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Optimization Algorithms for Graph Laplacian
Estimation via ADMM and MM
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Abstract—In this paper, we study the graph Laplacian estima-
tion problem under a given connectivity topology. We aim at en-
riching the unified graph learning framework proposed by Egilmez
et al. and improve the optimality performance of the combinatorial
graph Laplacian (CGL) case. We apply the well-known alternat-
ing direction method of multipliers (ADMM) and majorization–
minimization (MM) algorithmic frameworks and propose two algo-
rithms, namely, GLE-ADMM and GLE-MM, for graph Laplacian
estimation. Both algorithms can achieve an optimality gap as low
as 10−4, around three orders of magnitude more accurate than the
benchmark. In addition, we find that GLE-ADMM is more com-
putationally efficient in a dense topology (e.g., an almost complete
graph), while GLE-MM is more suitable for sparse graphs (e.g.,
trees). Furthermore, we consider exploiting the leading eigenvec-
tors of the sample covariance matrix as a nominal eigensubspace
and propose a third algorithm, named GLENE, which is also based
on ADMM. Numerical experiments show that the inclusion of a
nominal eigensubspace significantly improves the estimation of the
graph Laplacian, which is more evident when the sample size is
smaller than or comparable to the problem dimension.

Index Terms—Graph learning, Laplacian estimation, nominal
eigensubspace, ADMM, Majorization-Minimization.

I. INTRODUCTION

GRAPH signal processing has been a rapidly developing
field in recent years, with a wide range of applications

such as social, energy, transportation, sensor, and neuronal net-
works [2]. Its popularity results from the revolutionary way it
models data points and their pairwise interconnections. When
a collection of data samples are modeled as a graph signal,
each sample is treated as a vertex and their pairwise intercon-
nections are represented by a number of edges. Every edge is
associated with a weight, and the weight value often reflects
the similarity between the connecting vertices. We define a
weighted graph as G = {V, E ,W}, where V denotes the ver-
tex set with card(V) = N (N vertices), E denotes the edge set
with card(E) = M (M edges), and W ∈ RN×N is the weight
matrix. We will focus on a specific type of graph which is undi-
rected and connected (i.e., one connected component only) with
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no self-loops, so the corresponding weight matrix is symmetric
and elementwisely non-negative, with its diagonal elements all
being zero. The graph Laplacian, also known as a combinatorial
graph Laplacian (see [1, Definition 2]), is defined as

L = D−W ∈ RN×N , (1)

where D is the degree matrix, which is diagonal in structure
with Dii =

∑N
j=1 Wij . The adjacency matrix A is defined as

A = sgn (W) ∈ RN×N , (2)

which implies Aij = 1 if Wij > 0, Aij = 0 if Wij = 0, and
Aii = 0.

In most practical scenarios, it is straightforward to derive the
vertex set, but the edge set and the associated weight matrix are
not readily available. This is either because no reasonable initial
graph exists, or only a vague prior is given [3]. Under these cir-
cumstances, it is of great significance to learn the graph structure
through statistical methods from the available finite data sam-
ples. In this paper, we specifically assume the data samples are
drawn from a Gaussian Markov Random Field (GMRF) [4].
GMRFs are powerful tools and can be applied to such areas
as structural time-series analysis (e.g., autoregressive models),
graphical models, semiparametric regression and splines, image
analysis, and spatial statistics [4]. The graph structure estima-
tion of a GMRF model naturally amounts to the estimation of the
precision matrix (inverse covariance matrix) by means of maxi-
mum likelihood estimation. As it is pointed out in the literature,
the precision matrix is popularly structured as a graph Laplacian
[5], [6] and the corresponding GMRF models are named Lapla-
cian GMRF models. A graph Laplacian is a positive semidefinite
(PSD) matrix with non-positive off-diagonal entries and a zero
row-sum [7]:

L =
{
L � 0
∣
∣L1 = 0, Lij ≤ 0, i �= j

}
, (3)

which always corresponds to a graph with non-negative
weighted edges [6]. As is mentioned in [6], the significance of
the Laplacian GMRF model has been recognized in image re-
construction [8], image segmentation [9], and texture modeling
and discrimination [10], [11]. With the aforementioned defini-
tions for L and A, we can describe the constraint set for graph
Laplacians under a given connectivity topology:

L (A) =

{

Θ � 0

∣
∣
∣
∣Θ1 = 0,

Θij ≤ 0 if Aij = 1
Θij = 0 if Aij = 0

for i �= j

}

,

(4)
which is a subset of L. The graph Laplacian notation is changed
to Θ so as to align with the majority of the existing works.
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A. Related Works

In the field of GMRF model estimation, the authors of [12]
and [13] adopted the �1 regularization in pursuit of a sparse
graphical model. The estimation problem is to maximize the
penalized log-likelihood:

maximize
Θ�0

log det (Θ)− Tr (SΘ)− α ‖vec (Θ)‖1 , (5)

where S is the sample covariance matrix. The penalty term
‖vec(Θ)‖1 promotes elementwise sparsity in Θ for the sake
of data interpretability and avoiding potential singularity issues
[13]. After these two pioneering works, Friedman et al. [14]
came up with an efficient computational method to solve (5)
and proposed the well-known GLasso algorithm, which is a co-
ordinate descent procedure by nature.

Up to the time of those early works the Laplacian structure
had not yet been imposed on the precision matrix Θ. When Θ
has the Laplacian structure, det(Θ) equals 0, obtaining minus
infinity after the log operation. To handle this singularity issue,
Lake and Tenenbaum [15] lifted the diagonal elements of Θ to
be Θ̄ = Θ+ νI. The formulation becomes

minimize
Θ�0,Θ̄,ν≥0

Tr (ΘS)− log det (Θ) + α ‖vec (Θ)‖1

subject to Θ = Θ̄+ νI

Θ̄1 = 0, Θ̄ij ≤ 0, i �= j, (6)

and the solution is given as Θ� − ν�I. Dong et al. [7] and
Kalofolias [16] also emphasized the Laplacian structure in their
graph learning process but modified the maximum penalized
log-likelihood formulation as

maximize
Θ�0

Tr (ΘS) + α ‖Θ‖2F
subject toΘ1 = 0, Tr (Θ) = N, Θij ≤ 0, i �= j (7)

and

maximize
Θ�0

Tr (ΘS) + α1 ‖Θ‖2F,off − α2 log det (Ddiag (Θ))

subject to Θ1 = 0, Θij ≤ 0, i �= j. (8)

A more reasonable way to estimate a Laplacian structured
precision matrix is mentioned in [1]. Egilmez et al. [1] pro-
posed a unified framework for Laplacian estimation. They ex-
tended the classical graph Laplacian concept into three dif-
ferent classes: Generalized Graph Laplacian (GGL), {Θ � 0

∣
∣

Θij ≤ 0, i �= j}; Diagonally Dominant generalized Graph
Laplacian (DDGL), {Θ � 0

∣
∣Θ1 ≥ 0, Θij ≤ 0, i �= j}; and

Combinatorial Graph Laplacian (CGL), the same as the graph
Laplacian matrix in (3). A total of two algorithms were proposed,
one for GGL and DDGL and the other for CGL. We find that the
one for GGL and DDGL is efficient and gives empirically sat-
isfactory numerical performance, but the other for CGL, is not
so accurate in terms of optimality on most occasions and may
violate the constraint set from time to time. This results from
the heuristic operations mentioned in [1, Algorithm 2, Line 13
to 17]. Interested readers may refer to [17] for extensions of this
unified framework.

