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Sequence Design for Spectral Shaping via
Minimization of Regularized Spectral Level Ratio

Linlong Wu and Daniel P. Palomar , Fellow, IEEE

Abstract—The topic of sequence design has received consider-
able attention due to its wide applications in active sensing. One
important desired property for the design sequence is the spectral
shape. In this paper, the sequence design problem is formulated
by minimizing the regularized spectral level ratio subject to a
peak-to-average power ratio constraint. Then, two algorithms are
proposed by combining both the Dinkelbach’s algorithm and the
majorization–minimzation (MM) method organically. Specifically,
by using the Dinkelbach’s algorithm, the challenging fractional
programming problem can be handled by solving a series of sub-
problems, which are further solved via the MM method. The
numerical experiments verify the effectiveness of the optimiza-
tion metric and demonstrate the performance of the proposed
algorithms compared with the benchmark.

Index Terms—Spectral shaping, sequence design, spectral level
ratio, Dinkelbach’s algorithm, majorization-minimization, PAR
constraint.

I. INTRODUCTION

TRANSMIT sequence plays an important role in many
active-sensing applications including communications,

sonar, radar, and medical imaging [1]–[3]. For instance, in radar
systems, well-designed sequences can allow for a more accurate
estimation and a reduced computational cost at the receive side.
One important task of sequence design is to adapt the spectrum of
the sequence to a changing or pre-specified environment. Specif-
ically, the transmit sequence should avoid certain frequency
bands or try to minimize the spectral power on those bands.
The motivation behind can be well understood when considering
spectrum sharing among radar and telecommunication systems
[4]. Due to the ever growing demand of both wireless com-
munication services and accurate remote sensing capabilities,
the amount of desired bandwidth is increasing. Consequently,
spectral sharing among radar and telecommunications becomes
a solution to this significant issue [5], [6]. Signals from other
radiation systems on some frequency range of the band can
be treated as an interference for radar. In order to avoid the
interference or reduce its effect on radar system, it is desired or
required that the designed radar waveform has deep notches on
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those frequency bands. Besides, combining several clear bands
together can increase the total system bandwidth so as to improve
the range resolution [7]. In addition, from the perspective of
the radar signal design, several performance metrics [8]–[10]
including spectral property may be also considered jointly to
meet the waveform requirements. Therefore, spectral shaping
has become a hot research topic in sequence design recently and
a lot of works have contributed to it as seen in the burgeoning
literature.

From the perspective of problem formulation, the existing
works dealing with spectral shaping can be roughly catego-
rized into two categories. In the first category, the spectral
requirements are usually formulated as quadratic constraints
or quadratic terms of the objective function. As formulated
in [11, equation (2)], the quadratic expression represents the
spectral energy in certain “forbidden” or stop frequencies. In
[12], the total weighted interfering energy transmitted on the
stopbands expressed as the weighted sum of quadratic terms was
set to be no more than the pre-determined amount of allowed
interference. Then the signal-to-interference-plus-noise ratio
(SINR) maximization problem including this spectral sharing
constraint was solved via semidefinite relaxation (SDR). Then
[13] further improved the proposed algorithm by considering
a suitable modulation of the transmitted waveform energy.
Reference [14] solved the same problem formulated in [12]
via the alternating direction method of multipliers (ADMM)
with better computational efficiency. Reference [15] extended
[12] by jointly considering both the transmit and receive sides.
Different from the control on the overall interference energy, [16]
enforced a specific control on the interference energy radiated
on each shared band. In [17], the weighted stopband power was
formulated as a quadratic term of the objective function, then
an iterative algorithm based on pattern search was proposed to
simultaneously minimize the weighted integrated sidelobe level
(ISL) and stopband power. Similarly, [18] aimed at maximizing
the SINR and minimizing the stopband power jointly.

In the second category of spectral shaping, the spectral re-
quirements are usually formulated as (part of) the objective
function in the least-square form. Specifically, the spectrum of
the designed sequence should be forced to be close to a spectral
mask in the sense of the least-square error. The spectral mask
in fact is the desired spectrum for the designed sequence. A
classical formulation was proposed in [19], where a least-square
fitting problem was proposed and then extended by allowing
the magnitude of the spectral mask within a range. Compared
with [19], [20] considered the weighted least squares form and
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used the Lagrange programming neural network (LPNN) to
solve the general problem. Different from [19], both frequency
stopbands and correlation sidelobes were considered in [21],
and an efficient algorithm named SCAN was proposed. In [22],
both power spectral density (PSD) and autocorrelation function
(ACF) masks were set and then jointly optimized. Note that all
problems optimizing ACF or ISL [23]–[25] are in fact special
cases of this approach since an ideal ACF in time domain corre-
sponds to a flat spectrum in frequency domain. Thus, optimizing
the ACF is in fact shaping the corresponding spectrum to be flat.
Correspondingly, the spectral mask is set to be the a horizontal
line in the whole band [26].

Recently, [27] has proposed an interesting metric for spectral
shaping referred as spectral level ratio (SLR), which is the ratio
of the maximum stopband level to the minimum passband level.
Recall that in the first category of spectral shaping introduced
above, before designing the sequence, the thresholds, i.e., the
amounts of allowed interference on each sharing bands need to
be set. An inappropriate setting of the threshold will raise the
issue of feasibility [12]. Similarly, in the second category, the
spectral mask or its range of each frequency grid point should
also be set in advance, which also need to be chosen carefully.
Otherwise, the existence of solution is not guaranteed for a
specific spectral shape, and the mask points near sharp spectral
jumps need to be carefully reselected or an offset should be
used [19]. In addition, in some situations, i.e., the initial stage
of the construction of radio environment map (REM) [28], we
only know the stopbands and passbands without any further
information. Consequently, these masks and thresholds are not
easy to set appropriately in advance. Compared with the existing
approaches, the SLR proposed in [27] cleverly circumvents those
settings of threshold or spectral mask. Thus, this metric and
its corresponding algorithms are worth exploring to expand the
arsenal for spectral shaping.

