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a b s t r a c t 

Since the 2008 financial crisis, risk management has become more important and portfolio approaches, 

such as the minimum-variance and equally weighted portfolios, have gained popularity. However, such 

portfolios still do not diversify the risk in the true sense. Recently, risk parity portfolios has been receiv- 

ing significant interest from both the theoretical and practical perspectives due to its advantages in the 

diversification of (ex-ante) risk contributions among assets. However, this portfolio type usually results 

in nonzero weights in all the assets, which implies high transaction cost in practice. In addition, focusing 

only on the risk aspect can make this type of portfolio unsatisfactory if other performance factors, e.g., 

annual yield, are considered. In this paper, we jointly consider asset selection and risk diversification via 

imposing sparsity and risk parity regularization in the portfolio problem formulation, which turns out to 

be a general and flexible portfolio framework. Then we propose an efficient sequential algorithm based 

on the successive convex optimization framework. The numerical results on historical data show that our 

portfolio approach, compared with benchmark portfolios, can achieve a good balance among asset selec- 

tion, risk diversification and other evaluation criteria, and achieves the best performance on profit and 

loss (P&L) and/or drawdown. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Although nearly ten years have passed since the 20 07–20 08 fi-

ancial crisis, it is still casting a shadow and it has changed the

orld, especially the financial industry. The S&P 500 index dur-

ng the financial crisis is presented in Fig. 1 . It shows the dramatic

uctuation and general recession of the equity market at that time.

 predictable change brought by this crisis is that risk manage-

ent has become more important, and is sometimes considered

ore significantly than performance management. 

Both practitioners and researchers started more seriously to in-

estigate less aggressive active portfolios in order to avoid possible

atastrophic losses in a declining or volatile market. Two portfolio

pproaches, namely, the minimum-variance and equally weighted

EW) approaches, are widely used. A minimum-variance portfo-

io aims to minimize the portfolio variance and belongs to the

ean-variance (MV) portfolio framework, which was pioneered by

enry Markowitz in 1959 [1–3] . Thus, minimum-variance portfo-

ios inherit the drawback of the mean-variance type of portfolio,

amely, its excessive sensitivity to the estimates of the covariance
∗ Corresponding author. 
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atrix. This approach also tends to highly concentrated portfolios

nd spreads risk over only a few assets [4] , which goes against

he common sense approach of diversification as a way to diversify

isk. Such concentrated portfolios could incur catastrophic losses in

he case of extreme events, such as a financial crisis. For instance,

quities registered negative returns of about -50% in the 2007–

008 financial crisis, with the consequent terrible performance of

ost hedge funds. Therefore, a portfolio that diversifies capital via

inimizing the mean-variance optimization does not necessarily

iversify risk [5] . 

In an EW portfolio, the capital is equally diversified among all

vailable assets [6,7] . It has been found by some empirical stud-

es that no one portfolio based on optimization consistently out-

erforms the heuristic and simple EW portfolio approach in terms

f the out-of-sample Sharpe ratio, return, or turnover [8] . The

robable reason is that portfolios designed via optimization ap-

roaches are undermined by estimation error, which can be par-

ially overcome by either shrinkage estimation [9,10] or adding

onstraints on the portfolio weights [6,7,11–13] . Despite the good

ut-of-sample performance of EW portfolios, their risk diversifica-

ion is dealt with in a very naive and indirect way. 

A new paradigm, called a risk parity approach, was introduced

o make portfolios, and hence their risk, truly more diversified.

round 2005, Qian [14,15] first showed that uniform risk contribu-

https://doi.org/10.1016/j.sigpro.2019.107433
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Fig. 1. The S&P 500 index during the 2007–2008 financial crisis. 
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2 
tions actually lead to a diverse enough portfolio, and the (ex-ante)

risk contributions (i.e., the risks computed using historical data)

are not only a mathematical measurement of how diverse the risk

is, but also good indicators of the (ex-post) loss contributions of

the assets (i.e., the observed risks and losses in the future), espe-

cially when there exist large losses. According to this observation,

a promising way to avoid a potential huge loss is to distribute the

risk contributions over the selected assets. The typical risk parity

portfolio is an equal risk contribution (ERC) portfolio, which makes

all the available assets contribute equally to the total risk of the

portfolio. 

Risk parity portfolios, however, did not attract too much atten-

tion before the 2008 financial crisis, until Maillard et al. [16] first

analyzed the properties of ERC portfolios and showed that they are

a tradeoff between the MV and EW types of portfolios. Following

that, works on different formulations [17–21] or numerical meth-

ods of computing the risk parity portfolios [22–25] were presented.

Meanwhile, the risk parity approach found its way into various

applications, e.g., risk-based indexation [26,27] , alternative assets

management [19] , equity portfolio optimization [28,29] , portfolio

rebalancing [30] , portfolio with multi-asset classes [19,31–34] , etc.

The book [5] serves as a good summary of both the theoretical

foundations and applications of risk parity portfolios. 

Although the risk parity approach properly conducts risk diver-

sification, some drawbacks limit its practical applications. One is-

sue in portfolio design is the transaction cost, which in general is

assumed to be concave [35] . For example, Lobo et al. [36] consid-

ered a constant plus linear cost function. However, the risk parity

approach always results in a portfolio with nonzero weights in all

the assets [5,16] , which implies a considerable transaction cost and

may attenuate the portfolio performance significantly. Recall that

MV portfolios tend to be highly concentrated, which at the same

time can be interpreted as asset selection, no matter whether the

selection is good or not. Thus, to reduce the transaction cost, it is

beneficial to invest only in part of all the assets with a proper cap-

ital allocation. Another important issue is that the risk parity ap-

proach purely focuses on the risk without consideration of other

investment goals. For example, if a portfolio aims at tracking a

market index, designing a risk parity portfolio completely departs

from this initial goal, although it will diversify the risk of the port-

folio. 

Given these drawbacks of risk parity portfolios and motivated

by other existing portfolios, in this paper, we jointly conduct as-

set selection and risk diversification while at the same time taking

other investment goals into consideration. An efficient algorithm

based on successive convex optimization techniques is proposed.

Detailed experiments on historical stock data are conducted with
orresponding analysis. The major contributions of this paper are

ummarized as follows: 

• We jointly consider risk parity-like diversification and asset se-

lection in portfolio design. Specifically, the � 0 -norm 

2 is consid-

ered as a regularization imposing sparsity for the asset selec-

tion. The risk diversification is formulated as a penalty term

based on the concepts of risk contribution and risk parity. To

the best of our knowledge, the combination of risk parity-like

diversification and sparse asset selection in designing a portfo-

lio has never before been investigated in the open literature. 
• Our problem formulation is general and flexible. It can be ap-

plied to different investment scenarios, and many existing port-

folios can be included in this formulation as special cases. 
• For our general nonconvex portfolio problem, we approximate

the original problem and then develop an efficient algorithm

based on successive convex optimization techniques. The algo-

rithm can deal with a large class of portfolio constraints and

goals. Under some mild conditions, the proposed algorithms

can also guarantee the convergence. 
• Detailed and complete numerical experiments on historical

stock data are conducted with corresponding analyses, and they

reveal the unique advantages of our proposed portfolio ap-

proach. In particular, two investment scenarios, mean-variance

optimization and index tracking, are considered in the numeri-

cal experiments. Many performance criteria and benchmark ap-

proaches (some existing mainstream portfolios) are taken into

consideration. 

