The function value f(x̂t)
converges in a nondecreasing fashion in t. Further, the variable
x̂t converges to a stationary point solution to the original
optimization problem (23) if the following three conditions
are satisfied: (i) f(x) is continuous over a convex closed set
X ; (ii) g(x|x̂) is continuous in (x, x̂); (iii) f(x) and g(x|x̂)
are differentiable with respect to x given x̂.

Proof: The non-decreasing convergence of f(x̂) is already
verified in (26). Further, combining the above condition (iii)
with the conditions C1 and C2, we obtain that f(x) and g(x|x̂)
have the same gradient with respect to x at x = x̂. This
result, along with the above conditions (i) and (ii), guarantees
that x̂t converges to a stationary point solution to the original
optimization problem (23) according to [36]. We remark that
the proof can be adapted to the case where x is a complex
variable; the argument is similar to that of [38].

The MM algorithm is a framework rather than an algorith-
mic prescription, because the algorithm depends on the specific
choice of the surrogate function. If f(·) is twice differentiable,
its second order Taylor expansion is often the first candidate to
check to see whether it is suitable as a surrogate function. For
more general functions, many of the ingenious ways of con-
structing a surrogate function have been documented in [37].

The main point of this section is that the proposed matrix FP
transforms can be interpreted in the MM framework as a way
of constructing surrogate functions of the original problems,
as stated below.

Theorem 3: Consider the matrix quadratic transform in
Theorem 1, if we consider the optimal Y�

m as a function of x̂
and substitute it into f̃q in (14), then the new objective function
f̃q(x,Y(x̂)), where

Ym(x̂) = B−1
m (x̂)

√
Am(x̂) (27)

is a surrogate function of the objective function of the opti-
mization problem (12).

Proof: We use fI(x) to denote the objective function in
(12a). Substitute Ym(x̂) = B−1

m (x̂)
√

Am(x̂) back in f̃q . We
aim to show that g(x|x̂) = f̃q(x,Y(x̂)) is a surrogate function
of fI(x).

As already shown in the proof of Theorem 1, Y(x) is
the optimum solution for the maximization of f̃q(x,Y) over
Y when x is fixed. So, f̃q(x,Y(x̂)) ≤ f̃q(x,Y(x)), ∀x̂,x.
Further, it can be seen that f̃q(x,Y(x)) = fI(x) for any x.

Thus, for each fixed x̂, we have f̃q(x,Y(x̂)) ≤ fI(x), ∀x,
and f̃q(x̂,Y(x̂)) = fI(x̂), thus verifying the conditions C1 and
C2 for f̃q(x,Y(x̂)) to be a surrogate function of fI(x).

Theorem 4: Consider the matrix Lagrangian dual transform
in Theorem 2, if we consider the optimal Γ�

m as a function
of x̂ and substitute it into fr in (18), then the new objective
function fr(x,Γ(x̂)), where

Γm(x̂) =
√

A
†
m(x̂)B−1

m (x̂)
√

Am(x̂) (28)

is a surrogate function of the objective function of the opti-
mization problem (16).

Proof: We use fII(x) to denote the objective function

in (16a). We substitute Γm(x̂) =
√

A
†
m(x̂)B−1

m (x̂)
√

Am(x̂)
back in fr, and aim to show that g(x|x̂) = fr(x,Γ(x̂)) is a
surrogate function of fII(x).

As shown in the proof of Theorem 2, Γ(x) is the optimal
solution to maximizing fr(x,Γ) over Γ when x is fixed,
so fr(x,Γ(x̂)) ≤ fr(x,Γ(x)), ∀x, x̂. Also, it holds true
that fr(x̂,Γ(x̂)) = fII(x̂), ∀x̂. Combining the above results,
we see that the conditions C1 and C2 are satisfied, thus
fr(x,Γ(x̂)) is a surrogate function of fII(x).

Corollary 2: Consider the transform in Corollary 1, if we
consider the optimal Γ�

m and the optimal Y�
m as two functions

of x̂, and substitute them into fq, then the new objective
function fq(x,Γ(x̂),Y(x̂)), where

Γm(x̂) =
√

A
†
m(x̂)B−1

m (x̂)
√

Am(x̂) (29)

and

Ym(x̂) =
(
Am(x̂) + Bm(x̂)

)−1(√
wm

√
Am(x̂)

)
, (30)

is a surrogate function of the objective function of the opti-
mization problem (16).