In this paper, we adopt this interesting and also quite challeng-
ing optimization metric proposed in [27], and modify it to be
regularized SLR (RSLR), a more suitable optimization metric
for spectrum shaping. Then, a general problem is formulated
with consideration of the peak-to-average power ratio (PAR)
constraint. For the formulated problem, we propose two iterative
algorithms both based on the Dinkelbach’s algorithm [29] and
the majorization-minimizaiton (MM) method [30], [31]. How-
ever, the difference between the two proposed algorithms lies
in the approach from the outer Dinkelbach’s algorithm to the
inner MM method. In addition, the convergence and complexity
of each proposed algorithm is analyzed. Experiments show that
our method is more efficient than the benchmark and can design
a sequence with a desired spectrum shape.

The rest of this paper is organized as follows. In Section II, we
formulate the spectrally constrained sequence design problem
of interest. In Section III, some preliminaries of the Dinkel-
bach’s algorithm and the MM method are briefly introduced.
Two algorithms are then derived in Section IV and Sections V,
respectively. At the end of each section, we give a complete de-
scription of the derived algorithm and analyze its computational
cost and convergence. In Section VII, we analyze the numerical
performance of the proposed algorithms and compare them with

the existing benchmark. Finally, the conclusions are given in
Section VIII.

Notation: Rn and C
n denote the n-dimensional real and

complex vector space, respectively. Rm×n and C
m×n denote

the m× n real and complex matrix space, respectively. R+
0 and

R− denote the set of non-negative real numbers and the set of
negative real numbers, respectively. Boldface uppercase letters
stand for matrices. Boldface lowercase letters stand for column
vectors. Standard lowercase letters stand for scalars. (x)T and
(x)∗ denote the transpose and conjugate of a complex vector x,
respectively. Re(x) and arg(x) denote the element-wise real part
and the phase of a complex vector x, respectively. (x)T , (x)∗,
(x)H , tr(x), vec(x), λmax(x), and λu(x) denote the transpose,
complex conjugate, conjugate transpose, trace, vectorization,
largest eigenvalue, and upper bound of the largest eigenvalue of
a matrix X, respectively. Diag(x) stands for a diagonal matrix
with its principal diagonal filled with x. IN denotes the N ×N
identity matrix. 1N denotes the N × 1 vector with all elements
being 1.xi denotes the i-th element ofx. | · |denotes the modulus
of a complex scalar or the cardinality of a set, the element-wise
modulus of a complex vector, or the number of elements of a set.
‖ · ‖ denotes the �2 norm of a vector. ⊗ denotes the Kronecker
product.

II. REGULARIZED SLR AND PROBLEM FORMULATION

We aim to design a transmit radar sequence x = [x1, . . . ,
xN ]T ∈ C

N with length being N , which should have a
desired spectrum and satisfy a specific PAR level. Let S
and P denote the stopband and passband frequency grid
set of interest, respectively, which satisfy S ∪ P ⊆ {0, 1, . . . ,
N − 1} and S ∩ P = ∅. Denote the discrete Fourier trans-
form (DFT) matrix by FDFT = [f0, . . . fN−1] ∈ C

N×N ,
where fω = 1√

N
[1, ej2πω/N , . . . , ej2πω(N−1)/N ]T ∈ C

N for
ω = 0, . . . , N − 1. The minimal passband level and the max-
imal stopand level can be expressed by min{|fHω x|2|ω ∈ P}
and max{|fHω x|2|ω ∈ S}, respectively. In [27], the spectral level
ratio (SLR) is defined as

SLR =
max

{∣∣fHω x
∣∣2 |ω ∈ S

}

min
{
|fHω x|2 |ω ∈ P

} , (1)

and the problem is formulated as

minimize
x

SLR

subject to |xn| = 1 for n = 1, . . . , N. (2)

Intuitively, SLR should be minimized so that max{|fHω
x|2|ω ∈ S} becomes as small as possible and min{|fHω x|2|ω ∈
P} becomes as large as possible. From the perspective of opti-
mization, it is obvious that problem (2) is optimally solved once
max{|fHω x|2|ω ∈ S} = 0. Correspondingly, the optimal solu-
tion to problem (2) is x� ∈ Null(fω|ω ∈ S), i.e., the null space
of the subspace spanned by {fω}ω∈S . This cannot guarantee the
denominator to be well processed. An extreme example is that
x = fω for ∀ω ∈ P is also an optimal solution, for which the de-
nominator min{|fHω x|2|ω ∈ P} might be very small. Note that



WU AND PALOMAR: SEQUENCE DESIGN FOR SPECTRAL SHAPING VIA MINIMIZATION OF REGULARIZED SPECTRAL LEVEL RATIO 4685

if {fω}ω∈S∪P are not the columns of the DFT matrixFDFT , then
SLR is still a good optimization metric for spectral shaping. Note
that the above case of max{|fHω x|2|ω ∈ S} = 0 only happens
for the N point DFT case. If frequency oversampling (more
than N frequency samples) is considered for the passbands and
stopbands, then the proposed SLR is suitable for optimization.

In order to make the SLR more suitable for optimization, we
propose the regularized spectral level ratio (RSLR) as follows:

RSLR =
max

{∣∣fHω x
∣∣2 |ω ∈ S

}
+ c

min
{
|fHω x|2 |ω ∈ P

} , (3)

where c is a positive constant.1

Therefore, the problem of interest is formulated as

minimize
x

RSLR

subject to ‖x‖22 = N,

|xn| ≤ √γ for n = 1, . . . , N, (4)

where γ represents the PAR parameter. For simplicity of nota-
tion, problem (4) will be expressed as

minimize
x∈X

max
{
xHFix|i ∈ S

}
+ c

min {xHFix|i ∈ P} , (5)

where Fi = fif
H
i and the constraint set is denoted by X �

{x|‖x‖22 = N, |xn| ≤ √γ for n = 1, . . . , N}.
Before proceeding with the design of the algorithm for

problem (5), we make some comments about this problem
formulation:

• Compared with the existing approaches, the highlight of this
formulation is that it does not require any spectral settings
in advance except S and P .

• The constraint set is more general than the unit modulus
constraint, which is a special case when γ = 1. In addition,
when γ = N , only the first constraint ‖x‖22 = N takes
effect. By increasing the value of γ, we are in fact extending
the feasible set, and the optimal objective value should be
nonincreasing.