The remainder of this paper is organized as follows.

ection 2 briefly reviews the background of risk parity portfolios,

hich serves as the preliminaries for our problem formulation.

ection 3 formulates the general portfolio framework and illus-

rates its flexibility and generality. The proposed efficient algorithm

nd the experimental results are presented in Sections 4 and 5 ,

espectively. Finally, we will conclude this paper in Section 6 . 

A conference version of this work has appeared at ICASSP

016, Shanghai, Chian, Mar. 2016 [37] . This journal version includes

etailed illustration of problem formulation, applications on two

ractical investment scenarios, comprehensive simulations, and a

et of experiments using real financial data. 

Notation : R 

n and R 

n ×n denote the real n × 1 vector and n × n

atrix space, respectively. Boldface upper-case and lower-case let-

ers stand for matrices and column vectors, respectively. Standard

ower case letters stand for scalars. The notation 1 denotes a col-

mn vector with proper size and all elements being 1. The vector
The � 0 -norm measures the number of nonzero elements of a vector. By using 

the terminology “norm” here, we are abusing notation. 
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Table 1 

Different g i ( w ) functions when volatility is 

taken as the risk measurement. 

g i ( w ) ∇g i ( w ) 

w i ( �w ) i 
(
M i + M 

T 
i 

)
w 

w i ( �w ) i √ 
w T �w 

( w T �w ) ( M i + M T i ) w −( w T M i w ) �w 

( w T �w ) 
3 / 2 

w i ( �w ) i 
w T �w 

( w T �w ) ( M i + M T i ) w −( w T M i w ) ( 2 �) w 

( w T �w ) 
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 i denotes the column vector with only the i -th element being one

nd zero elsewhere. The transpose and inverse operators are de-

oted by the symbols ( · ) T and ( ·) −1 respectively. Diag( a ) denotes

 diagonal matrix with diagonal elements equal to those of a and

ero elsewhere. 

. Background of risk parity portfolios 

In this section, we briefly introduce the background of risk par-

ty portfolios, which will serve as the preliminaries for our problem

ormulation. We first review the risk contribution, which is used

s the measurement of the risk contributed by each asset. Then

e introduce the typical risk parity portfolio, namely, an equal risk

ontribution (ERC) portfolio. 

.1. Risk contribution 

Suppose there are n assets with random returns r ∈ R 

n , and the

ean vector and (positive definite) covariance matrix are denoted

s μ ∈ R 

n and � ∈ R 

n ×n , respectively. We use w ∈ R 

n to denote the

ormalized portfolio (e.g., w 

T 1 = 1 ) and it describes how the total

apital budget is to be allocated over the assets. To study the risk

arity approach, we need some well defined risk measurements

 ( w ) so that the “risk contribution” of each asset to the risk of the

hole portfolio can be quantified. The following desired property

s key in the risk parity literature [5] . 

heorem 1 (Euler’s homogeneous function theorem) . Suppose that

he function f: R 

n \ { 0 } → R is continuously differentiable. Then, f is

ositively homogeneous function of degree one 3 if and only if 

f ( w ) = 

n ∑ 

i =1 

w i 

∂ f 

∂w i 

. (1) 

One observation from property (1) is that the component w i 
∂ f 
∂w i 

an be regarded as the risk contribution from asset i to the total

isk f ( w ). 

Interestingly and fortunately, most of the existing risk measure-

ents do satisfy the Euler property (1) either directly (VaR and

VaR) [20,21] or indirectly (variance) [16] . For example, note that

he variance σ 2 ( w ) = w 

T �w does not satisfy (1) directly. Fortu-

ately, it is easy to check that the volatility, i.e., the positive square

oot of the variance, σ ( w ) = 

√ 

w 

T �w does satisfy (1) as follows: 

n 
 

i =1 

w i 

∂σ

∂w i 

= 

n ∑ 

i =1 

w i 

(
�w √ 

w 

T �w 

)
i 

= 

1 √ 

w 

T �w 

n ∑ 

i =1 

w i ( �w ) i 

= 

1 √ 

w 

T �w 

w 

T �w 

= σ ( w ) . (2) 

hus the variance fits (1) indirectly via the volatility. 

.2. Equal risk contribution portfolio 

An equal risk contribution portfolio is a portfolio in which each

sset has the same risk contribution. That is, given the risk mea-

urement f ( w ), the risk parity should satisfy 

 i 

∂ f ( w ) 

∂w i 

= w j 

∂ f ( w ) 

∂w j 

, ∀ i, j. (3) 
3 A function f ( w ) is a positively homogeneous function of degree one if f ( cw ) = 

f ( w ) holds for any constant c > 0. 

 

 

 

ince f ( w ) satisfies the Euler property (1) , the relationship can be

ewritten as 

 i 

∂ f ( w ) 

∂w i 

= 

1 

n 

f ( w ) , ∀ i. (4) 

When the volatility σ ( w ) = 

√ 

w 

T �w is taken as the risk mea-

urement, the relationships (3) and (4) take the following forms:

 i ( �w ) i = w j ( �w ) j , (5) 

 i ( �w ) i = 

1 

n 

w 

T �w . (6) 

Given the above relationships (5) and (6) , we can define some

epresentative functions g i ( w ) to denote the risk contributions, as

isted in Table 1 , where M i ∈ R 

n ×n is a predefined sparse matrix

ith the i -th row being the same as that of the covariance matrix

and 0 elsewhere. More risk contribution functions can be found

n [25 , Table 1] . 

. A General Portfolio optimization framework 

In this section, we first formulate our portfolio problem, and

hen describe the challenges and assumptions. The flexibility and

enerality are illustrated in the final subsection. 