Proof: Again, let fII(x) be the objective function in
(16a). We introduce two new variables x̂ and ˆ̂x, and sub-
stitute Γm(x̂) =

√
A

†
m(x̂)B−1

m (x̂)
√

Am(x̂) and Ym(ˆ̂x) =(
Am(ˆ̂x)+Bm(ˆ̂x)

)−1(√
wm

√
Am(ˆ̂x)

)
back in fq and fr. Let

g1(x|ˆ̂x, x̂) = fq(x,Γ(x̂),Y(ˆ̂x)), and g2(x|x̂) = fr(x,Γ(x̂)).
According to Theorem 4, g2(x|x̂) is a surrogate function

of fII(x) in the sense that g2(x|x̂) ≤ fII(x) and g2(x̂|x̂) =
fII(x̂), ∀x, x̂. According to Theorem 3, g1(x|ˆ̂x, x̂) is a surro-
gate function with respect to fr in the sense that g1(x|ˆ̂x, x̂) ≤
fr(x,Γ(x̂)) and g1(ˆ̂x|ˆ̂x, x̂) = fr(ˆ̂x,Γ(x̂)), ∀x, x̂, ˆ̂x.

Combining these results and fixing ˆ̂x = x̂, we obtain
g1(x|x̂, x̂) ≤ fr(x,Γ(x̂)) = g2(x|x̂) ≤ fII(x), ∀x and
g1(x̂|x̂, x̂) = fr(x̂,Γ(x̂)) = g2(x̂|x̂) = fII(x̂), thereby
verifying the conditions C1 and C2 for fq(x,Γ(x̂),Y(x̂)) to
be a surrogate function of fII(x).

This MM interpretation of the FP transforms provides a
theoretical basis for the proposed FPLinQ strategy for joint
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scheduling, beamforming and power control. Note that the
above results carry over to Propositions 1 and 3 for the scalar
FP case, so the approach of [2], [3] can be interpreted as an
MM algorithm as well.

V. JOINT SCHEDULING, POWER CONTROL AND

BEAMFORMING USING FPLINQ

A. Iterative Optimization via Matrix FP

We propose to solve the joint scheduling and beamforming
problem (3) iteratively by first reformulating it using Corol-
lary 1. Specifically, after specializing the variable x in (16)
to be the variables (V, s) in (3), we obtain the following
reformulation:

Theorem 5: The joint beamforming and link scheduling
problem (3) is equivalent to

maximize
s,V,Γ,Y

fq(s,V,Γ,Y) (31a)

subject to (3b), (3c), (3d),

Γj ∈ H
N×N
+ , (31b)

Yj ∈ C
N×N , (31c)

where the new objective function fq is shown in (32a) as
displayed at the bottom of the page.

Proof: The reformulating steps directly follow Corol-
lary 1. We remark that fq can be rewritten as in (32b), which
enables an efficient optimization by matching.

We now optimize over the variables of the new problem
(31) in an iterative manner. First, when s and V are both
held fixed, the auxiliary variables Γ and Y can be optimally
determined as

Γ�
j = V†

sj
H†

jsj
F−1

j Hjsj Vsj (33)

and

Y�
j =

(
Fj + Hjsj Vsj V

†
sj

H†
jsj

)−1 √
wjsj Hjsj Vsj . (34)

We remark that the implicit constraints as stated in Theorem 1
are automatically satisfied by the above optimal solution of the
auxiliary variable Y�

j .
It remains to optimize the beamforming variable V and the

scheduling variable s. The key idea is to formulate the problem
as a bipartite weighted matching problem, which is described
in detail below.