• Generally speaking, we are facing a challenging optimiza-
tion problem. First, the objective function is fractional. Sec-
ond, both max{xHFix|i ∈ S} and min{xHFix|i ∈ P}
are nondifferentiable. Third, both the objective function and
the constraint set are highly nonconvex. These main diffi-
culties will be handled well when we derive our proposed
algorithms.

III. PRELIMINARIES: THE DINKELBACH’S ALGORITHM AND

THE MM METHOD

In this section, we will briefly introduce two algorithmic
frameworks which will be used in our algorithm derivation.

1Note that RSLR =
max{|fHω x|2 |ω∈S}+c

min{|fHω x|2 |ω∈P} =
max{|fHω x|2 |ω∈S}
min{|fHω x|2 |ω∈P} +

c
min{|fHω x|2 |ω∈P} . For x ∈ Null(fω |ω ∈ S), the first term becomes 0. Thus,

no matter what value c is, the optimal solution is the one which maximizes
min{|fHω x|2|ω ∈ P} with x ∈ Null(fω |ω ∈ S).

A. The Dinkelbach’s Algorithm

The Dinkelbach’s algorithm, first proposed in [29], is a pow-
erful optimization scheme dealing with nonlinear fractional
programming problems, which has already been studied in many
applications [32]. The idea behind it is to convert, by introducing
an auxiliary variable, the original nonlinear fractional problem
into a sequence of non-fractional problems to be solved until
convergence.

Consider a general fractional programming problem

minimize
x

f1(x)

f2(x)

subject to x ∈ X .
(6)

where f2(x) > 0 for x ∈ X . Suppose the problem is hard to di-
rectly minimize. Following the general idea of the Dinkelbach’s
algorithm, we need to solve the following problem at the k-th
iteration,

minimize
x

f1(x)− ykf2(x)

subject to x ∈ X , (7)

where yk is the auxiliary variable updated as

yk =
f1 (xk)

f2 (xk)
. (8)

Assume the optimal solution of problem (7) is xk+1. One
advantage of the Dinkelbach’s algorithm is the guarantee of
monotonicity of the sequence { f1(xk+1)

f2(xk+1)
}. Since

f1 (xk+1)− ykf2 (xk+1) ≤ f1 (xk)− ykf2 (xk) = 0, (9)

we have

yk+1 =
f1 (xk+1)

f2 (xk+1)
≤ yk =

f1 (xk)

f2 (xk)
. (10)

Thus, by alternatively solving problem (7) and updating yk by
(8), the convergence is guaranteed because yk is nonincreasing.
Also note that the monotonicity can still be guaranteed as long as
f1(xk+1)− ykf2(xk+1) ≤ 0 is satisfied even if xk+1 is not the
optimal solution of problem (7). Specially, if f1(x) is convex and
f2(x) is concave in the convex set X , the overall iterative algo-
rithm will converge to the global optimum solution of problem
(6) [33]. For more details about convergence, interested readers
may refer to [34], [35].

B. The MM Method

The MM method is a powerful optimization scheme, espe-
cially when the problem is hard to tackle directly. The idea
behind the MM algorithm is to convert the original problem into
a sequence of simpler problems to be solved until convergence.

Consider a general optimization problem

minimize
x

f(x)

subject to x ∈ X . (11)

Suppose the problem is hard to directly minimize. Following the
general MM idea at the �-th iteration, we first construct u(x,x�),
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the so-called majorizer of f(x), satisfying the following two
requirements at the point x�:

u (x,x�) ≥ f(x), for all x ∈ X (12)

u (x�,x�) = f (x�) . (13)

Then the MM update is given by

x�+1 = argmin
x∈X

u (x,x�) . (14)

One interesting and useful property of MM based methods is
monotonicity:

f (x�+1) ≤ u (x�+1,x�) ≤ u (x�,x�) = f (x�) , (15)

where the first inequality follows from (12), the second one
follows from (14) and the last equality follows from (13). Note
that from (15), we see that even if x�+1 is not the minimizer
of u(x,x�), the monotonicity can still be guaranteed as long
as it improves the function u(x�+1,x�) ≤ u(x�,x�), where the
equality means the algorithm has already found a stationary
point x�+1. Thus, the convergence is guaranteed because f(x�)
is nonincreasing after each iteration. For more details about the
convergence of {f(x�)} and {x�}, interested readers may refer
to [31], [36].

The counterpart for maximization problems is referred to as
minorization-maximization, of which the key step is to construct
a so-called minorizer. The analysis is straightforward by refer-
ring to that of the majorization-minimizaiton case above and
thus omitted here.

IV. APPROXIMATE ITERATIVE METHOD FOR

SPECTRUM SHAPING

In this section, based on the introduced algorithmic frame-
works, an iterative method is proposed to solve problem (5). At
the end of this section, we will summarize the derived method
and analyze its complexity and convergence.

A. Approximation of the Point-Wise Maximum

At the k-th iteration of the Dinkelbach’s algorithm, we have
the following problem:

minimize
x∈X

max
{
xHFix|i ∈ S

}− ykmin
{
xHFix|i ∈ P

}
.

(16)

Due to yk =
max{xH

k Fixk |i∈S}+c

min{xH
k Fixk |i∈P} ≥ 0, problem (16) is equiv-

alent to

minimize
x∈X

max
{
xHFix|i ∈ S

}
+ ykmax

{−xHFix|i ∈ P
}
.

(17)

The objective function is nonconvex and nondifferentiable.
Lemma 1: Denote the objective function of problem (17) by

f(x). Then f(x) can be approximated by

g(x) ≈ αlog
∑
i∈S

exp

(
xHFix

α

)
+ αyklog

∑
i∈P

exp

(
−xHFix

α

)

(18)

Fig. 1. Approximation of the point-wise maximum with respect to differ-

ent α. Black: f(x) = max {fi(x)|i = 1, 2, 3}; Red: g(x) = αlog
∑3

i=1
exp

(
fi(x)
α ), where f1(x) = x2 − 2x+ 1, f2(x) = x2 − 4x+ 4 and f3(x) =

0.1x2 + 0.3x.

with f(x) ≤ g(x) ≤ f(x) + α(log|S|+ yklog|P|), where
α > 0 is a constant.

Proof: See Appendix A �
Note that Lemma 1 provides a differentiable approximation

of the objective function, and the degree of this approximation
can be adjusted by α. Figure 1 shows a toy example for intuitive
illustration of this approximation. It is clear that the smaller the
value of α, the better the approximation.