.1. Problem formulation 

In this paper, we jointly consider risk parity and sparsity and

ropose the following portfolio design formulation: 

minimize 
w ,θ

U ( w , θ ) � F ( w ) + λ1 ‖ 

w ‖ 0 + λ2 R ( w , θ ) 

subject to w ∈ W, 
(7) 

here 

• F ( w ) is assumed to be a convex function that represents an ob-

jective for a specific investment scenario, e.g., mean-variance

optimization. 
• ‖ w ‖ 0 � 

∑ n 
i =1 1 { w i 	 =0 } is the � 0 -norm that regularizes the cardi-

nality of the portfolio weights and it measures the degree of

sparsity of the portfolio. 
• R ( w , θ ) measures the risk concentration and has the form 

R ( w , θ ) � 

n ∑ 

i =1 

( g i ( w ) − θ ) 
2 
1 { w i 	 =0 } , (8) 

where g i ( w ) is any smooth nonconvex differentiable function

that measures the risk contribution of the i -th asset of the port-

folio, as listed in Table 1 , and θ is a (scalar) variable denoting

the average risk contributions of the selected assets (i.e., those

with w i 	 = 0 ). The smaller the quantity R ( w , θ ) is, the more uni-

formly the risk is distributed among the selected assets. 
• λ1 , λ2 ≥ 0 are the parameters that control the degrees of spar-

sity and risk concentration, respectively. 
• In the set W = 

{
w | w 

T 1 = 1 , w ≥ 0 , w ∈ W m 

}
, w 

T 1 = 1 denotes

the capital budget constraint, which implies that the portfolio

weights are normalized; w ≥ 0 denotes the long-only constraint
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(so that short selling is not allowed); and W m 

is a set that de-

notes the investor’s profile, capital limitations, market regula-

tions, etc. 

For the sake of understanding, we can interpret our problem

formulation from another perspective. Note that the objective func-

tion of (7) can be rewritten as 

 ( w , θ ) = F ( w ) + λ1 ‖ 

w ‖ 0 + λ2 

n ∑ 

i =1 

( g i ( w ) − θ ) 
2 
1 { w i 	 =0 } 

= F ( w ) + 

n ∑ 

i =1 

(
λ1 + λ2 ( g i ( w ) − θ ) 

2 
)
1 { w i 	 =0 } 

= F ( w ) + λ1 

n ∑ 

i =1 

(
1 + α( g i ( w ) − θ ) 

2 
)
1 { w i 	 =0 } , (9)

where α� λ2 / λ1 ≥ 0. The second term in (9) is a weighted � 0 -norm

of w , with the weights 1 + α( g i ( w ) − θ ) 
2 

representing the devia-

tion of the risk contribution of the i -th asset from the average level

θ . Thus, the larger the risk deviation is, the heavier the weight that

is put to the cardinality penalty. This interpretation indicates that

our problem formulation makes sense since assets with large risk

deviations should be penalized and assets with small risk devia-

tions should be selected. 

3.2. Challenges and assumptions 

Since each function g i ( w ) is highly nonconvex and the indica-

tor function 1 { w i 	 =0 } is nonconvex and nondifferentiable, R ( w , θ ) is

clearly nonconvex and nondifferentiable. Thus, problem (7) is hard

to deal with. For technical reasons, the following assumptions are

made: 

(A1) W is closed and convex; 

(A2) F ( w ) is twice differentiable on W ; 

Note that the above assumptions are quite standard and are

satisfied by a large class of practical portfolio optimization prob-

lems. For example, the turnover constraint, box holding position

constraint are always considered in practice [38] , which satisfy as-

sumption A1. The objectives of mean-variance portfolio and index

tracking can be expressed as twice differentiable functions, which

can been seen clearly later in Section 4.3 . 

3.3. Flexibility and generality 

The flexibility of problem (7) comes from three aspects: First,

the investment goal is expressed in an abstract function F ( w ),

which can be specified according to the investment scenarios in

which the portfolio is applied. Second, the portfolio constraints, ex-

cept the budget and long-only constraints, are summarized in the

abstract convex set W m 

, which can also be specified according to

the investor’s preference. Third, the two parameters λ and λ can
1 2 

Table 2 

Smooth approximations of the indicator function 1 { x 	 =0 } and its derivat

d(w 

k 
i 
)(w i ) 

2 + c k 
i 
. 

Name Parameters Smooth approximation ρε
p ( x ) Deriva

� p 
ε > 0 

0 < p ≤ 1 

{ p 
2 
ε p−2 x 2 , | x | ≤ ε

| x | p − (
1 − p 

2 

)
ε p , | x | > ε

{
pε p−

sgn (

log 
ε > 0 

p > 0 

{ 

x 2 

2 ε( p+ ε) log ( 1+1 /p ) 
, | x | ≤ ε

log ( 1+ | x | /p ) −log ( 1+ ε/p ) + ε
2 ( p+ ε) 

log ( 1+1 /p ) 
, | x | > ε

{ 

ε( p+ ε

( p+ | x

exp 
ε > 0 

p > 0 

{
e −ε/p 

2 pε x 2 , | x | ≤ ε

−e −| x | /p + 

(
1 + 

ε
2 p 

)
e −ε/p , | x | > ε

{ 

e −ε/p 

pε

sgn (
e tuned in time to either respond to changes in the market or to

eflect changes in the investor’s preferences and concerns. All three

ser-defined options provide the investor with high flexibility. 

Since F ( w ) can be the objective of many other portfolio prob-

ems, e.g., portfolio hedging, portfolio rebalancing, etc [11] , many

xisting portfolios can be interpreted as special cases of the general

ormulation (7) . For example, when λ1 = 0 and F ( w ) = 0 , prob-

em (7) becomes the basic risk parity portfolio, as in [25] . When

2 = 0 and F ( w ) is the index tracking error, problem (7) becomes

 sparse index tracking problem [39] . Likewise, when λ2 = 0 and

 ( w ) is the mean-variance optimization, problem (7) becomes the

parse mean-variance optimization problem. Thus, this formulation

s very general, which makes the proposed algorithm also general

ith respect to different application scenarios. 

. Efficient algorithms based on successive convex optimization

Given the described challenges of the original problem (7) , we

rst approximate it with a (nonconvex) differentiable problem and

hen derive a successive convex approximation method with the

nalysis of its convergence. At the end of this section, we briefly

llustrate the application of the proposed algorithm to the mean-

ariance optimization and index tracking scenarios. 

.1. Smooth approximation problem 

In the risk concentration measure R ( w , θ ), the indicator func-

ion 1 { w i 	 =0 } is highly nonconvex and nondifferentiable, which will

e approximated by a smooth approximation denoted by ρε
p ( x ) ,

here p and ε are two controlling parameters. 

In Table 2 , three smooth approximations of the indicator func-

ion are listed without further detailed descriptions. For a detailed

iscussion of the approximations, please refer to [40] . For intuitive

llustration, Fig. 2 shows the three approximations when p = . 2 and

= 0 . 05 . As pointed out in [40] , the smaller ε is, the better the in-

icator function is approximated around the point 0. Numerically,

e can set ε to be very small, e.g., ε = 10 −8 , to achieve satisfactory

pproximation around the point 0. 