B. Scheduling and Beamforming via Bipartite Matching

We consider the objective function fq of the form (32b).
The key observation is that the beamformer of each link (if
it is scheduled) can be optimally determined from fq, even

without knowing the scheduling decisions for the nearby links.
To formalize this idea, let Ṽji be the tentative value of V�

i
if link (i, j) is scheduled. By completing the square in fq,
we can compute Ṽji as

Ṽji =
(

μjiI +
∑
j′∈J

H†
j′iYj′ (I + Γj′)Y

†
j′Hj′i

)−1

·
√

wji H
†
jiYj(I + Γj), (35)

where μji is a Lagrangian multiplier for the power constraint
(3b), optimally determined as

μ�
ji = min{μji ≥ 0 : tr(Ṽ†

jiṼji) ≤ Pmax}, (36)

which can be computed efficiently by bisection search since
Ṽji is monotonically decreasing with μji. The solution Ṽji

in (35) has the same structure as an MMSE beamformer.
We now turn to the question of which Ṽji should be chosen

to be Vi so as to maximize fq. This is akin to a scheduling
step of choosing the best transmitter i for each receiver j.
The key is to recognize this question as a weighted bipartite
matching problem:

maximize
q

∑
j∈J

∑
i∈Kj

λjiqji (37a)

subject to
∑
i∈Kj

qji ≤ 1, (37b)

∑
j∈Li

qji ≤ 1, (37c)

qji ∈ {0, 1}, (37d)

qji = 0 if i /∈ Kj or j /∈ Li, (37e)

where the weight λji is evaluated by (38) as displayed at
the bottom of the next page, and qji is the matching vari-
able between the associated transmitters and receivers. This
weighted bipartite matching problem can be solved optimally
in polynomial time by using well-known approaches such as
the Hungarian algorithm [39] or the auction algorithm [40].

Note that (37) is typically a sparse matching problem, since
most pairs of (i, j) ∈ I ×J are not associated, so the auction
algorithm is likely to be more efficient than the Hungarian
algorithm. The matching variable qji indicates Vi should be
set to which of the Ṽji. Mathematically, V is recovered as

V�
i =

{
Ṽji, if qji = 1 for some j;
0, otherwise.

(39)

After updating V, the final step is to update the scheduling
variable s for the fixed V. This is again a weighted bipartite

fq(s,V,Γ,Y)

=
∑
j∈J

(
wjsj log |I+Γj |−wjsj tr

(
Γj

)
+tr

(
(I+Γj)

(
2√wjsj Hjsj VsjY

†
j − Y†

j

(
Fj + Hjsj VsjV

†
sj

H†
jsj

)
Yj

)))
(32a)

=
∑
j∈J

(
wjsj log |I + Γj | − wjsj tr

(
Γj

)
+ tr

(
2√wjsj (I + Γj)Hjsj Vsj Y

†
j −

∑
j′∈J

(I + Γj′ )Y
†
j′Hj′sj VsjV

†
sj

H†
j′sj

Yj′
))

+
∑
j∈J

σ2Y†
j(I + Γj)Yj . (32b)
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matching problem, but now since Vi is fixed, this amounts to
choosing the best receiver j for each transmitter i:

maximize
q

∑
i∈I

∑
j∈Li

wjirjiqji (40a)

subject to
∑
i∈Kj

qji ≤ 1, (40b)

∑
j∈Li

qji ≤ 1, (40c)

qji ∈ {0, 1}, (40d)

qji = 0 if i /∈ Kj or j /∈ Li, (40e)

where wjirji is the weighted achievable rate if the receiver j is
scheduled for transmitter i under fixed Vi. Note that since V
is fixed, rij can be computed independently of the schedule,
using an expression similar to (1). This problem can again
be solved in polynomial time. The optimal schedule is then
determined from the optimal qij as

s�
j =

{
i, if qji = 1 for some i;
∅, otherwise.

(41)

We note that the reason for having two sets of matching is
because we allow a general network model in which each
transmitter may associate with multiple receivers and each
receiver may associate with multiple transmitters. For simpler
D2D model such as the one in Fig. 1(a), these two matching
steps would not have been necessary, as in [1].

Algorithm 2 Proposed FPLinQ Strategy for D2D Link
Scheduling With Power Control and Beamforming

1 Initialize all the variables to feasible values;
2 repeat
3 Update Γ according to (33);
4 Update Y according to (34);
5 Solve the weighted bipartite matching (37);
6 Update V according to (39);
7 Update s by the weighted bipartite matching (41);
8 until the weighted sum rate converges;

Combining all the above steps together yields the FPLinQ
strategy. Algorithm 2 summarizes the overall approach.