B. Contribution

The major contributions of this paper are as follows:
1) We propose two algorithms for graph Laplacian estima-

tion under a given connectivity topology, namely GLE-
ADMM and GLE-MM. Both algorithms can achieve an
optimality gap as low as 10−4, around three orders of mag-
nitude more accurate than the benchmark CGL. Moreover,
we find that GLE-ADMM is more computationally effi-
cient in a dense topology (e.g., an almost complete graph),
while GLE-MM is more suitable for sparse graphs (e.g.,
trees).

2) We additionally consider exploiting the leading eigenvec-
tors of the sample covariance matrix as a nominal eigen-
subspace. This improves the estimation of the graph Lapla-
cian when the sample size is smaller than or comparable to
the problem dimension, as is suggested by the simulation
results in Section VI-B1. We propose an algorithm named
GLENE based on the Alternating Direction Method of
Multipliers (ADMM) for the inclusion of a nominal eigen-
subspace. The optimality gap with respect to the CVX
toolbox is less than 10−4. In a real-data experiment, we
show that GLENE is able to reveal the strong correlations
between stocks, while achieving a high sparsity ratio.

C. Organization and Notation

The rest of the paper is organized as follows. In Section II,
we present the problem formulation of graph Laplacian estima-
tion. In Section III, we introduce an algorithmic solution for
graph Laplacian estimation based on the ADMM framework.
In Section IV, we revisit the graph Laplacian estimation prob-
lem and propose an alternative solution via the Majorization-
Minimization (MM) framework. In Section V, we study the
graph Laplacian estimation problem with the inclusion of a nom-
inal eigensubspace. Section VI presents numerical results, and
the conclusions are drawn in Section VII.

The following notation is adopted. Boldface upper-case let-
ters represent matrices, boldface lower-case letters denote col-
umn vectors, and standard lower-case or upper-case letters stand
for scalars. R denotes the real field. � stands for the Hadamard
product. sgn(x) = x/|x|, sgn(0) = 0, [x]+ = max(x, 0), [x]−
= min(x, 0), [X]+ = max(X,0), and [X]− = min(X,0).
X ≥ 0 means X is elementwisely larger than 0. [X]PSD =
U[Λ]+U

T , with UΛUT being the eigenvalue decomposition
of X. ‖ · ‖p denotes the �p-norm of a vector. ∇(·) represents the
gradient of a multivariate function. 1 stands for the all-one vec-
tor, and I stands for the identity matrix. XT , X−1, X†, Tr(X),
and det(X) denote the transpose, inverse, pseudo-inverse, trace,
and determinant of X, respectively. X � 0 means X is positive
semidefinite. diag(X) is the vector consisting of all the diagonal
elements of matrix X. Diag(x) is a diagonal matrix with x fill-
ing its principal diagonal. Ddiag(X) is a diagonal matrix with
the diagonal elements of X filling its principal diagonal. ‖X‖F
is the Frobenius norm of X, and ‖X‖F,off is the Frobenius norm
of X− Ddiag(X). The cardinality of the set X is represented
as card(X ). The superscript � represents the optimal solution
of some optimization problem. Whenever arithmetic operators
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(
√·, ·/·, ·2, ·−1, etc.) are applied to vectors or matrices, they are

elementwise operations.

II. PROBLEM STATEMENT

Suppose we obtain a number of samples {xi}Ti=1 from a
GMRF model. We are able to compute a certain data statis-
tic S ∈ RN×N (e.g., sample covariance matrix) thereafter. Our
goal is to estimate the graph structure of the model, so we carry
out the graph learning process, which typically consists of two
steps: topology inference and weight estimation [18]. In this pa-
per, we assume the graph topology is given, i.e., the adjacency
matrix A is known, and we focus on weight estimation. One of
the most extensively studied problems in weight estimation is
to estimate the graph Laplacian. A seemingly plausible problem
formulation for graph Laplacian estimation is given as follows:

minimize
Θ

Tr (ΘS)− log det (Θ) + α ‖vec (Θ)‖1
subject to Θ ∈ L (A) , (9)

where α > 0 is the regularization parameter. Now that Θ sat-
isfies the Laplacian constraints, the off-diagonal elements of Θ
are non-positive and the diagonal elements are non-negative, so

‖vec (Θ)‖1 = Tr (ΘH) , (10)

where H = 2I− 11T . Thus, the objective function becomes

Tr (ΘS)− log det (Θ) + α ‖vec (Θ)‖1
= Tr (ΘS)− log det (Θ) + αTr (ΘH)

= Tr (Θ (S+ αH))− log det (Θ)

� Tr (ΘK)− log det (Θ) , (11)

where K � S+ αH. However, once the Laplacian constraints
are satisfied, Θ is not positive definite because 1TΘ1 = 0,
which leads to log det(Θ) being unbounded below. To address
the singularity issue, Egilmez et al. [1] proposed to modify
log det(Θ) as log det(Θ+ J), where1J = 1

N 11T , and the re-
formulated problem takes the following form:

minimize
Θ

Tr (ΘK)− log det (Θ+ J)

subject to Θ ∈ L (A) . (12)

Its validity holds if the graph topology has only one connected
component [19]. This problem is solved with [1, Algorithm 2],
otherwise called CGL, in the existing literature, but the optimal-
ity performance of this algorithm is not satisfactory, so we aim
at improving the CGL algorithm.

III. GRAPH LAPLACIAN ESTIMATION: AN ADMM APPROACH

First we study the constraint set L(A), which is written as
follows:

⎧
⎪⎨

⎪⎩

Θ � 0, Θ1 = 0

Θij ≤ 0 if Aij = 1

Θij = 0 if Aij = 0
for i �= j.

(13)

1This modification is justified in [1, Prop. 1].

We further suppose the graph has no self loops, so the diagonal
elements of A are all zero. Then, the constraint set L(A) can be
compactly rewritten in the following way:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ � 0, Θ1 = 0

Θ−C = 0

I�C ≥ 0

B�C = 0

A�C ≤ 0

⎫
⎪⎬

⎪⎭
C ∈ C,

(14)

where

B = 11T − I−A. (15)

The constraint I�C≥0 is implied from the constraint Θ � 0.
Next we will present an equivalent form of the constraints

Θ1 = 0 and Θ � 0:
Θ � 0, Θ1 = 0

⇐⇒ Θ = PΞPT , Ξ � 0,
(16)

where P ∈ RN×(N−1) is the orthogonal complement of 1, i.e.,
PTP = I and PT1 = 0. Note that the choice of P is non-
unique; if P0 satisfies the aforementioned two conditions, P0U
will also do ifU ∈ R(N−1)×(N−1) is unitary. With the equivalent
form of Θ, we can rewrite the objective function as follows:

Tr (ΘK) = Tr
(
ΞK̃
)
, (17)

where K̃ = PTKP. We also have

log det (Θ+ J)

= log det

(

PΞPT +
1

N
11T

)

= log det

([
P,1/

√
N
] [Ξ

1

] [
PT

1T /
√
N

])

= log det (Ξ) . (18)

Thus, the problem formulation changes to

minimize
Ξ,C

Tr
(
ΞK̃
)
− log det (Ξ)

subject to Ξ � 0

PΞPT −C = 0

I�C ≥ 0
B�C = 0
A�C ≤ 0

⎫
⎬

⎭
C ∈ C. (19)

We will solve (19) with the ADMM algorithmic framework.