Replacing the indicator function 1 { w i 	 =0 } in problem (7) with the

pproximation ρε
p ( x ) yields the following approximation problem:

inimize 
w ,θ

˜ U ( w , θ ) � F ( w ) + λ1 

n ∑ 

i =1 

ρε
p ( w i ) + λ2 ̃

 R ( w , θ ) 

ubject to w ∈ W, 

(10)

here 

˜ 
 ( w , θ ) = 

n ∑ 

i =1 

(
( g i ( w ) − θ ) ρε

p ( w i ) 
)2 

. (11)

Now, the objective function of problem (10) is a continuous and

ifferentiable approximation of U ( w ). However, it is still noncon-

ex. In the following subsection, we mainly focus on the approxi-

ate problem (10) instead, and develop a fast numerical algorithm
ive and the global quadratic upper bound functions u (w i ; w 

k 
i 
) = 

tive ∇ρε
p ( x ) Weights d ( x ) for upper bounds u 

(
w i ; w 

k 
i 

)
2 x, | x | ≤ ε

 

x ) p | x | p−1 
, | x | > ε

{ p 
2 
ε p−2 , | x | ≤ ε

p 
2 | x | p−2 

, | x | > ε

x 
) log ( 1+1 /p ) 

, | x | ≤ ε
sgn ( x ) 
 | ) log ( 1+1 /p ) 

, | x | > ε

{ 1 
2 ε( p+ ε) log ( 1+1 /p ) 

, | x | ≤ ε
1 

2 | x | ( | x | + p ) log ( 1+1 /p ) 
, | x | > ε

x, | x | ≤ ε

 

x ) e 
−| x | /p 

p 
, | x | > ε

{ 

e −ε/p 

2 pε , | x | ≤ ε

e −| x | /p 

2 p | x | , | x | > ε



L. Wu, Y. Feng and D.P. Palomar / Signal Processing 170 (2020) 107433 5 

Fig. 2. Three smooth approximations of the indicator function, p = . 2 and ε = 0 . 05 . 
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ased on the successive convex optimization framework. Our em-

irical studies on historical data show that solving this approxi-

ate problem usually yields a good solution to the original prob-

em. 

.2. An efficient algorithm via successive convex optimization 

The idea of successive convex optimization is to approximate

he original (possibly nonconvex) function at each iteration point

y a solvable convex approximation to get an updated iteration

oint. It is a very useful optimization tool and has found appli-

ations in many fields [25,41–43] . Suppose that we are at the k -th

teration point ( w 

k , θ k ). We can update θ and w in parallel as fol-

ows. 

.2.1. Updating θ
When w is fixed to w 

k , problem (10) with respect to θ is equiv-

lent to the following unconstrained scalar minimization problem:

inimize 
θ

n ∑ 

i =1 

((
g i 
(
w 

k 
)

− θ
)
ρε

p 

(
w 

k 
i 

))2 
. (12) 

etting the derivative with respect to θ to zero, we can find the

ptimal solution in closed-form as 

ˆ = 

∑ n 
i =1 g i 

(
w 

k 
)(

ρε
p 

(
w 

k 
i 

))2 

∑ n 
j=1 

(
ρε

p 

(
w 

k 
j 

))2 
= 

n ∑ 

i =1 

x k i g i 
(
w 

k 
)
, (13) 

hich is a weighted sum of g i ( w 

k ) with 

 

k 
i � 

(
ρε

p 

(
w 

k 
i 

))2 

∑ n 
j=1 

(
ρε

p 

(
w 

k 
j 

))2 
. (14) 

.2.2. Updating w 

Since the first term F ( w ) is already assumed to be convex, we

ocus one the last two nonconvex terms. Note that if F ( w ) is not

onvex for some application scenario, we can use the same succes-

ive convex approximation techniques introduced in the following

o deal with the nonconvex F ( w ). 

For the second term 

∑ n 
i =1 ρ

ε
p ( w i ) , following [40] , each noncon-

ex approximation ρε
p ( w i ) can be upper bounded globally by a

uadratic convex function at the k -th point w 

k 
i 

as follows: 

ε
p ( w i ) ≤ u 

(
w i ; w 

k 
i 

)
= d 

(
w 

k 
i 

)
( w i ) 

2 + c k i , (15) 
here d ( x ) is a weight function depending on the approximation

unction, as listed in Table 2 , and c k 
i 

is a properly chosen constant

o that the equality holds at w 

k 
i 
. Then the second term can be glob-

lly upper bounded by a convex quadratic function 

n 
 

i =1 

ρε
p ( w i ) ≤ w 

T D 

k w + c k , (16) 

here 

 

k � Diag 
([

d 
(
w 

k 
1 

)
, d 

(
w 

k 
2 

)
, . . . , d 

(
w 

k 
n 

)])
, (17) 

 

k � 

n ∑ 

i =1 

c k i . (18) 

For the third term 

˜ R ( w , θ ) , we first define 

˜ 
 i ( w , θ ) � ( g i ( w ) − θ ) ρε

p ( w i ) , (19) 

or clarity of presentation. Then we have 

˜ 
 ( w , θ ) = 

n ∑ 

i =1 

( ̃  g i ( w , θ ) ) 
2 
. (20) 

ext, following the idea of the Gauss-Newton method, we can lin-

arize the functions ˜ g i inside the square and get the following ap-

roximation: 

 ( w , θ ) � 

n ∑ 

i =1 

( ̃  g i 
(
w 

k , θ
)

+ 

(∇ ̃

 g i 
(
w 

k , θ
))T (

w − w 

k 
)
) 2 , (21) 

here 

 ̃

 g i ( w , θ ) � ρε
p ( w i ) · ∇g i ( w ) + 

(
( g i ( w ) − θ ) · ∇ρε

p ( w i ) 
)

· e i . 

(22) 

t is easy to check that ˜ R ( w , θ ) and P ( w , θ ) have the same deriva-

ive with respect to w at point w 

k ; that is, 

 ̃

 R ( w , θ ) | w = w 

k = ∇P ( w , θ ) | w = w 

k , 

here ∇ ̃

 R ( w , θ ) and ∇P ( w , θ ) denote the partial gradient of
˜ 
 ( w , θ ) and P ( w , θ ) with respect to w , respectively. 

Thus, when θ is fixed to θ k , replacing 
∑ n 

i =1 ρ
ε
p ( w i ) and 

˜ R 
(
w , θ k 

)
ith the right-hand side of (16) and P ( w , θ k ), respectively, and re-

oving the constant, problem (10) can be approximated at w 

k by 

inimize 
w 

F ( w ) + λ1 w 

T D 

k w + λ2 P 
(
w , θ k 

)
+ τ

∥∥w − w 

k 
∥∥2 

2 

ubject to w ∈ W, (23) 

here the proximal term 

∥∥w − w 

k 
∥∥2 

2 
with τ > 0 is added for con-

ergence reasons [41] . 