A desirable feature of FPLinQ as compared to FlashLinQ,
ITLinQ and ITLinQ+ is that no tuning of design parameters
is needed. But, FPLinQ is also somewhat more difficult to
implement in a distributed fashion than FlashLinQ, ITLinQ,
and ITLinQ+, because it additionally requires the update of
the auxiliary variables Γ and Y per iteration.

C. Alleviating Premature Turning-Off

It is worthwhile to take a deeper look into Algorithm 2
to understand how FPLinQ is able to alleviate the premature
turning-off problem. FPLinQ differs from the BCD method
mainly in Step 5, where the beamforming variable V is
optimized for the new objective function fq instead of the

weighted sum-rate objective function. Taking a close look at
(37) and (39), we can see that the update of each Vi at Step
5 of FPLinQ is not affected by the current value of s. From the
MM interpretation, we see that when updating V for fixed s,
FPLinQ is actually using the surrogate function to mimic the
original objective function so that the optimization over V no
longer relies on s. In comparison to the BCD method, this less
aggressive update of V by FPLinQ allows the existing OFF-
transmitters to be reactivated, thereby alleviating the premature
turning-off issue as mentioned in Section II-B.

D. Convergence Analysis

We now examine the convergence behavior of the proposed
algorithm by utilizing the MM interpretation as a tool.

Theorem 6: The weighted sum rate across all the D2D links
is nondecreasing after each iteration of Algorithm 2, so the
objective function of the optimization problem is guaranteed to
converge. Furthermore, at convergence, for fixed s, the solution
V is a stationary point of the problem (3).

Proof: We prove convergence based on the MM inter-
pretation of the FP transforms. The Step 3 and Step 4 of
the algorithm construct the surrogate functions as defined in
Theorem 4 and Theorem 3. Step 5 of Algorithm 2 performs
the maximization step of the MM algorithm, so the weighted
sum rate must be nondecreasing after Step 5, by (26). Step
6 further optimizes the link schedule, so the weighted sum rate
is nondecreasing after Step 6. Since the optimization objective
is nondecreasing and is bounded above, Algorithm 2 must
converge in objective value.

The weighted sum rate is a differentiable function over
V under fixed s. Further, the conditions of Proposition 4
are satisfied. So, at convergence, the solution of V given
by Algorithm 2 must be a stationary point according to the
proof of Proposition 4.

We remark that proving the convergence of Algorithm 2
without the MM interpretation would have been much more
cumbersome.

Regarding the rate of convergence, the spectral radius

ρ = 1 − min
u �=0

u† · ∇2 f(x) · u
u† · ∇2 g(x|x̂∞) · u (43)

has been proposed to compare the different MM algorithms
[41]. In principle, ρ reflects how well the surrogate function
g(x|x̂) approximates the original objective function f(x) in
terms of the second moment—smaller ρ indicates tighter
approximation and thus faster convergence. However, this type
of analysis has limited value in our problem case because: (i) it
requires the updating function of x to be differentiable whereas
our problem involves discrete variables; (ii) computing ρ
entails solving a difficult nonconvex problem; (iii) it only
characterizes the local convergence in the proximity of x∞.
For these reasons, the rate of convergence will be compared
numerically for the different examples in Section VI.

E. Complexity Analysis

We now analyze the complexity of FPLinQ (i.e., Algo-
rithm 2). We assume that there are a total of L D2D links

λji = wji log |I + Γj | − wjitr(Γj) + tr
(

2
√

wji (I + Γj)Y
†
jHjiṼji −

∑
j′∈J

(I + Γj′)Y
†
j′Hj′iṼjiṼ

†
jiH

†
j′iYj′

)
. (38)
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TABLE I

COMPARISON OF LINK SCHEDULING ALGORITHMS FOR D2D NETWORKS

in the network; each transmitter/receiver is associated with a
small number (i.e., constant number) of neighboring devices,
so that |I| = O(L) and |J | = O(L). To ease the analysis,
we assume that FPLinQ runs for a fixed number of iterations.