By using Lemma 1 and ignoring the constant, the approximate
problem is given by

minimize
x∈X

log
∑
i∈S

exp

(
xHFix

α

)

+ yklog
∑
i∈P

exp

(
−xHFix

α

)
,

(19)

where the objective function is now differentiable but still non-
convex. In the next two subsections, we will solve problem (19)
by applying the MM method.

B. Majorizer Construction

For the first term log
∑

i∈S exp(x
HFix
α ) in problem (19), we

have

log
∑
i∈S

exp

(
xHFix

α

)

= log
∑
i∈S

exp

(
xH (Fi − (1 + ε) I)x

α
+

(1 + ε)xHx

α

)

=
(1 + ε)N

α
+ log

∑
i∈S

exp

(
−xH ((1 + ε) I− Fi)x

α

)
,

(20)
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where ε is a small positive value and we set ε = 1× 10−3

hereafter. Similarly, for the second term, we have

log
∑
j∈P

exp

(
−xHFjx

α

)

=
εN

α
+ log

∑
i∈S

exp

(
−xH (Fi + εI)x

α

)
. (21)

Thus, by defining F̃i =
1
α ((1 + ε)I− Fi) � 0 and F̂j =

1
α (Fi + εI) � 0, problem (19) is equivalent to

minimize
x∈X

log
∑
i∈S

exp
(
−xHF̃ix

)

+ yklog
∑
j∈P

exp
(
−xHF̂jx

)
,

(22)

Since both terms of the objective function of problem (22)
have the same structure, we focus on constructing the majorizer
of log

∑
i∈S exp(−xHF̃ix) for illustration.

Lemma 2: At the �-th iteration, log
∑

i∈S exp(−xHF̃ix) can
be majorized by

log
∑
i∈S

exp
(
−xHF̃ix

)
≤ 2Re

⎡
⎣
(∑

i∈S
A�

ix�

)H

x

⎤
⎦+ constant

(23)

with

A�
i =

−
exp
(
−xH

� F̃ix�

)
F̃i +

1
α2

(
(1 + ε)2 N − 2ε− 1

)
x�x

H
�

∑
i∈S exp

(
−xH

� F̃ix�

) .

(24)

The equality is achieved when x = x�.
Proof: See Appendix B. �
Same techniques can be applied on the second term of the

objective function of problem (22). we have

log
∑
i∈P

exp
(
−xHF̂ix

)
≤ 2Re

⎡
⎣
(∑

i∈P
B�

ix�

)H

x

⎤
⎦+ constant,

(25)

where the equality is achieved when x = x�, and

B�
i = −

exp
(
−xH

� F̂ix�

)
F̂j +

1
α2

(
ε2N + 2ε+ 1

)
x�x

H
�

∑
i∈P exp

(
−xH

� F̂ix�

) .

(26)

Therefore, the final majorized problem of problem (22) is

minimize
x

Re
(
pH
� x
)

subject to ‖x‖22 = N.

|xn| ≤ √γ for n = 1, . . . , N, (27)

where

p� =

(∑
i∈S

A�
i + yk

∑
i∈P

B�
i

)
x�. (28)

C. Optimal Solution of the Majorized Problem

For problem (27) with a linear objective function, an closed-
form solution has been constructed in [37], which is rewritten
and presented as follows:

x� = AX (p�) (29)

where

AX (·) = −
(
1R+

0
(N −mγ)

)√
γum � ejarg(·)

− (1R− (N −mγ))min{β|z|,√γ1} � ejarg(·),
(30)

min{·, ·}, | · | and ejarg(·) are element-wise operations, m is the
number of nonzero elements of p�,

1A(x) =

{
1, if x ∈ A,

0, otherwise,
(31)

um =

[
1, . . . 1︸ ︷︷ ︸

m

,

√
N −mγ

Nγ −mγ
, . . . ,

√
N −mγ

Nγ −mγ
︸ ︷︷ ︸

N−m

]T
,

(32)

β ∈
{
β|

N∑
n=1

min
{
β2 |zn|2 , γ

}

= N, β ∈
[
0,

√
γ

min{|zn| | |zn| �= 0}
]}

. (33)

Note that the scalar β can be calculated by the bisection method
in practice, which should be efficient because it is already known
that β ∈ [0,

√
γ

min{|zn| | |zn|�=0} ]. In addition, for the special case
where γ = 1, the constraint set is reduced to the unit-modulus
constraint. Then the optimal solution is

x� = −ejarg(p�). (34)

For the other special case where γ = N , only the constraint
‖x‖22 = N takes effect, and the optimal solution is

x� = −
√
Np

‖p‖2
. (35)

D. Complexity and Convergence Analysis

The complete description of the proposed algorithm named
as Approximate Iterative Method for Spectrum Shaping (AISS)
is shown in Algorithm 1. It is clear that the main computation of
each iteration is the calculation of p�, which consists of A�

ix�

for all i ∈ S and B�
ix� for all i ∈ P . Note that both A�

ix� and
B�

ix� include fHω x� for ω ∈ S ∪ P , which can be implemented
via the fast Fourier transform (FFT). Thus, the computation cost
per iteration is O (NlogN).

As illustrated in the preliminary part, both the Dinkelbach’s
algorithm and the MM method can guarantee the monotonicity
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Algorithm 1: The Approximate Iterative Method for Spec-
trum Shaping (AISS).
Require: The stopband S and passband P .
1) Set k = 0, initialize x0

2) Repeat
3) Set � = 0, s� = xk

4) yk =
max{xH

k Fixk |i∈S}+c

min{xH
k Fixk |i∈P}

5) Repeat
6) Calculate fHω s� for all ω ∈ S ∪ P
7)

∑
i∈S A

�
is� =

[∑
i∈S exp

(
1
α |fHi s�|2

)
fHi s�

α
∑

i∈S
(

exp
(

1
α |fHi s�|2

)) fi

−
(

1+ε
α +

((1+ε)2N−2ε−1)N |S|exp( 1+ε
α N)

α2
∑

i∈S exp
(

1
α |fHi s�|2

)

)
s�

]

8)
∑

i∈P B
�
is� =

[
−

∑
i∈P exp

(
− 1

α |fHi s�|2
)
fHi s�

α
∑

i∈P
(

exp
(
− 1

α |fHi s�|2
)) fi

−
(

ε
α +

(ε2N+2ε+1)N |P|exp( ε
αN)

α2
∑

i∈P exp
(
− 1

α |fHi s�|2
)

)
s�

]

9) p� =
(∑

i∈S A
�
is� + yk

∑
i∈P B

�
is�
)

10) Obtain x�+1 according to (29).
11) �← �+ 1
12) Until convergence
13) xk+1 = s�
14) k ← k + 1
15) Until convergence

of the sequence of the objective value. However, at the k-th
iteration of the Dinkelbach’s algorithm, we in fact solve an
approximate problem instead of the standard one. Thus, the
existing result about the monotonicity cannot be applied directly.
In the following lemma, we analyze the monotonicity of the
proposed AISS.