After some mathematical manipulations, problem (23) can be

urther rewritten in a more compact form: 

minimize 
w 

F ( w ) + w 

T Q 

k w + w 

T q 

k 

ubject to w ∈ W, 
(24) 

here 

 

k � λ1 D 

k + λ2 

(
A 

k 
)T 

A 

k + τ I , (25)

 

k � 2 λ2 

(
A 

k 
)T 

g 

(
w 

k , θ k 
)

− 2 

(
λ2 

(
A 

k 
)T 

A 

k + τ I 

)
w 

k (26)

nd 

 

k � 

[∇ ̃

 g 1 
(
w 

k , θ k 
)
, . . . , ∇ ̃

 g n 
(
w 

k , θ k 
)]T 

, (27) 

 

(
w 

k , θ k 
)
� 

[
˜ g 1 

(
w 

k , θ k 
)
, . . . , ̃  g n 

(
w 

k , θ k 
)]T 

. (28) 

Under the assumption that F ( w ) is convex, for a nonempty con-

ex set W and τ > 0, problem (24) is strongly convex and can be

olved by existing efficient solvers, e.g., MOSEK [44] . Moreover, if

 ( w ) is linear or convex quadratic, and W only contains linear con-

traints, problem (24) reduces to a quadratic programming (QP). 



6 L. Wu, Y. Feng and D.P. Palomar / Signal Processing 170 (2020) 107433 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

u  

e  

p

F  

w  

c  

t

 

t

s
 

w  

(

4

 

m  

F  

t

F  

w  

[  

v  

i  

m  

i  

Q

 

I  

r

F  

w  

t  

i  

i  

t  

I  

t  

t  

b

F  

w

e  

A  

p

 

p  

m  

i  

Q

4.2.3. Iterative algorithm and convergence 

Algorithm 1 summarizes the derived iterative method. The fol-

lowing proposition gives the convergence of Algorithm 1 . 

Algorithm 1 convex optimization for general sparse risk-parity

(GSRP) portfolios. 

Input: k = 0 , w 

0 ∈ W , θ0 = 

∑ n 
i =1 x 

0 
i 
g i 
(
w 

0 
)
, τ > 0 , 

{
γ k 

}
> 0 

Output: a stationary point of problem (10) 

1: repeat 

2: x k 
i 

= 

(
ρε

p 

(
w 

k 
i 

))2 

∑ n 
j=1 

(
ρε

p 

(
w 

k 
j 

))2 

3: ˆ θ k = 

∑ n 
i =1 x 

k 
i 
g i 
(
w 

k 
)

4: θ k +1 = θ k + γ k 
(

ˆ θ k − θ k 
)

5: solve problem (24) to get the optimal solution 

ˆ w 

k 

6: w 

k +1 = w 

k + γ k 
(

ˆ w 

k − w 

k 
)

7: k ← k + 1 

8: until convergence 

Proposition 2. Given the problem (10) under assumptions A1 and

A2, suppose τ > 0, γ k ∈ (0, 1], γ k → 0, 
∑ 

k γ
k = + ∞ and 

∑ 

k 

(
γ k 

)2 
<

+ ∞ , and let { w 

k } be the sequence generated by Algorithm 1 . Then

either Algorithm 1 converges in a finite number of iterations to a sta-

tionary point 4 of (10) or every limit of { w 

k } (at least one such point

exists) is a stationary point of (10) . 

Proof. Assumption A1 in [41] is satisfied because W is assumed to

be closed and convex. Both the second term 

∑ n 
i =1 ρ

ε
p ( w i ) and the

third term 

˜ R ( w , θ ) of the objective function of problem (10) are

twice differentiable on the feasible set. Under assumption A2, as-

sumptions A2 and A3 in [41] are satisfied. The closeness of W and

lim 

θ→ + ∞ 

˜ U ( w , θ ) = + ∞ guarantees that assumption A4 in [41] is sat-

isfied. Therefore, all the necessary conditions on the convergence

are satisfied, and the rest of the proof follows directly from [41 ,

Theorem 3]. �

Remark 3. Note that the update of θ and w in Algorithm 1 are

in parallel. If we change the approximation P ( w , θ k ) in (24) to

P 
(
w , θ k +1 

)
, then the update of θ and w are in sequence and fol-

lowing [41 , Theorem 3], it is easy to check that the convergence is

still guaranteed. 

Remark 4. As presented in Proposition 2 , Algorithm 1 can be guar-

anteed to converge globally when the step-size parameter γ k is

properly chosen. One practical rule for choosing γ k is as follows:

given γ 0 ∈ (0, 1], let 

γ k = γ k −1 
(
1 − ζγ k −1 

)
, k = 1 , 2 , . . . , (29)

where ζ ∈ (0, 1) is a given constant [41,42] . This rule has been ap-

plied in various numerical experiments, and in general it enjoys a

very fast numerical convergence speed. See [25,41–43] and [45] . 

4.3. Application to mean-Variance optimization and index tracking 

As we illustrate in Section 3 , our problem formulation is very

general and thus can be applied to many scenarios with differ-

ent investment goals. In the subsection, we introduce two specific

portfolio problems, which will be used as two instances in the later

experiments to evaluate our proposed portfolio. 
4 The stationary point in our context is defined as follows: if the point z satisfies 

the inequality ( x i − z i ) 
T ∇ z i f ( z ) ≥ 0 with ∇ z i f ( z ) being the gradient of f ( · ) on the 

direction d = z i at the point z and x being any point of the feasible set of f ( · ), then 

the point z is the stationary point. 

5

 

s  

p  
.3.1. Mean-Variance optimization 

Mean-variance optimization, pioneered by Markowitz, is widely

sed in portfolio design. For this investment scenario, F ( w ) can be

xpressed as the combination of mean return and variance of the

ortfolio as follows: 

 ( w ) = w 

T �w − νw 

T μ, (30)

here μ and � are denoted as the expected return vector and the

ovariance matrix of the available assets, respectively, and ν ≥ 0 is

he tradeoff parameter. 

Substituting the above expression of F ( w ) back into the objec-

ive function of problem (24) , the problem becomes 

minimize 
w 

w 

T ˜ Q 

k w + w 

T ˜ q 

k 

ubject to w ∈ W, 
(31)

here ˜ Q 

k = Q 

k + �, ˜ q 

k � q 

k − νμ, Q 

k and q 

k are defined in

25) and (26) , respectively. 