Communication Complexity: In each iteration of FPLinQ,
each transmitter i requires the tuple (Γ,Y, s) to update Vi,
while every receiver j requires V to update Γj and Yj . Each
of Vi,Γj ,Yj is an N×N matrix. Further, the channel coeffi-
cients from O(L2) direct and interfering channels are needed,
with each channel being an N×N matrix. Thus, the total com-
munication complexity of these updates is O(N2L2). The two
matchings in Step 5 and Step 6 require the matching weights
of all the links, thus introducing a communication complexity
of O(L). The overall communication complexity of FPLinQ is
then O(N2L2). In the single-antenna single-association case,
the communication complexity of FPLinQ in each iteration is
O(L2); in comparison, the communication complexity of each
step of FlashLinQ, ITLinQ, and ITLinQ+ is also O(L2), as
they all require the O(L2) channel coefficients.

Computational Complexity: We first consider the update
steps of FPLinQ prior to matching, which as analyzed
in [3] has a per-iteration computational complexity of
O(N4 L2). The matching step can be performed using the
auction algorithm [40], which has a computational com-
plexity of O(L|I| log |I| + L|J | log |J |) = O(L2 log(L)).
Thus, the overall per-iteration computational complexity of
FPLinQ is O(N4L2+L2 log(L)). In the single-antenna single-
association case, the per-iteration computational complexity of
FPLinQ reduces to O(L2 log L), while the total computational
complexities of FlashLinQ, ITLinQ, and ITLinQ+ are all
equal to O(L2).

We observe that the computational complexity of FPLinQ
is sensitive to the number of antennas N (mainly due to
the matrix inverse). Overall, asymptotically, FPLinQ has the
same communication complexity, but higher computational
complexity than the greedy based approaches—FlashLinQ,
ITLinQ, and ITLinQ+. Note that although the joint scheduling
and power control problem is NP-hard in general [29], [30],
recent results nevertheless show that scalable implementation
is feasible for a metropolitan-scale network with thousands
of terminals [12], [42]. In particular, [42] uses the scalar FP
method of [2], [3].

Table I summarizes the comparison between the proposed
FPLinQ algorithm and the main benchmarks. The main advan-
tage of FPLinQ is that it allows for flexible association,
guarantees convergence without needing tuning parameters,
while alleviating the potential pre-mature turn-off problem.

F. Different Ways to Decouple the Ratios

In the derivation of FPLinQ, we decouple the matrix ratios
of fr shown in (42) at the bottom of the page in a particular
form, but such decoupling is not unique. There exist other
ways to decouple the ratio.

Recall that the proposed reformulation in Theorem 5 follows
the proof of Corollary 1 by treating (I + Γm) as the fixed
weight, with fm(Z) = tr((I + Γm)Z), where Z is a matrix
ratio, i.e., (I + Γ)Z is

(I + Γ)
√

wV†H† (
F + HVV†H†)

���������������

−1 √
wHV (43)

as in (42). Here, the boxed component represents the numer-
ator and the underlined component the denominator; all the
subscripts are omitted for notational simplicity.

The matrix ratio in (43) can also be decoupled in other
ways. For instance, we could have included the term (I + Γ)
in the numerator, i.e.,

√
A

† (
F + HVV†H†)

���������������

−1 √
A , (44)

where

A = wHV(I + Γ)V†H†. (45)

In fact, the above decoupling is exactly what [2] and [3] use
when treating scalar FP problems. However, the inclusion of
the (I + Γ) term would result in an extra matrix decomposi-
tion step when computing the matrix square root, hence the
resulting algorithm would be somewhat computationally more
complex.

Alternatively, we could have excluded w from A, i.e.,

(I + Γ)w V†H† (
F + HVV†H†)

���������������

−1
HV . (46)

The above pattern yields yet another different fq. It turns out
that optimizing V, Γ, and Y iteratively for this particular

fr(s,V,Γ) =
∑
j∈J

wjsj

(
log |I + Γj | − tr(Γj) + tr

(
(I + Γj)V†

sj
H†

jsj

(
Fj + Hjsj Vsj V

†
sj

H†
jsj

)−1

Hjsj Vsj

))
. (42)
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fq is exactly the WMMSE algorithm [13], [14] for beam-
forming. (This connection to WMMSE has been shown for
the vector FP case in [3].) As a corollary, this implies that
there is a connection between the WMMSE algorithm and
the MM algorithm as well! However, since wjsj contains the
scheduling decision, this approach leads us to the situation that
Vi’s are updated only for the ON-links, thus it suffers from
the premature turning-off problem.