Lemma 3: For the generated sequence {yk}, we have

yk+1 − yk ≤ α
log |S|+ yklog |P|

min
{
xH
k+1Fixk+1|i ∈ P

} . (36)

Proof: Let f1(x) = max{xHFix|i ∈ S}, f2(x) = min{xH

Fix|i ∈ P}, and h(x) = log
∑

i∈S exp(xHFix/α) + yklog∑
i∈P exp(−xHFix/α). According to Lemma 1, we have the

following two inequalities

f1(x) ≤ αlog
∑
i∈S

exp
(
xHFix/α

) ≤ f1(x) + αlog |S| ,

(37)

−f2(x) ≤ αlog
∑
i∈P

exp
(−xHFix/α

) ≤ −f2(x) + αlog |P| .

(38)

Thus,

f1(x)− ykf2(x) ≤ αh(x)

≤ f1(x)− ykf2(x) + α(log|S|+ yklog|P|).
(39)

Recall that at the k-th iteration, the initial point is xk and
yk = f1(xk)

f2(xk)
. Assume that the output of thek-th iteration isxk+1.

We have two possible situations for xk+1:
1) h(xk+1) ≤ 0. Then f1(xk+1)− ykf2(xk+1) ≤ αh

(xk+1) ≤ 0. So f1(xk+1)
f2(xk+1)

= yk+1 ≤ yk;
2) h(xk+1) > 0. Then f1(xk+1)− ykf2(xk+1) ≤ αh

(xk+1), which is equivalent to

yk+1 =
f1 (xk+1)

f2 (xk+1)
≤ yk +

αh (xk+1)

f2 (xk+1)
. (40)

Since xk is the input for the k-th iteration and we are us-
ing the MM method which guarantees the monotonicity, we
have h(xk+1) ≤ h(xk). Besides, we have αh(xk) ≤ f1(xk)−
ykf2(xk) + α(log|S|+ yklog|P|),which is based on Lemma 1.
Thus, (40) can be further relaxed to (also using the equation
f1(xk)− ykf2(xk) = 0)

yk+1 ≤ yk +
α (log |S|+ yklog |P|)

min
{
xH
k+1Fixk+1|i ∈ P

} . (41)

The proof is complete. �
Remark 4: Lemma (3) provides a loose upper bound of

yk+1 − yk, which is related to the parameter α. Specifically,
the smaller the value of α, the smaller the upper bound. In
the extreme, yk+1 ≤ yk is always guaranteed if α→ 0. This is
very intuitive because whenα becomes smaller, the approximate
function becomes closer to the original one. Thus the procedure
of the standard Dinkelbach’s algorithm is strictly conducted and
consequently, the monotonicity is guaranteed.

Remark 5: If h (xk+1) ≤ 0, then yk+1 ≤ yk. But even when
h (xk+1) > 0, yk+1 ≤ yk can probably still hold. In practice, we
find empirically that if α is set to be a small value, the sequence
of {yk} is generally decreasing and finally converges to a small
value.

Remark 6: Based on the analysis above, the algorithm can
be modified to be more efficient in practice. The inner loop
of Algorithm 1 has no need to run until convergence. In fact,
we can stop the inner loop as long as f1(x)− ykf2(x) ≤ 0 is
satisfied.

V. MONOTONIC ITERATIVE METHOD FOR SPECTRUM SHAPING

In the previous section, we have derived an algorithm named
AISS to solve problem (4) and analyzed that the monotonicity
of AISS can be guaranteed if α→ 0. However, since α is
always a nonzero value in practice, the monotonicity has no
theoretical guarantee although it usually converges empirically.
Thus, we derive another algorithm with the guarantee of strict
monotonicity in this section.

A. Minorizer Construction of the Max-Min Problem

Recall that the objective function of problem (16) can be
rewritten as follows:

max
{
xHFix|i ∈ S

}− ykmin
{
xHFix|i ∈ P

}

= − (−max
{
xHFix|i ∈ S

}
+ ykmin

{
xHFix|i ∈ P

})
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= − (min
{−xHFix|i ∈ S

}
+ ykmin

{
xHFix|i ∈ P

})

= −yk
(

min

{
− 1

yk
xHFix|i ∈ S

}
+ min

{
xHFix|i ∈ P

})
.

(42)

Thus, problem (16) is equivalent to

maximize
x∈X

min
{
xHFix|i ∈ P

}
+ min

{−ykxHFix|i ∈ S
}
,

(43)

where ŷk = 1
yk

=
min{xH

k−1Fixk−1|i∈P}
max{xH

k−1Fixk−1|i∈S}+c
.

Furthermore, by introducing an auxiliary variable p ∈ R|S|,
we have

min
{−ŷkxHFix|i ∈ S

}
= min

p∈S1

{∑
i∈S

pi
(−ŷkxHFix

)
}

(44)

with S1 � {p|1Tp = 1,p ≥ 0}. The optimal p has only
one element being 1 corresponding to the minimal value of
{xHFix}|P|i=1 and the rest elements are zeros. For the other term,
we also have

min
{
xHFix|i ∈ P

}
= min

q∈S2

{∑
i∈P

qix
HFix

}
. (45)

with S2 �
{
q|1Tq = 1,q ≥ 0

}
. Therefore, problem (43) can

be equivalently rewritten as

maximize
x∈X

min
p∈S1,q∈S2

{∑
i∈P

qix
HFix− ŷk

∑
i∈S

pix
HFix

}
.