A. The ADMM Framework

The ADMM algorithm is aimed at solving problems in the
following format:

minimize
x,z

f (x) + g (z)

subject to Ax+Bz = c, (20)

with x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. f
and g are convex functions. The augmented Lagrangian of (20)
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is given as

Lρ (x, z,y) = f (x) + g (z) + yT (Ax+Bz− c)

+ (ρ/2) ‖Ax+Bz− c‖22 . (21)

The ADMM framework is summarized as follows:

Require:l = 0, y(0), and z(0).
1: repeat
2: x(l+1) = argminx∈X Lρ(x, z

(l),y(l));
3: z(l+1) = argminz∈Z Lρ(x

(l+1), z,y(l));
4: y(l+1) = y(l) + ρ(Ax(l+1) +Bz(l+1) − c);
5: l = l + 1;
6: until convergence

The convergence of ADMM is obtained if the following con-
ditions are satisfied:

1) epi f={(x, t)∈Rn×R| f(x)≤ t} and epi g={(z, s)∈
Rn×R| g(z)≤s} are both closed nonempty convex sets;

2) The unaugmented Lagrangian L0 has a saddle point.
Detailed convergence results are elaborated in [20, Sec. 3.2].

B. Implementation of ADMM

We derive the (partial) augmented Lagrangian:

L (Ξ,C,Y) = Tr
(
ΞK̃
)
− log det (Ξ)

+ Tr
(
YT
(
PΞPT −C

))
+

ρ

2

∥
∥PΞPT −C

∥
∥2
F
. (22)

We treat Ξ and C as primal variables and define Y as the dual
variable with respect to the constraint PΞPT −C = 0. The
constraints Ξ � 0 and C ∈ C are not relaxed, so they do not
show up in the augmented Lagrangian. The first two steps in the
ADMM algorithm are to find the minimizer of the augmented
Lagrangian with respect to Ξ and C, respectively, with the other
primal and dual variables fixed, i.e., (for simple notation, the
update variable has a superscript “+”)

{
Ξ+ = argminΞ�0 L (Ξ,C,Y)

C+ = argminC∈C L
(
Ξ+,C,Y

)
.

(23)

1) Update of Ξ:

Ξ+ = argmin
Ξ�0

L (Ξ,C,Y)

= argmin
Ξ�0

Tr
(
ΞK̃
)
− log det (Ξ)

+ Tr
(
PTYTPΞ

)
+

ρ

2

∥
∥PΞPT −C

∥
∥2
F

= argmin
Ξ�0

ρ

2

∥
∥
∥
∥Ξ+

1

ρ

(
K̃+ Ỹ − ρC̃

)∥∥
∥
∥

2

F

− log det (Ξ) , (24)

with Ỹ = PTYP and C̃ = PTCP. The next step is to com-
pute the minimizer to a problem of this format: ρ

2‖Θ+X‖2F −
log det(Θ), where the variable is Θ. Thus, we introduce the
following supporting lemma.

Algorithm 1: ADMM-Based Graph Laplacian Estimation
(GLE-ADMM).

Require: Initialization: K, symmetric Y(0) and C(0),
ρ > 0, l = 0

1: repeat
2: Eigenvalue decomposition: 1ρP

T (K+Y(l)

−ρC(l))P = UΛUT ;

3: D is diagonal, with Dii =
−ρΛii+

√
ρ2Λ2

ii+4ρ

2ρ ;

4: Ξ(l+1) = UDUT ;
5: Θ(l+1) = PΞ(l+1)PT ;
6: C(l+1) = I� [ 1ρY

(l) +Θ(l+1)]+ +A�
[ 1ρY

(l) +Θ(l+1)]−;

7: Y(l+1) = Y(l) + ρ(Θ(l+1) −C(l+1));
8: l = l + 1;
9: until convergence

Lemma 1 ([20, Chap. 6.5]): The solution to minΘ�0
ρ
2‖Θ

+X‖2F − log det(Θ) is Θ� = UDUT , where U comes from
the eigenvalue decomposition of X, i.e., X = UΛUT , and D
is a diagonal matrix with

Dii =
−ρΛii +

√
ρ2Λ2

ii + 4ρ

2ρ
. (25)

Applying Lemma 1, we can obtain

Ξ+ = UDUT , (26)

where U comes from the eigenvalue decomposition of 1
ρ (K̃+

Ỹ − ρC̃) = 1
ρP

T (K+Y − ρC)P, i.e.,
1
ρP

T (K+Y − ρC)P = UΛUT , and D is a diagonal ma-

trix with Dii =
−ρΛii+

√
ρ2Λ2

ii+4ρ

2ρ .
2) Update of C:

C+ = argmin
C∈C

L (Ξ+,C,Y
)

= argmin
C∈C

−Tr
(
YTC
)
+

ρ

2

∥
∥Θ+ −C

∥
∥2
F
, (27)

whereΘ+ = PΞ+PT . Now we need another supporting lemma
to find the minimizer.

Lemma 2: The solution to minC∈C −Tr(YTC) + ρ
2‖X−

C‖2F is C� = I� [ 1ρY +X]+ +A� [ 1ρY +X]−, where C =

{C|I�C ≥ 0, B�C = 0, A�C ≤ 0}.
Proof: See Appendix A. �
Applying Lemma 2, we can obtain the update of C:

C+ = I�
[
1

ρ
Y +Θ+

]

+

+A�
[
1

ρ
Y +Θ+

]

−
. (28)

The last step of the ADMM algorithm is the dual update,
which is as simple as

Y+ = Y + ρ
(
Θ+ −C+

)
, (29)

with Θ+ = PΞ+PT . We summarize the ADMM solution in
Algorithm 1.

Remark 1 (Implementation Tips): When we implement the
ADMM framework, the choice of the parameter ρ is often a
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involved task. In [20, Sec. 3.4.1], the authors suggest an adap-
tive update scheme for ρ so that it varies in every iteration and
becomes less dependent on the initial choice. The update rule is
[20, eq. (3.13)]: given ρ(0),

ρ(l+1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ incρ(l)
∥
∥r(l)
∥
∥
2
> μ
∥
∥s(l)
∥
∥
2

ρ(l)/τ dec
∥
∥s(l)
∥
∥
2
> μ
∥
∥r(l)
∥
∥
2

ρ(l) otherwise,

(30)

where μ > 1, τ inc > 1, and τ dec > 1 are tuning parameters
and r(l) = Ax(l) +Bz(l) − c and s(l) = ρATB(z(l) − z(l−1))
(following the notation in Section III-A). We strongly recom-
mend this simple scheme because it indeed accelerates the em-
pirical convergence speed in our implementation.

C. Computational Complexity

We present an analysis on the computational complexity of
Algorithm 1 in this subsection. The analysis is carried out on
a per-iteration basis. In every iteration, we update Ξ, C, and
Y. The update of Ξ involves the following costly steps: i)
matrix multiplication 1

ρP
T (K+Y(l) − ρC(l))P: O(N3), ii)

eigenvalue decomposition: O(N3), and iii) matrix multiplica-
tionUDUT :O(N3). The costly step in updatingC is merely the
matrix multiplication PΞ(l+1)PT : O(N3) since the Hadamard
product and the arithmetic operations [·]+ and [·]− only take
O(N2). The update of Y costs O(N2). Therefore, the per-
iteration complexity of Algorithm 1 is O(N3), resulting from
six matrix multiplications and one eigenvalue decomposition.

IV. GRAPH LAPLACIAN ESTIMATION REVISITED: AN

MM ALTERNATIVE

We have just solved the graph Laplacian estimation problem
with an ADMM approach. The ADMM solution is more suitable
for a dense topology, i.e., all the samples (nodes) are connected
as an almost complete graph. If the number of non-zero off-
diagonal elements in the adjacency matrix A ∈ RN×N reaches
O(N2) (or, equivalently, the edge number M reaches O(N2)),
we can unhesitantly resort to the ADMM approach. However,
when the graph is sparse, i.e., M = O(N), the ADMM solution
may give way to a more efficient method. We start from the
following toy example to gain some insight.