VI. SIMULATION RESULTS

We validate the performance of FPLinQ through compar-
ison with the benchmark methods for a D2D network in a
1km×1km square area where the D2D links are randomly
located. Following [24]–[26], we adopt the short-range outdoor
channel model ITU-1411 and use a 5MHz-wide frequency
band centered at 2.4GHz. Moreover, the antenna height of
each device is 1.5m; the antenna gain is 2.5dBi; the noise
power spectrum density is −169dBm/Hz; the noise figure is
7dB; the maximum transmit power is 20dBm; the shadowing
is modeled as a Gaussian random variable in decibel with the
standard deviation of 10; the distance between the transmitter
and receiver of each link is uniformly distributed between 2m
and 65m.

The first simulation setting follows [24]–[26]: given a set
of links with single-antenna transmitters/receivers and fixed
single association (as shown in Fig. 1), the aim is to maximize
the sum rate across the links. We use FlashLinQ [24], ITLinQ
[25], and ITLinQ [26] as benchmarks. The BCD method is
equivalent to FPLinQ in this single-association case. Because
the benchmark methods do not have power control, for fair
comparison, we modify FPLinQ slightly to restrict the power
to be either zero or the maximum, i.e., round each Vi to
{0,

√
Pmax}. This new version of FPLinQ without power

control is referred to as “FPLinQ (no pc)”. Further, we
introduce two baselines: one is to activate all the links and
the other is to activate the links greedily to meet the TIN
condition.

Fig. 4 shows the sum rate versus the total number of
D2D links. Observe that ITLinQ+ outperforms ITLinQ, and
ITLinQ outperforms FlashLinQ, as expected from the previous
literature [25], [26]. Without power control, FPLinQ (no pc)
significantly outperforms FlashLinQ, ITLinQ, and ITLinQ+,
especially when the D2D links are densely located in the area.
In particular, observe that Greedy TIN is even worse than
simply scheduling all the links because it is too conservative
about the effect of interference. Further, as suggested in
[26], we run ITLinQ+ and the power control algorithm (e.g.,
the WMMSE method) alternatively in order to account for
joint scheduling and power control; this method is referred
to as “ITLinQ (pc)”. However, the performance of ITLinQ+
with power control is still inferior to that of FPLinQ and even
that of FPLinQ (no pc).

The above simulation setting is only concerned with sum
rate, as the weights are all set to 1. We now consider
a more demanding setting that takes priority weights into
account. In this simulation, the weights are updated using
the proportional fairness criterion, which is equivalent to
maximizing the log-utility of the average link rates in the long
run [43]. The network setting follows the previous simulation;
the total number of links is fixed at 100. Fig. 5 compares
the cumulative distribution of the link rates; the upper part
of Table II compares the log-utility values. As we can see

Fig. 4. Sum-rate maximization for the single-association D2D network.

Fig. 5. Log-utility maximization for the single-association D2D network.

in Fig. 5, FPLinQ (no pc) strikes a better balance between
the high-rate regime and the low-rate regime than ITLinQ and
ITLinQ+. Surprisingly, FlashLinQ performs much better than
ITLinQ and ITLinQ+ in this simulation; its performance is
even slightly better than FPLinQ (no pc) according to Table II.
In particular, observe in Fig. 5 that the low-rate links benefit
the most from FlashLinQ, so FlashLinQ is fairly effective in
protecting the low-rate links from strong interference, but its
threshold value must be chosen carefully. Further, the benefit
from the low-rate links comes at a cost for high-rate links.
Overall, when we include power control and compare FPLinQ
with a new benchmark method that combines FlashLinQ
and power control in an alternative fashion, referred to as
“FlashLinQ (pc)”, FPLinQ outperforms FlashLinQ (pc) in
network utility, when scheduling is optimized along with
transmit powers, as shown in Table II.