(46)

We will use the MM method to solve problem (46).
A minorizer of minp∈S1,q∈S2{

∑
i∈P qix

HFix− ŷk
∑

i∈S pi
xHFix} is provided by the following lemma.

Lemma 7: At the �-th iteration of the MM method, a mi-
norizer of the objective function of problem (46) is given by

�(x) = min
p∈S1,q∈S2

{
Re
{
aH� x

}
+ u� (p,q)

}
, (47)

where

a� = 2

(∑
i∈P

qjFj − ŷk
∑
i∈S

pi (Fi − I)

)
x� (48)

and

u� (p,q) = ŷk
∑
i∈S

pi
(
xH
� Fix� − 2N

)−
∑
i∈P

qix
H
� Fix�.

(49)

Proof: See Appendix C. �
Therefore, the minorized problem of problem (46) is

maximize
x

min
p∈S1,q∈S2

{
Re
{
aH� x

}
+ u� (p,q)

}

subject to ‖x‖22 = N.

|xn| ≤ √γ for n = 1, . . . , N. (50)

The lemma below converts problem (50) to an equivalent
problem, which is relatively easier to solve.

Lemma 8: Solving problem (50) is equivalent to solving the
following problem

minimize
p,q

(
max

‖x‖22≤N,|xn|≤√γ
Re
{
aH� x

}
)

+ u� (p,q)

subject to p ∈ S1,q ∈ S2. (51)

Proof: See Appendix D. �
Problem (51) can be solved via the projected subgradient

method, which finds an ε-suboptimal point within a finite number
of iterations [38]. Since this method is well established and
the application on problem (51) is very straightforward, the
details are omitted. In fact, when applying this method, we can
stop running the projected subgradient method once it makes
ŷk+1 ≥ ŷk, which still guarantees the monotonicity of the whole
algorithm.

B. Two Special Cases

1) The Constant Energy Constraint: If γ = N , then the inner
problem of problem (51) becomes

maximize
x

Re
{
aH� x

}

subject to ‖x‖22 = N, (52)

which has a closed-form solution given by

x� =

√
Na�
‖a�‖2

(53)

Substituting (53) back into problem (51), we have

minmize
p,q

√
N ‖a�‖2 + u� (p,q)

subject to p ∈ S1,q ∈ S2, (54)

which can be rewritten as

minmize
p,q

2
√
N ‖A�q−B�p‖2 − cH� q− dH

� p

subject to p ∈ S1,q ∈ S2. (55)

where

A� =
[
F1x�,F2x�, . . . ,F|P|x�

]
, (56)

B� =
[
ykF1x� − ykx�, . . . , ykF|S|x� − x�

]
, (57)

c� =
[
xH
� F1x�, . . . ,x

H
� F|P|x�

]T
, (58)

d� =

⎡
⎢⎢⎣

ŷk
(
2N − xH

� F1x�

)
...

ŷk
(
2N − xH

� F|S|x�

)

⎤
⎥⎥⎦ . (59)

Problem (55) can be rewritten in a second-order cone program-
ming (SOCP) form and solved efficiently by any off-the-shelf
solver like SeDuMi, SDPT3 or Mosek.
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2) The Unit-Modulus Constraint: If γ = 1, then the inner
problem of problem (51) becomes

maximize
x

Re
{
aH� x

}

subject to |xn| = 1 for n = 1, . . . , N. (60)

which has a closed-form solution given by

x� = ejarg(a�) (61)

with ejarg(·) being an elementwise operation. Substituting (61)
back into problem (51), we have

minmize
p,q

‖a�‖1 + u� (p,q)

subject to p ∈ S1,q ∈ S2,
which can also be rewritten as

minmize
p,q

2 ‖A�q−B�p‖1 − cH� q− dH
� p

subject to p ∈ S1,q ∈ S2. (62)

Problem (62) is convex and can be solved efficiently by solvers.

C. Complexity and Convergence Analysis

The DFT matrix is decomposed into two submatrices: the
passband DFT matrixFP = [f1, . . . , f|P|] and the stopband DFT
matrix FS = [f1, . . . , f|S|]. The complete description of the pro-
posed algorithm, named as Monotonic Iterative Method for
Spectrum Shaping (MISS), is given in Algorithm 2.

From the pseudo code of the proposed MISS, the main compu-
tations include FH

P x�, FH
S x� and solving problem (55) or (62).

The first four computations can be implemented via fast Fourier
transform and thus require O(NlogN) flops. Assume that both
problem (55) and (62) are solved by the solver CVX, which will
adopts a primal-dual interior point method with the worst-case
computational complexity being O(N3.5). Therefore, in the
worst case, the complexity of each iteration of MISS isO(N3.5).
As illustrated in the preliminary part, both the Dinkelbach’s
algorithm and the MM method can guarantee the monotonicity.
Thus, the monotonicity of the proposed MISS can be guaranteed.
Note that the monotonicity of the outer Dinkelbach’s algorithm
is still guaranteed as long as f1(x)− ŷkf2(x) ≤ 0, which means
that the inner MM method can be run for only several or even
one iteration.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to evaluate
the performance of the two proposed methods and compare
them with the existing benchmark. Assume that the transmitted
sequence has the length N = 162. This sequence is transmitted
in multiple electromagnetic service environment, where the
stopbands are given by

S = [0, 0.0617] ∪ [0.0988, 0.2469] ∪ [0.2593, 0.2840]

∪ [0.3086, 0.3827] ∪ [0.4074, 0.4938]

∪ [0.5185, 0.5558] ∪ [0.9383, 1] , (63)

Algorithm 2: The Monotonic Iterative Method for Spectrum
Shaping (MISS).
Require: The stopband S and passband P .
1) Set k = 0, initialize x0

2) Repeat

3) ŷk =
max{xH

k Fixk |i∈S}
min{xH

k Fixk |i∈P}+c

4) Set � = 0, s� = xk

5) Repeat
6) A� = FPDiag

(
FH
P s�

)

7) B� = ŷk

(
FSDiag

(
FH
S s�

)− 1T
|S| ⊗ s�

)

8) c� =
[
abs
(
FH
P s�

)]2
9) d� = ŷk

(
2N1− [abs

(
FH
S s�

)]2)

10) Obtain (p�+1,q�+1) by solving problem
(55) or (62)

11) a�+1 = 2 (A�q�+1 −B�p�+1)

12) s�+1 =
√
Na�+1

‖a�+1‖2 (s�+1 = ejarg(a�+1))
13) �← �+ 1
14) Until convergence
15) xk+1 = s�
16) k ← k + 1
17) Until convergence

where the frequency is normalized so that the total range is
[0, 1]. The passbands consist of the complementary sets of S
within [0, 1]. The benchmark method for this design problem
is the NSLM (No-Spectral-Level-Mask) method [27], which is
for the unit modulus case. The parameter settings of NSLM
follow the suggestions of [27]. Unless otherwise specified, all
the parameters are the same in the numerical experiments. All
experiments were carried out on a Window desktop PC with a
3.30 GHz i5-4950 CPU and 8 GB RAM.