Example 3: Suppose we have a 3× 3 Laplacian matrix (for
sanity check, please refer to eq. (4)):

⎡

⎣
3 −1 −2

−1 4 −3
−2 −3 5

⎤

⎦ .

We can perform a special rank-one decomposition to this matrix
(different from the traditional eigenvalue decomposition); see
eq. (31) shown at the bottom of this page.

For a general graph where there are M edges and the mth
edge connects vertex im and jm, we can always perform the
same decomposition on its graph Laplacian Θ:

Θ =

M∑

m=1

Wimjm

(
eimeTim + ejmeTjm − eimeTjm − ejmeTim

)

=
M∑

m=1

Wimjm (eim − ejm) (eim − ejm)T

�
M∑

m=1

WimjmξimjmξTimjm

� EDiag (w)ET , (32)

where w = {Wimjm}Mm=1 represents the weights on the edges.
The matrix E, known as the incidence matrix, can be inferred
from the adjacency matrix A. This decomposition technique
was mentioned in [18] as well. The advantage of this decompo-
sition is the simplification of the Laplacian constraints; they are
naturally satisfied if and only if w ≥ 0. One drawback of this
decomposition is that, when the length of w reaches O(N2), the
computational cost will be prohibitively high. Given E and w,
a simple computation of Θ takes up to O(N5) operations. To
this point, we can see that the efficiency of this decomposition
technique depends heavily on the sparsity level of the Laplacian
matrix.

When we adopt this decomposition, the original problem for-
mulation (12) becomes

minimize
w≥0

Tr
(
EDiag (w)ETK

)

− log det
(
EDiag (w)ET + J

)
, (33)

with J = 1
N 11T . It is obvious that EDiag(w)ET + 1

N 11T =

[E,1]Diag([wT , 1/N ]T )[E,1]T � GDiag([wT , 1/N ]T )GT ,

⎡

⎣
3 −1 −2
−1 4 −3
−2 −3 5

⎤

⎦ = 1×
⎡

⎣
1 −1 0
−1 1 0
0 0 0

⎤

⎦+ 2×
⎡

⎣
1 0 −1
0 0 0
−1 0 1

⎤

⎦+ 3×
⎡

⎣
0 0 0
0 1 −1
0 −1 1

⎤

⎦

= 1×
⎡

⎣
1
−1
0

⎤

⎦
[
1 −1 0

]
+ 2×
⎡

⎣
1
0
−1

⎤

⎦
[
1 0 −1

]
+ 3×
⎡

⎣
0
1
−1

⎤

⎦
[
0 1 −1

]

=

⎡

⎣
1 1 0
−1 0 1
0 −1 −1

⎤

⎦

⎡

⎣
1

2
3

⎤

⎦

⎡

⎣
1 1 0
−1 0 1
0 −1 −1

⎤

⎦

T

.

(31)
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so the objective can be simplified as Tr(EDiag(w)ETK)−
log det(GDiag([wT , 1/N ]T )GT ). We will apply the MM
algorithmic framework to solve (33).

A. The MM Framework

The MM method can be applied to solve the following general
optimization problem [21]–[25]:

minimize
x

f (x)

subject to x ∈ X , (34)

where f is differentiable. Instead of minimizing f(x) directly,
we consider successively solving a series of simple optimiza-
tion problems. The algorithm initializes at some feasible starting
point x(0), and then iterates as x(1), x(2), . . . until some conver-
gence criterion is met. For any iteration, say, the lth iteration,
the update rule is

x(l+1) ∈ arg min
x∈X

f̄
(
x;x(l)
)
, (35)

where f̄(x;x(l)) (assumed to be smooth) is the majorizing func-
tion of f(x) at x(l). f̄(x;x(l)) must satisfy the following con-
ditions so as to claim convergence [26]:

A1) f̄(x;x(l)) ≥ f(x), ∀x ∈ X ;
A2) f̄(x(l);x(l)) = f(x(l));
A3) ∇f̄(x(l);x(l)) = ∇f(x(l)) and
A4) f̄(x;x(l)) is continuous in both x and x(l).
One acceleration scheme of the MM framework, known as

SQUAREM, can be found in [27] and [28].

B. Implementation of MM

The fundamental part of the MM method is the construction
of a majorizing function. The involved part lies in the majoriza-
tion of − log det(GDiag([wT , 1/N ]T )GT ). We start from the
following basic inequality:

log det (X) ≤ log det (X0) + Tr
(
X−1

0 (X−X0)
)
, (36)

which is due to the concavity of the log-determinant function
[29]. Thus,

− log det
(
GXGT

)
= log det

((
GXGT

)−1
)

≤ log det
((

GX0G
T
)−1
)
+ Tr

([(
GX0G

T
)−1
]−1

·
((

GXGT
)−1 − (GX0G

T
)−1
))

= Tr
(
F0

(
GXGT

)−1
)
+ const., (37)

where F0 = GX0G
T . We substitute Diag([wT , 1/N ]T ) for X,

and the minimization problem becomes

minimize
w≥0

Tr
(
EDiag (w)ETK

)

+ Tr

(

F0

(
GDiag

([
wT , 1/N

]T)
GT
)−1
)

,

(38)
with F0 = GX0G

T = GDiag([wT
0 , 1/N ]T )GT . This mini-

mization problem does not yield a simple closed-form solution

Algorithm 2: MM-Based Graph Laplacian Estimation
(GLE-MM).

Require: Initialization: w(0) ≥ 0, l = 0
1: R = ETKE;
2: repeat

3: Q = Diag([w(l)T , 1/N ]T )GT
(
G ·

Diag([w(l)T , 1/N ]T )GT
)−1

GDiag([w(l)T , 1/N ]T );

4: QM = Q1:M,1:M ;
5: w(l+1) =

√
diag(QM )� diag(R)−1;

6: l = l + 1;
7: until convergence

yet. For the sake of algorithmic simplicity, we need to further
majorize the objective of (38). Thus, we introduce the following
supporting lemma.

Lemma 4 ([23]): For anyYXYT � 0, the following matrix
inequality holds:

(
YXYT

)−1 � Z−1
0 YX0X

−1X0Y
TZ−1

0 , (39)

where Z0 = YX0Y
T . Equality is achieved at X = X0.

As a result, we are able to do the following (define w̃ � [wT ,
1/N ]T and w̃0 � [wT

0 , 1/N ]T ):

Tr
(
F0

(
GDiag (w̃)GT

)−1 )

= Tr
(
F

1/2
0

(
GDiag (w̃)GT

)−1
F

1/2
0

)

(a)

≤ Tr
(
F

1/2
0 F−1

0 GDiag (w̃0)Diag (w̃)−1

Diag (w̃0)G
TF−1

0 F
1/2
0

)
, (40)

where (a) comes from (39) with Y = G,X = diag(w),X0 =
diag(w̃0),Z0 = F0. The surrogate functions obtained in (37)
and (40) are the majorizing functions of (33) that satisfy the
assumptions A1−A4. To this point, the minimization problem
is written as

minimize
w≥0

diag (R)T w + diag (QM )T w−1, (41)

where R = ETKE, QM = Q1:M,1:M , and Q = Diag(w̃0)
GT (GDiag(w̃0)G

T )−1GDiag(w̃0). The optimal solution to
(41) is

w� =

√

diag (QM )� diag (R)−1. (42)

We summarize the MM solution in Algorithm 2.