Finally, we consider the flexible association case. We first
generate 100 disjoint D2D links as before, but also generate
two extra transmitters randomly for each receiver, and further
let one third of the transmitters connect with one additional
geographically closest receiver (excluding the already con-
nected one). In this setup, we frequently encounter the situa-
tion that multiple transmitters contend for the same receiver,
so the premature turning-off problem is very likely to occur.
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Fig. 6. Log-utility maximization for the flexible-association D2D network:
FPLinQ vs. BCD.

TABLE II

SUM LOG-UTILITY OVER D2D NETWORKS

We again optimize the log-utility by updating the link weights
according to the proportional fairness criterion. FPLinQ is
compared with the BCD method for both the single-antenna
case and the 2×2 MIMO case (i.e., when each device terminal
has 2 antennas). Note that FlashLinQ, ITLinQ, and ITLinQ+
are not applicable here, because they do not handle MIMO.
Fig. 6 shows the cumulative distribution function of link rates,
and the lower part of Table II summarizes the log-utility
results. It can be seen that FPLinQ significantly outperforms
BCD. In fact, as shown in Fig. 6, FPLinQ improves upon
the BCD method by more than 50% for the 50th percentile
link rate, in both the single-antenna case and the MIMO case.
The corresponding log-utility of FPLinQ is also much higher.
These results show that the premature turning-off can be fairly
detrimental to the performance of D2D system in the flexible
association case, thus making the proposed FPLinQ strategy
a preferred strategy.

One of the key advantages of the proposed matrix FP
strategy is its ability to accommodate multiple data streams
in each MIMO link. In the next simulation, we evaluate the
gain of multiple data-stream transmission over the single data-
stream transmission. Toward this end, we compare FPLinQ
(with matrix FP) against the vector FP method (also called
multidimensional FP in [3]). The vector FP algorithm is the

Fig. 7. Log-utility maximization for the flexible-association D2D network:
FPLinQ vs. Vector FP.

Fig. 8. Convergence of FPLinQ in maximizing the sum rate for the flexible-
association D2D network.

same as Algorithm 2 except that each transmit beamformer
Vi ∈ CN is a complex vector instead of a matrix, so at
most one data stream can be transmitted on each link. Fig. 7
shows the cumulative distribution function of link rates under
different MIMO settings. It can be seen that while the gain
of FPLinQ as compared to the vector FP is marginal in the
2 × 2 MIMO case, as more antennas are deployed at each
terminal, the multiple data-stream transmission by FPLinQ
starts to significantly outperform. The above observations
is also evident from the lower part of Table II. Therefore,
if the number of antenna N is small (e.g., 2), then using the
vector FP in Algorithm 2 is more suited because of its lower
complexity; on the other hand, if N is large (e.g., 8), then using
FPLinQ with multiple data-stream transmission can boost the
overall network throughput significantly.

Finally, Fig. 8 shows the convergence speed of FPLinQ
when applied to maximizing the sum rate for the flexible-
association D2D network with 400 links. Under the three
MIMO settings (i.e., 2×2, 4×4, and 8×8), FPLinQ is observed
to have fairly rapid convergence rate. Taking the 2×2 case for
example, we observe from Fig. 8 that the majority of sum rate
increment is obtained after the first 10 iterations. We also see



2176 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

that the convergence of FPLinQ is slower when more antennas
are deployed at each terminal. But, as shown in the 8×8 case
in Fig. 8, we can already reap most of the rate gain after about
40-60 iterations.

VII. CONCLUSION

This work proposes an interference-aware spectrum sharing
strategy named FPLinQ to coordinate the scheduling decisions
along with beamforming and power control across the wireless
D2D links. The key step is to treat the weighted sum-rate
maximization as a matrix FP problem and to use a sequence
of matrix FP transforms to allow iterative optimization of
scheduling and beamforming. We show that FPLinQ is closely
related to the MM algorithm, thus its convergence is guaran-
teed. As compared to the existing methods, FPLinQ does not
involve tuning of design parameters and does not suffer from
the premature turning-off problem. The numerical results show
that FPLinQ outperforms the state-of-the-art methods in terms
of sum-rate maximization and log-utility maximization.
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