A. Convergence Performance and Shaped Spectrum

Note that the proposed MISS has the guarantee of monotonic-
ity. Figure 2 shows the convergence plot of MISS for the two
special cases γ = 1 and γ = N for the first 20 s. In fact, all AISS
curves will achieve around 1.5× 10−7 after running for 300 s,
while the (A)NSLM curve barely decreases after the first 20 s.
We can see clearly that MISS can guarantee the monotonicity
strictly but at at the cost of high computational complexity. Con-
sidering that neither of the proposed AISS and the benchmark
NSLM has this monotonicity guarantee, a good usage of MISS
is to provide good initialization for AISS and NSLM.

Figure 3 shows the curves of the SLR along the CPU time,
where the initial point for AISS and NSLM is provided by
MISS after a few iterations. From the figure, we can see clearly
that AISS decreases much faster and achieves better SLR than
NSLM. In addition, although neither AISS nor NSLM has
monotonicity guarantee, both can still decrease the objective
value along iterations generally. In fact, by choosing a small α,
we can reasonably expect that AISS performs well with only
small fluctuations or even no fluctuation. The spectra of the
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Fig. 2. Convergence plot of objective value versus CPU time of MISS.

Fig. 3. Convergence plot of objective value versus CPU time for γ = 1 and
α = 1× 10−10.

designed sequences are shown in Figure 4. The AISS can shape
deep notches in these stopbands.

Table I shows the comparison of average performance be-
tween AISS and NSLM. For each value of N , we conduct 50
random trails. In both columns of SLR and CPU time, each
presented value is the average of the 50 outcomes. In the last
column named exhaustion, the value represents the percentage
of occurrence of the algorithm stopped by meeting the maxi-
mum number of iterations. Note that the stopping criterion for
both AISS and MISS is (‖xk+1 − xk‖2/‖xk‖2 ≤ ε or k ≥ K),
where ε = 1× 10−8,K = 5× 103 for AISS and ε = 1× 10−8,
K = 5× 104 for NSLM. From Table I, we can see that AISS
is better than NSLM in terms of both CPU time and SLR (only
except the case N = 50).

B. Parameter Effect on the Performance of AISS

Compared with MISS and NSLM, AISS can deal with the
general PAR constraint. Figure 5 shows the effect of different

Fig. 4. Comparison of the spectra of the designed sequences for γ = 1 and
α = 1× 10−10.

TABLE I
PERFORMANCE EVALUATION OF AISS AND NSLM

value of γ on the SLR performance, where 50 random trials
are conducted for each γ. From this figure, we can see that
the objective value is generally decreasing as the value of γ
increases. From the perspective of optimization, it is reasonable
because as γ increases, the feasible set extends so that the
achieved objective value probably becomes smaller and smaller.
However, the improvement of the averaged objective value is
very significant when γ is changed from 1 to 2. After 6, the
averaged objective value does not decrease too much.

In Figure 6, we show the spectra of the designed sequence
for different values of γ, where the AISS uses an randomly
generated initial sequence. It is clear to see that there are notches
in the stopands and these notches becomes deeper when the value
of γ increases. But for the cases γ = 5 and γ = 7, the spectra
are generally the same, which is consistent to the information
provided by Figure 5.

As illustrated above, an important issue of using AISS is the
choice of α, which controls the degree of approximation. The
sensitivity of AISS on the choice ofα is shown in Figure 7, where
50 random trials are conducted. Fortunately, the performance is
not too sensitive to that choice. We can also see that the achieved
average objective values are around 10−3 when α is within [1×
10−8, 1× 10−6].
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Fig. 5. Effect of different γ on the objective value for AISS over 50 trials.

Fig. 6. Comparison of spectra for different PAR levels of AISS. α = 1×
10−7.

Fig. 7. Sensitivity of AISS on the choice of α for γ = 1.

Fig. 8. The frequency oversampling case: sequence length:N = 162; number
of frequency points: M = N + 10.

C. Proposed Methods for Frequency Oversampling

As we illustrated previously, if frequency oversampling (more
than N frequency samples) is considered for the passbands and
stopbands, then the SLR is suitable for optimization which is
the RSLR with c = 0. The proposed AISS and MISS based on
the RSLR can be applied to the frequency oversampling case,
of which the simulation resluts are shown in Figure 8. Note that
for the convergence plot, we only show the first 30 seconds to
demonstrate the fluctuation of AISS. The red curve will finally
converge to SLR = 5.5514× 10−11 at CPU time = 189.5469 .

VII. CONCLUSION

In this paper, the sequence design problem for spectral shaping
is considered, which is formulated as the minimization of the
regularized SLR subject to the PAR and constant energy con-
straints. We have derived two algorithms named AISS and MISS,
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respectively. Both algorithms are based on the combination
of the Dinkelbach’s algorithm and the MM method, and the
difference between them is that AISS approximates the iterative
subproblem of the Dinkelbach’s framework while MISS solve
that directly. Consequently, the AISS has a lower computational
complexity but has no strict guarantee of monotonicity, while
the MISS is on the contrary. In order to make the best of each
algorithm, a suggested implementation is to use MISS generate
a good initialization, and then use AISS to shape the spectrum
based on this initialization. In the numerical experiments, the
combination of MISS and AISS is verified and AISS shows
better performance than the benchmark in terms of both SLR
and running time.

APPENDIX

A. Proof of Lemma 1

Proof: According to the log-sum-exp approximation [39],

max

{
xHFix

α
|i ∈ S

}
≤ log

∑
i∈S

exp

(
xHFix

α

)

≤ log |S|+ max

{
xHFix

α
|i ∈ S

}
.