C. Computational Complexity

Analogously, we present the complexity analysis of Algo-
rithm 2 as follows. Obviously, the most costly step is to com-
pute the matrix Q. When we have Q, it takes O(M2) to obtain
QM and O(M) to get w(l+1). It takes four mini-steps to com-
pute Q: i) matrix multiplication GDiag([w(l)T , 1/N ]T )GT :
O(M2N +N2M); ii) matrix inversion: O(N3); iii) matrix
multiplication GDiag([w(l)T , 1/N ]T ): O(NM2); and iv) ma-
trix multiplication to obtain Q: O(N2M +NM2). The over-
all complexity to get Q is O(M2N +N2M +N3), as is the
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per-iteration complexity of Algorithm 2, resulting from the five
matrix multiplications and one matrix inversion. If the graph is
almost complete, then M = O(N2), resulting in anO(N5) per-
iteration cost. If the graph is sparse, then M = O(N), resulting
in an O(N3) per-iteration cost.

V. GRAPH LAPLACIAN ESTIMATION WITH

NOMINAL EIGENSUBSPACE

The estimation of the graph Laplacian requires a sample set
{xi}Ti=1. When the sample sizeT is small, the sample covariance
matrix S will be highly inaccurate, which hinders the estimation
performance of the Laplacian. One possible way to improve the
performance is to exploit some of the leading eigenvectors of
the sample covariance matrix S as a reference of the true eigen-
subspace of Θ (since S and Θ share the same eigenvectors).
Suppose we take into account K(< N) leading eigenvectors
(corresponding toK largest eigenvalues) ofS, and thus the nom-
inal eigensubspace is represented byK orthogonal eigenvectors,
denoted as ÛK ∈ RN×K , subject to inaccuracy caused by the
limited number of samples. The nominal value of Θ, denoted as
Θ̂, can be expressed as

Θ̂ = ÛKΛKÛT
K + ÛK⊥ΞK⊥ÛT

K⊥, (43)

where ΛK ∈ RK×K is PSD and diagonal, ΞK⊥ ∈
R(N−K)×(N−K) is PSD (not necessarily diagonal), and ÛK⊥
is the orthogonal complement of ÛK , i.e., ÛT

K⊥ÛK⊥ = I

and ÛT
KÛK⊥ = 0. Here, ΞK⊥ is not diagonal since we do

not know the complement space defined by ÛK⊥ exactly.
Without diagonal limitations, the representation abilities of
ÛK⊥ΞK⊥ÛT

K⊥ are stronger. The graph Laplacian estimation
problem is recast as

minimize
Θ, Θ̂,ΛK ,ΞK⊥

Tr (ΘK)− log det (Θ+ J)

subject to Θ ∈ L (A)

Θ̂ = ÛKΛKÛT
K + ÛK⊥ΞK⊥ÛT

K⊥

ΛK = Diag
(
{λi ≥ 0}Ki=1

)
, ΞK⊥ � 0

∥
∥
∥Θ̂−Θ

∥
∥
∥
F
≤ ε. (44)

The last constraint controls the level of uncertainty, measured
by the Frobenius norm.

Remark 2: In a recent work, Segarra et al. [30] proposed a
framework that utilizes the eigenspace obtained from the second-
order data statistics for the network inference, where, the objec-
tive is to estimate the topology from the stationary signals, as-
suming these to be generated from some diffusion process over
a network, and due to the stationary property, the eigenspace
of the data statistics (e.g., covariance matrix) is the same as the
eigenspace of the network (also known as a graph shift oper-
ator). This property allows to utilize the eigenspace obtained
from the data statistics for topology estimation. The proposed
approach here does not assume any diffusion process and di-
rectly specializes in the estimation of the precision matrix as the
target graph Laplacian. In this regard, the aim is to use the nom-
inal eigenspace obtained from naive estimation of data statistics
(sample covariance matrix) to refine the final estimation of the
target matrix (graph Laplacian).

A. The ADMM Approach

We can use the ADMM framework to solve (44). We apply
the same reformulation method as Section III and obtain

minimize
Ξ,C,ΛK ,ΞK⊥,Δ

Tr
(
ΞK̃
)
− log det (Ξ)

subject to Ξ � 0, PΞPT −C = 0
I�C ≥ 0
B�C = 0
A�C ≤ 0

⎫
⎬

⎭
C ∈ C

PΞPT = ÛKΛKÛT
K+

ÛK⊥ΞK⊥ÛT
K⊥ +Δ

ΛK = Diag
(
{λi ≥ 0}Ki=1

)

ΞK⊥ � 0, ‖Δ‖F ≤ ε,

(45)

where K̃ = PTKP and P is the orthogonal complement of 1.
The (partial) augmented Lagrangian is

L (Ξ,C,Y,ΛK ,ΞK⊥,Δ,Z) =

Tr
(
ΞK̃
)
− log det (Ξ) + Tr

(
YT
(
PΞPT −C

))

+
ρ

2

∥
∥PΞPT −C

∥
∥2
F
+ Tr
(
ZT
(
PΞPT−

(
ÛKΛKÛT

K + ÛK⊥ΞK⊥ÛT
K⊥ +Δ

)))

+
ρ

2

∥
∥
∥PΞPT −

(
ÛKΛKÛT

K + ÛK⊥ΞK⊥ÛT
K⊥ +Δ

)∥
∥
∥
2

F
.

(46)
We treat Ξ, C, ΛK , ΞK⊥, and Δ as primal variables and define
Y and Z as the dual variables with respect to the constraints
PΞPT −C = 0 and PΞPT =ÛKΛKÛT

K+ÛK⊥ΞK⊥ÛT
K⊥

+Δ, respectively. The other constraints are treated as implicit
constraints. We separate the primal variables into three blocks:
i) Ξ; ii) C, ΛK and ΞK⊥; and iii) Δ. A 3-block ADMM frame-
work enjoys a convergence guarantee when the random permu-
tation update rule is adopted; i.e., the update order of the three
blocks is controlled by a random seed in every iteration [31]–
[33]. Due to the randomization update mechanism, we omit the
superscript “+” of the other variables in the primal update steps.

1) Update of Ξ:

Ξ+ = argmin
Ξ�0

L (Ξ,C,Y,ΛK ,ΞK⊥,Δ,Z) . (47)

Let Θ̂ = ÛKΛKÛT
K + ÛK⊥ΞK⊥ÛT

K⊥ +Δ, and we have

Ξ+ = argmin
Ξ�0

L (Ξ,C,Y,ΛK ,ΞK⊥,Δ,Z)

= Tr
(
ΞK̃
)
− log det (Ξ) + Tr

(
PTYTPΞ

)

+
ρ

2

∥
∥PΞPT −C

∥
∥2
F
+ Tr
(
PTZTPΞ

)

+
ρ

2

∥
∥
∥PΞPT − Θ̂

∥
∥
∥
2

F

(a)
= ρ

∥
∥
∥
∥Ξ+

1

2ρ

(
K̃+ Ỹ + Z̃

)
− 1

2

(
C̃+PT Θ̂P

)∥∥
∥
∥

2

F

− log det (Ξ)

(b)
= UDUT , (48)



4238 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 16, AUGUST 15, 2019

where (a) Ỹ = PTYP, Z̃ = PTZP, and C = PTCP and
(b) U comes from the eigenvalue decomposition of 1

2ρ (S̃+

Ỹ + Z̃)− 1
2 (C̃+PT Θ̂P) = PT

(
1
2ρ (S+Y + Z)− 1

2

(
C+

Θ̂
))
P, i.e., PT

(
1
2ρ (S+Y + Z)− 1

2

(
C+ Θ̂

))
P = UΛUT ,

and D is a diagonal matrix with Dii =
−ρΛii+

√
ρ2Λ2

ii+2ρ

2ρ (see
Lemma 1).