.3.2. Index tracking 

As the name suggests, the goal of index tracking is to track a

arket index by setting a portfolio. For this investment scenario,

 ( w ) is commonly the empirical tracking error (ETE) between the

arget index and the constructed portfolio defined as 

 ( w ) = ‖ 

r c − Rw ‖ 

2 
2 , (32)

here r c ∈ R 

T denotes the T returns of the target index and R =
 

r 1 · · · r n ] ∈ R 

T ×N contains the column-wise returns of the N indi-

idual assets over the same time period. Substituting (32) back

nto the objective function of problem (24) , after some algebra

anipulations, we still have a constrained quadratic problem hav-

ng the same form as problem (31) with 

˜ Q 

k and 

˜ q 

k replaced by
ˆ 
 

k � Q 

k + R 

T R and 

ˆ q 

k � q 

k − 2 R 

T r c , respectively. 

However, many other choices come naturally for index tracking.

n our problem formulation, we will use the downside risk (DR)

elated to the index defined as 

 ( w ) = 

∥∥( r c − Rw ) 
+ ∥∥2 

2 
, (33)

here ( ·) + denotes the operation of elementwise positive projec-

ion. The DR means that we are interested in minimizing the track-

ng error only when the portfolio underperforms the index, which

s reasonable because no one would mind his portfolio beating the

arget index. Note that the DR function is convex but nonsmooth.

n order to use the successive convex approximation and guarantee

he convergence of the algorithm, we need to approximate func-

ion (33) at each iteration. At the k -th iteration, function (33) can

e approximated by the quadratic function 

˜ 
 ( w ) = 

∥∥r c − Rw − e k 
∥∥2 

2 
, (34)

here 

 

k = −
(
Rw 

k −1 − r c 
)+ 

. (35)

 toy example is provided in Fig. 3 for better intuition of this ap-

roximation function. 

Thus, at the k -th iteration, the term F ( w ) of problem (24) is re-

laced by the approximation function (34) . After some algebraic

anipulations, we still have a constrained quadratic problem hav-

ng the same form as problem (31) with 

˜ Q 

k and 

˜ q 

k replaced by
ˆ 
 

k � Q 

k + R 

T R and 

ˆ q 

k � q 

k − 2 R 

T 
(
r c − e k 

)
, respectively. 

. Numerical experiments 

Considering that financial engineering deals with complex real

ituations with real money, a qualified experiment for testing a

ortfolio strategy should satisfy three requirements: (1) it should
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Fig. 3. A toy example for illustrating the approximation of the DR. 
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se the historical market data; (2) the evaluation should be com-

lete, comparable and realistic; and (3) the simulation details

hould be consistent with the reality and avoid backtracking. 

In this section, we investigate the performance of the proposed

ortfolio in the context of mean-variance optimization and index

racking, respectively. In each investment scenario, we will intro-

uce and explain our experiments in detail from the five aspects –

ource of data, simulation scheme, performance criteria, compared

enchmarks and experimental results and analysis. Please also note

hat in all the following experiments, we only consider the budget

nd long-only constraints for simplicity. 

.1. Mean-Variance optimization 

.1.1. Data set 

The data set consists of the daily returns of 50 randomly se-

ected stocks of the S&P 500 from 1st, January, 2007 to 21th,

eptember, 2008. Note that the investment period includes the

0 07–20 08 financial crisis, which is selected on purpose to test the

ortfolios’ performance in an unstable investment environment.

onsequently, their ability to resist dramatic fluctuations can be

ompared. 

.1.2. Simulation setup 

The simulation follows a rolling-window scheme, which is

hown in Fig. 4 . Each rolling window can be divided into an in-

ample and an out-of-sample one. In the in-sample window, three
Fig. 4. The rolling-window simulation sche
hings are done: First, the mean returns are estimated via the ex-

onentially weighted moving average, and the covariance matrix of

he returns of these stocks is estimated via the regularized Tyler’s

stimator [46] . Second, the parameter triplet ( ν , λ1 , λ2 ) is selected

hrough cross validation. Third, the portfolio weights are designed

ased on these estimates, selected parameters and all of the in-

ample data. Then in the next out-of-sample window, we evaluate

he designed portfolios based on various criteria, which will be in-

roduced in the next subsection. Note that there is no portfolio re-

alancing in each out-of-sample window. For the missing records

uring the test period, we impute the latest available prices to

hem. For example, a stock may suffer a lack of liquidity result-

ng in no transaction and hence no price recorded on Friday. Then,

e will impute the Thursday price to the missing one. It is reason-

ble because the return of a stock for barely jump a lot between

everal consecutive days. In our case, the missing data is bare and

ast for several days. However, if the missing period is longer, then

ome advanced imputation methods can be employed [47] . 

.1.3. Performance criteria 

Before introducing the performance criteria, we first define

ome variables that will be used in their definitions. Assume there

re M rolling windows and n available assets and the length of

ach out-of-sample window is T . The return vector and the port-

olio vector at time t in the m -th out-of-sample window are de-

oted by r tm 

∈ R 

n ×1 and w tm 

∈ R 

n ×1 , respectively. Thus, the total

eturn of the portfolio at time t will be r 
p 
tm 

= r T tm 

w tm 

. Since there

s no rebalancing in each window, the portfolio weights (which de-

otes capital allocation) changes slightly every day due to the price

uctuations. Thus, the average portfolio vector in the k -th out-of-

ample window is defined as m k = 

1 
T 

∑ T 
t=1 w tm 

. Now, the perfor-

ance criteria can be introduced as follows: 

a) Mean of portfolio return: 

¯
 m 

= 

1 

T 

T ∑ 

t=1 

r p tm 

. (36) 

b) Volatility of portfolio return: 

 m 

= 

√ 

1 

T − 1 

T ∑ 

t=1 

(
r p tm 

− r̄ m 

)2 
. (37) 

c) Sharpe ratio: 

Since there are no risk-free assets, 

R m 

= r̄ m 

/s m 

, (38) 

hich measures the risk premium per unit of volatility. 

d) Number of selected assets: 

ard = ‖ 

w k ‖ 0 . (39) 

e) Gini index of normalized risk contributions (RCs): 
me for mean-variance optimization. 
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The normalized risk contribution of the i -th asset is given by
w m,i 

(
�m w m 

)
i 

w 

T 
m �m w m 

, where �m 

the covariance matrix of the m -th rolling

window. Suppose there are L selected assets and their correspond-

ing nonzero risk contributions are sorted in an increasing order,

which is denoted by π1 , . . . , πL . The Gini index of normalized risk

contributions is defined as 

Gini = 

2 

∑ L 
l=1 mπl 

L 
∑ L 

l=1 πl 

− L + 1 

L 
, (40)

which measures the degree of unbalance. The larger the value of

the Gini index, the more concentrated are the risk contributions of

the selected assets. 

f) Cumulative profit and loss (P&L): 

 = W 0 

M ∏ 

m =1 

T ∏ 

t=1 

(
1 + r p tm 

)
, (41)

where W 0 is the initial wealth. 