(64)

which is further equivalent to

max
{
xHFix|i ∈ S

} ≤ αlog
∑
i∈S

exp

(
xHFix

α

)

≤ αlog |S|+ max
{
xHFix|i ∈ S

}
.

(65)

Similarly, for the term max{−xHFjx|j ∈ P}, we have

max
{−xHFjx|j ∈ P

} ≤ αlog
∑
j∈P

exp

(
−xHFjx

α

)

≤αlog|P|+ max
{−xHFjx|j∈P

}
.

(66)

Thus, the objective function of problem (17) can be
approximated by αlog

∑
i∈S exp(x

HFix
α ) + αyklog

∑
j∈P exp

(−xHFjx
α ), and the approximation error is at most α(log|S|+

yklog|P|). �

B. Proof of Lemma 2

Proof: At the �-th iteration of the MM method, by using the
concavity of logarithm, we have

log
∑
i∈S

exp
(
−xHF̃ix

)

≤
∑

i∈S exp
(
−xHF̃ix

)

∑
i∈S exp

(
−xH

� F̃ix�

) + log
∑
i∈S

exp
(
−xH

� F̃ix�

)
− 1

(67)

with the equality achieved when x = x�.

The function f(x) = e−x, x ∈ (0,+∞) is β-smooth (i.e., the
derivative of f(x) is is Lipschitz continuous) withβ = 1because
|f ′′(x)| = e−x < 1 for x ∈ (0,+∞). Thus, for x, y ∈ (0,+∞),
f(x) is upper bounded by a quadratic function given by

f(x) ≤ f(y) +∇f(y)T (x− y) +
1

2
||x− y||2 (68)

with the equality achieved when x = y. Substituting x =
xHF̃ix and y = xH

� F̃ix� into (68), we have

exp
(
−xHF̃ix

)

≤ exp
(
−xH

� F̃ix�

)
− exp

(
−xH

� F̃ix�

)(
xHF̃ix− xH

� F̃ix�

)

+
1

2

∥∥∥xHF̃ix− xH
� F̃ix�

∥∥∥
2

2

=
1

2
xHF̃H

i xxHF̃ix−
(
xH
� F̃H

i x� + exp
(
−xH

� F̃ix�

))
xHF̃ix

+ constant (69)

with the equality achieved when x = x�.
By combining (67) and (69), log

∑
i∈S exp(−xHF̃ix) can be

majorized as

log
∑
i∈S

exp
(
−xHF̃ix

)

≤
∑
i∈S

(
1

2a�
xHF̃H

i xxHF̃ix− b�i
a�

xHF̃ix

)
+ constant,

(70)

where

a� =
∑
i∈S

exp
(
−xH

� F̃ix�

)
> 0, (71)

b�i = xH
� F̃H

i x� + exp
(
−xH

� F̃ix�

)
> 0. (72)

Next, the majorizer of 1
2a�x

HF̃H
i xxHF̃ix− b�i

a�x
HF̃ix will

be constructed. Let X = xxH , then xHF̃H
i xxHF̃ix = vec

(x)Hvec(F̃i)vec(F̃i)
Hvec(x). The largest eigenvalue of F̄i =

vec(F̃i)vec(F̃i)
H is

λmax

(
F̄i

)
= vec

(
F̃i

)H
vec

(
F̃i

)

=
1

α2
tr
(
((1 + ε) I− Fi)

H ((1 + ε) I− Fi)
)

=
1

α2

(
(1 + ε)2 N − 2 (1 + ε) + 1

)
(73)

According to [25, Lemma 1], we have

xHF̃H
i xxHF̃ix

= vec(x)Hvec
(
F̃i

)
vec

(
F̃i

)H
vec(x)

≤ 2Re
(

vec (X�)
H (F̄i − λmax

(
F̄i

)
I
)

vec(x)
)
+ constant

= 2Re
[
xH

(
tr
(
X�F̃i

)
F̃i − λmax

(
F̄i

)
X�

)
x
]
+ constant

= 2xH
(
xH
� F̃ix�F̃i − λmax

(
F̄i

)
X�

)
x+ constant. (74)
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Thus, we have

1

2a�
xHF̃H

i xxHF̃ix− b�i
a�

xHF̃ix ≤ xHA�
ix+ constant,

(75)

where A�
i is defined by (24). Due to A�

i � 0, the concave
term xHA�

ix can be further majorized by its first-order Taylor
expansion given by
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ix
)
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We have
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(77)

Therefore, by combining (70) and (77), we have
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C. Proof of Lemma 7

Proof: Define f1(x) =
∑

j∈P qjx
HFjx and f2(x) =

∑
i∈S

pix
HFix. The convex function f1(x) can be lower bounded by

its first-order Taylor expansion as follows
∑
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(78)

According to [25, Lemma 1], for each i ∈ S , we have

xHFix ≤ xHx+ 2Re
(
xH
� (Fi − I)x

)
+ xH

� (I− Fi)x�,
(79)

where λu(Fi) is an upper bound of the eigenvalues of Fi.
Thus, by combining (78) and (79) and doing some algebra

manipulations, we have
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Define a� and u�(p,q) as (48) and (49), then we have

min
p∈S1,q∈S2
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≥ min
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{
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{
aH� x

}
+ u� (p,q)

}
(81)

with equality achieved when x = x�. �

D. Proof of Lemma 8

Proof: First, problem (50) is equivalent to

maximize
x

min
p∈S1,q∈S2

{
Re
{
aH� x

}
+ u� (p,q)

}

subject to ‖x‖22 ≤ N.

|xn| ≤ √γ for n = 1, . . . , N. (82)

The optimal solution to problem (82) should satisfy ‖x�‖22 = N .
Otherwise, we can always scale up some elements of x� with a
larger objective value.

For problem (82), the objective function is bilinear in x
and (p,q), and the constraint sets for x and (p,q) are both
compact convex. According to the minimax theorem [40]–[42],
the equality is achieved so that max and min can be exchanged.
Thus, we have the following equivalent problem

minimize
p,q

(
max

‖x‖22≤N,|xn|≤√γ
Re
{
aH� x

}
)

+ u� (p,q)

subject to p ∈ S1,q ∈ S2. (83)
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