2) Update of C, ΛK , and ΞK⊥:
[
C+,Λ+

K ,Ξ+
K⊥
]

= arg min
C,ΛK ,ΞK⊥

L (Ξ,C,Y,ΛK ,ΞK⊥,Δ,Z) . (49)

As can be observed from the augmented Lagrangian, C
and [ΛK ,ΞK⊥] are separated by summation. So we can apply
Lemma 2:

C+ = I�
[
1

ρ
Y +Θ

]

+

+A�
[
1

ρ
Y +Θ

]

−
, (50)

with Θ = PΞPT . Meanwhile,
[
Λ+

K ,Ξ+
K⊥
]

(a)
= arg min

ΛK=Diag({λi≥0}Ki=1),ΞK⊥�0

− Tr
(
ZT
(
ÛKΛKÛT

K + ÛK⊥ΞK⊥ÛT
K⊥
))

+
ρ

2

∥
∥
∥Θ̂−
(
ÛKΛKÛT

K + ÛK⊥ΞK⊥ÛT
K⊥
)∥
∥
∥
2

F

(b)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

argminΛK=Diag({λi≥0}Ki=1)
−Tr
(
ZT

KΛK

)

+ρ
2 ‖ΛK −WK‖2F

argminΞK⊥�0 −Tr
(
ZT

K⊥ΞK⊥
)

+ρ
2 ‖ΞK⊥ −WK⊥‖2F

=

{
[WK,ii + ZK,ii/ρ]+ ∀i = 1, . . . ,K

[WK⊥ + ZK⊥/ρ]PSD ,

(51)

where (a) Θ̂ = PΞPT −Δ and (b) ZK = ÛT
KZÛK , WK =

ÛT
KΘ̂ÛK , ZK⊥ = ÛT

K⊥ZÛK⊥, and WK⊥ = ÛT
K⊥Θ̂ÛK⊥.

3) Update of Δ:

Δ+ = arg min
‖Δ‖F≤ε

L (Ξ,C,Y,ΛK ,ΞK⊥,Δ,Z) . (52)

Let Δ̂ = PΞPT − (ÛKΛKÛT
K + ÛK⊥ΞK⊥ÛT

K⊥), and
we have

Δ+ = arg min
‖Δ‖F≤ε

−Tr
(
ZTΔ
)
+

ρ

2

∥
∥
∥Δ̂−Δ

∥
∥
∥
2

F

= arg min
‖Δ‖F≤ε

ρ

2

∥
∥
∥
∥Δ−
(
1

ρ
Z+ Δ̂

)∥
∥
∥
∥

2

F

= min

⎛

⎝ ε
∥
∥
∥ 1ρZ+ Δ̂

∥
∥
∥
F

, 1

⎞

⎠
(
1

ρ
Z+ Δ̂

)

. (53)

The last step is to update the dual variables:

Y+ = Y + ρ
(
Θ+ −C+

)
(54)

and

Z+ = Z+ ρ
(
Θ+ −
(
ÛKΛ+

KÛT
K+

ÛK⊥Ξ+
K⊥Û

T
K⊥ +Δ+

))
,

with Θ+ = PΞ+PT . We summarize all the aforementioned
primal update steps as follows and present the whole procedure
in Algorithm 3. Note that the update order of the primal vari-
able blocks requires random permutation [31] for the sake of
convergence.

Up-
date
Ξ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ̂ = ÛKΛKÛT
K + ÛK⊥ΞK⊥ÛT

K⊥ +Δ
Eigenvalue decomposition:

PT
(

1
2ρ (S+Y + Z)− 1

2

(
C+ Θ̂

))
P = UΛUT

D is diagonal with Dii =
−ρΛii+

√
ρ2Λ2

ii+2ρ

2ρ

Ξ+ = UDUT

(55)

Update C

⎧
⎪⎪⎨

⎪⎪⎩

Θ = PΞPT

C+ = I�
[
1
ρY +Θ

]

+

+A�
[
1
ρY +Θ

]

−

(56)

Update
ΛKand
ΞK⊥

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ̂ = Θ−Δ

ZK = ÛT
KZÛK , WK = ÛT

KΘ̂ÛK

ZK⊥ = ÛT
K⊥ZÛK⊥, WK⊥ = ÛT

K⊥Θ̂ÛK⊥
Λ+

K = Diag
({

[WK,ii + ZK,ii/ρ]+
}K
i=1

)

Ξ+
K⊥ = [WK⊥ + ZK⊥/ρ]PSD

(57)

Update Δ

⎧
⎪⎨

⎪⎩

Δ̂ = Θ−
(
ÛKΛKÛT

K + ÛK⊥ΞK⊥ÛT
K⊥
)

Δ+ = min

(
ε

‖ 1
ρZ+Δ̂‖

F

, 1

)(
1
ρZ+ Δ̂

)

(58)

Remark 3: Algorithm 3 outlines the update step for the
GLENE formulation with K < N , where K is the number of
reliable eigenvectors. However, in many applications, all the
eigenvectors can be obtained reliably, and including all these re-
liable eigenvectors in the GLENE formulation (44) will yield a
better estimation result. This can be easily accommodated in the
current formulation by setting K = N , which also implies that
the term involving the orthogonal complement is not required
in the formulation ÛK⊥ΞK⊥ÛT

K⊥. Further, this also reduces
the computational burden of the algorithm, as now the variable
ÛT

K⊥ is not present, which will simplify the update in (57).

B. Computational Complexity

We present the complexity analysis of Algorithm 3 as fol-
lows. In the primal update, we need to update Ξ, C, ΛK ,
ΞK⊥, and Δ. For Ξ (see (55)), the costly steps are i) ma-
trix multiplications to obtain Θ̂: O(NK2 +KN2 +N(N −
K)2 + (N −K)N2); ii) matrix multiplications PT ( 1

2ρ (S+

Y + Z)− 1
2 (C+ Θ̂))P: O(N3); iii) eigenvalue decom-

position: O(N3); and iv) matrix multiplication UDUT :
O(N3). The overall cost is O(NK2 +KN2 +N(N −K)2
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Algorithm 3: Graph Laplacian Estimation with Nominal
Eigensubspace (GLENE).

Require: Initialization: K, ÛK , symmetric Y(0), Z(0),
C(0), and Δ(0) with ‖Δ(0)‖F ≤ ε, diagonal nonnegative
Λ

(0)
K , positive semidefinite Ξ(0) and Ξ

(0)
K⊥, ρ > 0, l = 0

1: repeat
2: Primal Update: [Ξ(l),C(l),Λ

(l)
K ,Ξ

(l)
K⊥,Δ

(l)] −→
[Ξ(l+1),C(l+1),Λ

(l+1)
K ,Ξ

(l+1)
K⊥ ,Δ(l+1)]⎧

⎪⎨

⎪⎩

Update Ξ, cf. (55);

Update C,ΛK ,ΞK⊥ cf. (56) and (57);

Update Δ, cf. (58);

Randomized

update order

3: Dual Update: [Y(l),Z(l)] −→ [Y(l+1),Z(l+1)]⎧
⎪⎪⎨

⎪⎪⎩

Y(l+1) = Y(l) + ρ(Θ(l+1) −C(l+1));

Z(l+1) = Z(l) + ρ
(
Θ(l+1)−

(ÛKΛ
(l+1)
K ÛT

K + ÛK⊥Ξ
(l+1)
K⊥ ÛT

K⊥ +Δ(l+1))
)
;

4: l = l + 1;
5: until convergence

+ (N −K)N2 +N3). For C (see (56)), the complexity is
O(N3), the same as in Section III-C. For ΛK (see (57)), the
costly steps are matrix multiplications ÛT

KZÛK and ÛT
KΘ̂ÛK :

O(NK2 +KN2) for both. For ΞK⊥ (see (57)), the costly steps
are i) matrix multiplications ÛT

K⊥ZÛK⊥ and ÛT
K⊥Θ̂ÛK⊥:

O(N(N −K)2 + (N −K)N2) for both, and ii) projection to
the PSD cone: O((N −K)3). For Δ (see (58)), the costly step
is merely the matrix multiplications to obtain Δ̂: O(NK2 +
KN2 +N(N −K)2 + (N −K)N2).