g) Drawdown and maximum drawdown (MDD): 

During the period (0, t 0 ), the drawdown at time t 0 measures

the decline from a historical peak in some variable X ( t ) (wealth in

our experiment) compared with X ( t 0 ), which is defined as 

D ( t 0 ) = max 

{
0 , max 

t∈ ( 0 ,t 0 ) 
{ X ( t ) − X ( t 0 ) } 

}
. (42)

The maximum drawdown up to time t 0 is the maximum of the

drawdowns, which is defined as 

MDD ( t 0 ) = max 
τ∈ ( 0 ,t 0 ) 

{ D ( τ ) } . (43)

Furthermore, the normalized maximum drawdown is defined as 

NM DD ( t 0 ) = 

M DD ( t 0 ) 

X ( t h ) 
, (44)

where X ( t h ) is the highest position of the variable related to

MDD ( t 0 ). 

h) Return on turnover (ROT) and Profit/Cost: 

Turnover, used to measure how actively a portfolio is managed,

is defined as 

Turnover = 

M ∑ 

m =2 

W m 

‖ 

w m 

− w m −1 ‖ 1 , (45)

where W k is the total wealth at the beginning of the k -th out-of-

sample window, w m 

is our designed portfolio vector for the m -th

out-of-sample window, and w m −1 is the last updated portfolio vec-

tor in the ( m − 1 ) -th out-of-sample window. Turnover is certainly

related to transaction cost, but the specific relationship between

them depends on the regional market and the broker. Based on

the turnover and related transaction cost, ROT and Profit/Cost are

defined, respectively, as 

ROT = 

Net profit 

Total turnover 
= 

Profit-Transaction cost 

Total turnover 
, (46)

Profit/Cost = 

Net profit 

Transaction cost 
= 

Profit-Transaction cost 

Transaction cost 
. (47)

5.1.4. Benchmarks 

The benchmarks include MV, EW and ERC portfolios and the

portfolio designed in [39] . This type of portfolio is formulated as 

minimize 
w 

w 

T �w − νw 

T μ + λ‖ 

w ‖ 

2 
2 

subject to w 

T 1 = 1 , ‖ 

w ‖ 0 ≤ C 0 , 
(48)

where C 0 is the parameter to control the number of selected assets,

and can be interpreted as an � -penalized sparse mean-variance
2 
SMV) portfolio. All parameters in these benchmarks are selected

ia cross validation. 

.1.5. Numerical results and analysis 

In Fig. 5 , we compare the proposed general sparse risk-parity

GSRP) portfolio with the benchmarks in terms of some perfor-

ance criteria for each out-of-sample window. Although the per-

ormances of these types of portfolios fluctuate along with the

olling windows, several interesting things can still be seen clearly:

irst, in terms of mean return and volatility, the GSRP portfolio is

ore stable and fluctuates in a small range compared with the

ther portfolios, especially the MV and � 2 -penalized SMV portfo-

ios. Second, the EW and ERC portfolios, as we described above,

elect all the stocks, while the GSRP portfolio selects 15 stocks on

verage. The MV and � 2 -penalized SMV portfolios, as we described,

asily become highly concentrated. Third, in the plot of the Gini in-

ex, our proposed portfolio is usually between the EW and the ERC

ortfolios and is very stable throughout all the windows, while the

V and the � 2 -penalized SMV portfolios usually have high Gini in-

ex values if they select more than one stocks. 

For clarity of evaluation, we summarize all the comparisons

nd show the average results in Fig. 6 , which fully demonstrates

he main advantage of our method. Although our portfolio ap-

roach might not be the best in terms of one particular criterion,

t achieves a superior balance among the various criteria. This ver-

atility is desired to deal today’s changeable financial markets. In

ddition, the general formulation and the parameters of the pro-

osed method make it possible to reduce it to a specific portfolio

ccording to the market conditions. 

All the evaluation results shown in Fig. 6 and 5 are based on

he statistics. In order to see how the proposed portfolio works

ver an investment period, we show the curves of the cumulative

&Ls and the corresponding drawdowns throughout the whole pe-

iod in Fig. 7 . Observing the two sub-figures, we can see the fol-

owing results: (1) Although the MV portfolio achieves the largest

&L around 14th, Oct, 2007, the MV and � 2 -penalized SMV port-

olios are not stable or cannot resist the market fluctuation. This

an be seen clearly as both portfolios collapse rapidly after January,

008. (2) The ERC and EW portfolios are very stable throughout

he whole investment period. We can see clearly that both have

mall drawdowns of no more than 0.25, even as the market contin-

es deteriorating through 2008. However, the P&L curves driven by

he two portfolios expose their major drawback. The curves are in

eneral very flat, without any obvious rising momentum; (3) Based

n the previous two points, we can see that our proposed portfolio

ombines the advantages of the others. Its P&L curve keeps rising

lowly when the market works well and stays stable, with small

uctuations, when the market declines. Its drawdown is also even

etter than that of the EW and ERC portfolios. 

In addition, the maximum drawdowns of the P&Ls driven by

hese portfolios are provided in Table 3 . From this table, we find

hat the GSRP portfolio has the smallest maximum drawdown in

oth the absolute and normalized sense. 

In practice, transaction cost is an important issue because high

ransaction cost may attenuate the performance of a portfolio. In

his experiment, we consider the following transaction rule: For

ach trade (selling and buying) of stock, the transaction cost is

.15% of the trading volume. The transaction cost, net profit, ROT

nd Profit/Cost of these portfolios are provided in Table 4 . Based

n these numerical results, we can see that the EW portfolio has

he smallest transaction cost and the largest ROT because it assigns

he capital equally to all stocks so that the turnover is very small

nd the transaction cost is mainly due to rebalancing. However, in

erms of profit, the GSRP portfolio generates the largest net profit

nd also the largest Profit/Cost. 
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Fig. 5. Evaluation the performance of portfolios in out-of-sample windows for mean-variance optimization. 

Fig. 6. Summary of the performance evaluation for mean-variance optimization. 
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Fig. 7. Comparison in terms of cumulative P&L and drawdown. 

Table 3 

Maximum drawdowns and Nor- 

malized maximum drawdowns. 

Portfolio MDD NMDD 

EW 0.2502 21.29% 

ERC 0.2067 17.70% 

MV 0.7034 46.10% 

SMV 0.6982 53.34% 

GSRP 0.1255 10.59% 

Table 4 

Transaction cost, net profit, ROT and Profit/Cost (Initial budget = 1). 