In dual update, the update ofY costsO(N2) operations, while
the cost of updating Z is O(NK2 +KN2 +N(N −K)2 +
(N −K)N2) due to matrix multiplication operations. Since
K < N , the per-iteration complexity is O(N3), with twenty-
six matrix multiplications, one eigenvalue decomposition, and
one projection to the PSD cone.

VI. NUMERICAL SIMULATIONS

In this section, we present numerical results for both synthetic
and real-data experiments. All simulations are performed on a
PC with a 3.20 GHz i5-4570 CPU and 8 GB RAM. The off-the-
shelf solver is specified as MOSEK [34] built in the CVX toolbox
[35]. The MOSEK solver itself does not support functions from
the exponential family, e.g., exp and log, so we cannot bypass
the CVX toolbox and call MOSEK directly. The proposed algo-
rithms are terminated when the Frobenius norm of the change
of Θ between iterations is smaller than a threshold (by default
10−7) or the number of iterations reaches a predetermined max-
imum (by default 105). The reported performance of any single
data point comes from the average of 100 randomized instances
(random connected graphs). The tuning parameters for the up-
date of ρ are ρ(0) = 1, μ = 2, and τ inc = τ dec = 2 by default.

A. Synthetic Experiments — Graph Laplacian Estimation

Experiment Settings: We set the number of edges for true
topology Mtrue = 4N and generate a random adjacency matrix

Fig. 1. Optimality gap versus dimension N and M = 4N .

Fig. 2. Performance of naive estimation: estimation error versus T/N ,
N = 30.

Atrue corresponding to a connected graph. We generate a GMRF
model parameterized by the true precision matrix Θtrue, which
satisfies the aforementioned topology as well as the Laplacian
constraints: Θtrue ∈ L(Atrue). A total of T samples {xi}Ti=1

are drawn from this GMRF model: xi ∼ N (0,Θ†
true), ∀i. The

sample covariance matrix S is computed as S = 1
T

∑T
i=1(xi −

x̄)(xi − x̄)T , with x̄ = 1
T

∑T
i=1 xi. In the experiment, only

{xi}Ti=1 and Atrue are provided for the estimation of Θtrue. The
sparsity parameter α is set to be 0.005.

1) Comparison of Optimality: First, we present the simula-
tion results on optimality. We set T = 10N . With S and Atrue,
we can compare different algorithms for solving (12). We com-
pare our proposed algorithms, i.e., Algorithm 1 GLE-ADMM
and Algorithm 2 GLE-MM , with the benchmark algorithm in
[1, Algorithm 2 CGL]. For the CGL algorithm we use the code
provided by the authors.2 The projected gradient descent al-
gorithm is also included to solve the problem with the tuned

2https://github.com/STAC-USC/Graph_Learning
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Fig. 3. Estimation Error versus dimension N and M = 4N .

step size. Since all the algorithms are solving the same con-
vex optimization problem, we compare their performances by
benchmarking against the optimal solution to the optimization
problem. The algorithmic performance is measured by the op-
timality gap, defined as ‖Θestimated −Θ�‖F /‖Θ�‖F , with Θ�

as the optimal solution computed with CVX with enough iter-
ations to achieve a duality gap of 10−10 (see yellow curve of
Figure 1 ). On our simulation platform, the computational limit
for CVX to solve (12) is N = 50. We show in Figure 1 that the
proposed algorithms GLE-ADMM and GLE-MM can achieve
optimality of 10−4, while the gap level of the benchmark CGL
is around 0.1. The proposed algorithms are around three orders
of magnitude more accurate than the benchmark.

2) Comparison of Estimation Error: The next step is to com-
pare the estimation error, which is defined as ‖Θestimated −
Θtrue‖F /‖Θtrue‖F . One naive estimation of Θtrue is S† (or
S−1 if S is full rank). In Figure 2, we can see the perfor-
mance of this trivial solution. When the sample size is small,
e.g., T = N/2, the estimation error is close to 1; when the
sample size T equals N , the error level reaches a peak of
over 103; when the sample size is overwhelmingly large, e.g.,
T = 103N , the estimation error goes down to 10−2. We focus
on studying these three critical cases to see if the proposed GLE-
ADMM and GLE-MM can perform better than the naive solu-
tion, CGL, and GLasso [14]. The sparsity parameterα is selected
from {0} ∪ {0.75r(smax

√
log(N)/T )|r = 1, 2, . . . , 14}, with

smax = maxi �=j |Sij | [1], and we choose the one that achieves
the smallest estimation error. It can be observed in Figure 3 that
the proposed GLE-ADMM and GLE-MM achieve the smallest
estimation error across the entire range of N , whatever the sam-
ple size. For the small sample scenario, the proposed methods are
significantly better than the benchmarks, with an improvement
of 0.1 compared with the second lowest estimation error. For the
equal sample scenario, the proposed methods improve the sec-
ond lowest estimation error by at least 0.05. For the large sample
scenario, the proposed methods narrowly beat the benchmarks,
with an improvement of 0.01 in estimation error.

3) Comparison of Computational Complexity: Although the
two proposed algorithms give almost the same optimality per-
formance, it remains to be seen which one is more efficient.
As was previously mentioned in Section III-C and IV-C, the
per-iteration complexity of GLE-ADMM is O(N3), while that
of GLE-MM ranges from O(N3) to O(N5), depending on

Fig. 4. Computational time (sec) versus edge number M , N = 50.

the number of nonzero elements in the adjacency matrix A.
We fix the number of nodes N = 50 and vary the edge num-
ber M from N + 7 to N(N − 1)/2. The comparison is pre-
sented in Figure 4. When the graph has a sparse topology, i.e.,
M = O(N), the computational time of GLE-MM is shorter than
GLE-ADMM. For M = N + 7, GLE-MM is more than two or-
ders of magnitude faster. However, when the graph is close to
complete, i.e.,M = O(N2), GLE-ADMM is more efficient. For
M = N(N − 1)/2, GLE-ADMM is nearly two orders of mag-
nitude faster. We can also observe that the two algorithms are
equally efficient when M ≈ 200 = 4N . The projected gradient
descent algorithm holds a similar trend as GLE-MM since the
sparsity of edges can benefit the computational time of it. But
in any case, the performance of the projected gradient descent
is worse than that of GLE-MM.

B. Synthetic Experiments — Graph Laplacian Estimation With
Nominal Eigensubspace

Experiment settings follow Section VI-A.
1) Necessity of Nominal Eigensubspace: We will show the

necessity of considering a nominal eigensubspace with the fol-
lowing experiments. We set N = 30 and compute the eigen-
vectors of the sample covariance matrix S, denoted as U. We
propose to estimate Θtrue from solving (44). For a fixed sam-
ple size T , we choose K leading eigenvectors (corresponding to
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Fig. 5. Estimation error of estimated graph Laplacians: different choices of leading eigenvectors and uncertainty levels.

the K largest eigenvalues) to help estimate the graph Laplacian,
subject to different levels of uncertainty.