Portfolio Cost Net profit ROT (bips) Profit/Cost 

EW 0 0014 0.0059 (0.59%) 10566 4 2143 

ERC 0 0034 0.0242 (2.42%) 4190 7 1176 

MV 0 0412 -0.2162 (-21.62%) 285 -5 2476 

SMV 0 0444 -0.4317 (-43.17%) 192 -9 7230 

GSRP 0 0161 0.1418 (14.18%) 1065 8 8075 

 

 

 

 

 

t  

(

5

 

s  

c

5

 

a  

d

5

 

m  

�  

r  

t  

�  

t

s
 

N  

l  

s  

e

5.2. Index tracking 

5.2.1. Data set 

The data set consists of the daily returns of the Hang Seng in-

dex (HSI) and its component stocks from 30th, January, 2014 to

3rd, December, 2015. Note that since the index changes its consti-

tutions intermittently to capture the market trends, we include all

the related stocks during this experiment period in order to avoid
he survivorship bias. Thus, the stock universe consists of 55 stocks

the HSI is calculated using 50 stocks). 

.2.2. Simulation setup 

The simulation also follows a rolling-window scheme, which is

hown in Fig. 8 . The parameters λ1 and λ2 are also selected by

ross validation. 

.2.3. Performance criteria 

We will also use some of the performance criteria described

bove. Note that the investment scenario is to track a market in-

ex. ETE and DR are also used to evaluate the portfolios. 

.2.4. Benchmarks 

Besides the EW and ERC portfolios, we have another two bench-

arks in the index tracking experiment. The first benchmark is an

 1/2 -penalized sparse index tracking (SIT) portfolio [48] , the pa-

ameter of which is selected via cross validation. It is similar to

he � 2 -penalized SMV portfolio but the � 2 -norm is replaced by the

 1/2 -norm. The second benchmark is referred to as an ideal index

racking (IIT) portfolio, and it is formulated as 

minimize 
w 

‖ 

r c − Rw ‖ 

2 
2 

ubject to w 

T 1 = 1 . 
(49)

ote that this IIT portfolio is unrealistic in practice since it would

ikely selected most of the stocks and allows for short selling. But

etting it as a benchmark provides us a lower bound in terms of

mpirical tracking error for a clear comparison. 
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Fig. 8. The rolling-window simulation scheme for index tracking. 

Fig. 9. Evaluation of the performance of portfolios in out-of-sample windows for index tracking. 
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.2.5. Numerical results and analysis 

In Fig. 9 , we compare the proposed portfolio with the bench-

arks in terms of the number of selected stocks, Gini index, ETE

nd DR for the out-of-sample windows. For the number of selected

tocks, the EW and ERC portfolios select all stocks, while the GSRP-

ype portfolios only select about eight stocks on average. For the
ini index, our portfolios are between the EW and ERC portfolios

nd approach the ERC portfolio closely. For the out-of-sample ETE,

SRP-ETE is very close the IIT and � 1/2 -penalized SIT portfolios, and

n average is better than the EW and ERC portfolios. The large

racking error of the GSRP-DR portfolio at the eighth window is

ecause GSRP-DR uses the DR as the tracking criterion and it im-
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Fig. 10. Summary of the performance evaluation for index tracking. 

Fig. 11. Comparison of tracking curves driven by different portfolios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Transaction cost, net profit, ROT and Profit/Cost (Initial budget = 1M USD). 

Portfolio Cost Net profit ROT (bips) Profit/Cost 

EW 10,890 -63,895 (-6 39%) -939 -5 8673 

ERC 11,122 -18,035 (-1 80%) -76 -1 6216 

IIT 11,080 -86,514 (-8 66%) -224 -7 808 

SIT 11,118 -83,914 (-8 39%) -214 -7 5475 

GSRP-DR 16,464 100,560 (10 56%) 116 6 4141 

GSRP-ETE 15,185 20,218 (2 02%) 25 1 3315 

t  

w  

c  

S  

t  

E  

t  

a  

v  

t  

g

 

p  
plies that the tracking curve of the GSRP-DR portfolio is above the

index baseline. In terms of the out-of-sample DR, it is hard to tell

which portfolio is the best, but we can see that the GSRP portfolios

perform within an acceptable range. 

For clarity of evaluation and comparison, all the results in

Fig. 9 are averaged and summarized in Fig. 10 and some further

criteria are included. With the guarantee of a satisfactory tracking

performance (DR is superior to ETE), our portfolios achieve a good

balance among the further performance criteria compared with the

other portfolios. 

For index tracking, the primary goal is to track the index with

an acceptable ETE or DR in a long-term investment period. Thus,

we compare the cumulative P&Ls driven by the portfolios in Fig. 11 .

Note that the starting index value is normalized to be 1M USD

for the sake of the calculation of transaction cost. The rule of the

transaction cost is exactly the same as that for the Asia-Pacific

market set by Interactive Brokers 5 . Some important things can be

seen clearly from this figure: First, the GSRP-DR curve is always

above the GSRP-ETE curve. Recall that the only difference between

the two portfolios is the tracking criterion. Thus, the superior per-

formance of GSRP-DR implies that using DR instead of pure track-

ing allows the portfolio to beat the index. Second, we can see that

the ERC portfolio tracks the index trend roughly and is slightly

above the index curve in general. Recall that the ERC portfolio

uses purely a risk parity strategy. This implies that risk parity con-
5 https://www.interactivebrokers.com/en/index.php?f=commission&p=stocks1 

h  

s  

G  

t

rol can make the portfolio more robust, which is very important

hen the market is in a dramatic fluctuation. Third, we can see

learly that the GSRP-ETE curve is always above the � 1/2 -penalized

IT curve. Recall that both portfolios incorporate sparsity and use

he empirical tracking error. The only difference is that the GSRP-

TE controls the risk parity level. Last but not least, it is surprising

o note that even the EW and ERC portfolios are better than the IIT

nd � 1/2 -penalized SIT portfolios. In the case of the HSI, the risk di-

ersification is much more important than pure tracking based on

he result. A portfolio with good risk diversification can probably

uarantee an acceptable or even better tracking performance. 

In addition, the numerical results for the transaction cost, net

rofit, Profit/Cost and ROT are presented in Table 5 . Our portfolios

as the largest transaction cost, but this is the necessary price for

mall cardinality and a low Gini index. Small cardinality and a low

ini index make our portfolios more robust, which is rewarded by

he highest net profit, Profit/Costs and ROTs. 

https://www.interactivebrokers.com/en/index.php?f=commission%26p=stocks1
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. Conclusion 

In this paper, we have proposed a flexible and general port-

olio formulation, which not only considers risk parity and as-

et selection jointly, but can also be applied to various invest-

ent scenarios. We have also derived an efficient algorithm based

n the successive convex approximation method, and the derived

lgorithm can the guarantee the convergence under some mild

ssumptions. The numerical results show that the proposed for-

ulation not only achieves a good balance between asset selec-

ion and risk diversification for different investment scenarios, but

lso outperforms the benchmarks in terms of many out-of-sample

valuations. 
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