The simulation results are given in Figure 5. Whatever the
sample size, a larger ε is always preferred for a low estimation
error, consistent with the empirical results in [30, Sec. V-D].
When the sample size is smaller than dimension N (number
of nodes), a decreasing trend in the estimation error can be
observed (though probably followed by an upward trend), as
K/N increases if ε is larger than 0.05. This decreasing trend
indicates the necessity of including a nominal eigensubspace. If
K/N = 0, problem (44) degenerates to problem (12). For the
small sample scenario, the smallest estimation error is achieved
when ε = 1 and K = N , and it is approximately 1/3 the error
of the naive solution and 7/10 that of the K = 0 scenario. When
the sample size is equal to N , the curves behave similarly. The
only difference is the quantity of improvement: for the equal
sample scenario, the smallest estimation error is at least three
orders of magnitude lower than that of the naive solution and
approximately 7/10 the error of the K = 0 scenario. For a suffi-
ciently large ε (in this case 0.1), it makes no difference whether
we consider a nominal eigensubspace, as is implied by the flat
light-blue line.

2) Optimality Concerns: Now that the necessity of the nom-
inal eigensubspace is justified, we look into the optimality per-
formance of Algorithm 3 GLENE. We study the optimality gap
of GLENE with respect to the CVX toolbox. The simulation re-
sults are given in Figure 6. We can see that the optimality gap is
less than 10−4 across the entire range of N , indicating the good
optimality performance of GLENE.

C. Real-Data Experiments — Correlation of Stocks

We apply the aforementioned graph learning techniques to
study pairwise correlations between a certain number of stocks.
The stock pool consists of 30 stocks (listed in Table I), randomly
drawn from the components of the S&P 100 Index, with a trad-
ing period from Apr. 1st, 2006 to Dec. 31st, 2015. Our objective
is to reveal the strong correlations among these stocks and to
filter out the weak correlations. For comparison, we will present
the results of GLasso [14] as well. GLasso does not consider the
Laplacian constraints or the nominal eigensubspace, and only

Fig. 6. Optimality gap versus dimension N , M = 4N , K/N = 0.4, and ε =
0.1.

TABLE I
LIST OF STOCK POOL. (1. CONSUMER GOODS, 2. HEALTHCARE, 3.

TECHNOLOGY, 4. FINANCIAL, 5. SERVICES, 6. INDUSTRIAL GOODS, 7.
BASIC MATERIALS, 8. UTILITIES)

requires positive semidefiniteness. We setA = 11T − I to indi-
cate that there is no predefined graph topology (i.e., all the nodes
are connected to each other) and ε = 0.1. For the large sample
scenario, the eigenspace of the sample covariance matrix should
be reliable; the choice of ε is inferred from previous simulation
results. The performance is evaluated in terms of i) sparsity ratio,∑

i<j I{|Θij | < 10−3}/[N(N − 1)/2], and ii) strong correla-
tion ratio,

∑
i<j I{|Θij | > 0.3}/[N(N − 1)/2]. For fair com-

parison, all the precision matrices or graph Laplacian matrices
are diagonally normalized: Ddiag(Θ)−1/2ΘDdiag(Θ)−1/2.
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Fig. 7. Stock correlation visualization (principal diagonal values are removed).

TABLE II
A DETAILED COMPARISON OF GLENE AND GLASSO UNDER DIFFERENT

CASES OF WELL-TUNED PARAMETERS

First, we plot the correlations obtained from the optimized
solutions of various algorithms, as is shown in Figure 7
(principal diagonal values are removed). We perform the fol-
lowing nonlinear transform on Θij for better visualization:

f(x) = { −0.1
1/(1+exp(−15(x−0.3)))

|x|<10−3

|x|>10−3 . The number of leading
eigenvectors K is set to be 1, and the sparsity parameter α is
chosen as 0.02 for the moment. Typically, the covariance of the
stock returns has just one strong eigenvalue and we assume that
eigenvector is well estimated. The naive solution refers to the
pseudo-inverse or inverse of the sample covariance matrix. We
can see that the proposed GLENE enjoys the largest sparsity
ratio of 0.4966, much higher than that of the classical GLasso,
0.2276. As for the strong correlation ratio, the three methods
give the same performance of 0.0069. Moreover, we find that
the strong correlations cluster along the principal diagonal and
the pattern exhibits a blockwise structure. This is because stocks
of the same sector are more strongly correlated than those from
a different one.

Next, we will take a closer look at the two methods GLasso
and GLENE. GLENE has two tuning parameters,α andK, while
GLasso only needs α. We set α to be 0 (no sparsity promotion),
0.02 (low sparsity promotion), and 1 (high sparsity promotion).
The simulation results are given in Figure 8. In order to achieve
a tradeoff between the sparsity ratio and strong correlation ratio,
the best parameterα for GLasso is 0.02, and the best parameterα
for GLENE is 0. As for the optimal choice of K, K = N yields
the best performance, namely, the highest sparsity ratio and the
highest strong correlation ratio. For the choice of K < N , there
are two candidates: K = 5 (highest sparsity ratio) and K = 10
(highest strong correlation ratio), respectively. Table II lists a
detailed comparison of GLasso and GLENE under a few cases
of well-tuned parameters. We can see that for either choice ofK,

Fig. 8. Sparsity ratio and strong correlation ratio comparison: GLENE and
GLasso.

GLENE enjoys a higher sparsity ratio and stronger correlation
ratio than GLasso, indicating a better capability of structural ex-
ploration. We present in Table III the strongly correlated stocks
indicated by GLENE. It can be observed that we have detected
a strong correlation between two stocks of different sectors: PG
(from Consumer Goods) and JNJ (from Healthcare). They both
provide a massive array of healthcare products and they are com-
petitors to each other.
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TABLE III
STRONGLY CORRELATED STOCKS FOR DIFFERENT CHOICES OF K (OBTAINED

FROM GLENE). (1: CONSUMER GOODS, 2: HEALTHCARE, 3: TECHNOLOGY,
4: FINANCIAL, 5: SERVICES, 6: INDUSTRIAL GOODS, 7: BASIC MATERIALS,

8: UTILITIES)

TABLE IV
COMPARISON OF GLE-MM, GLE-ADMM AND CGL FOR LYMPH

NODE STATUS DATA

TABLE V
COMPARISON OF GLE-MM, GLE-ADMM AND CGL FOR

ARABIDOPSIS THALIANA DATA

D. Real-Data Experiments — Genetic Regulatory Networks

We tested GLE-ADMM and GLE-MM on real data from gene
expression networks using the two data sets from [22], [36], re-
spectively. (1) Lymph node status and (2) Arabidopsis thaliana.
See [36] and references therein for the descriptions of these
data sets. Lymph node status is an important clinical risk fac-
tor affecting the long-term outlook for breast cancer treatment
outcome, and the data consists of 4514 genes from 148 sam-
ples. A gene network of Arabidopsis thaliana, which consists
of 835 genes monitored using 118 GeneChip (Affymetrix) mi-
croarrays, is also studied. The experimental implementation of
GLE-ADMM and GLE-MM follows the discussion in Section
VI-A and objective value is calculated using (9). The test re-
sults are presented in Table IV, and the V. We can see from the
tables that although the GLE-ADMM and GLE-MM methods
take more CPU time, they consistently outperform the CGL
method in terms of the optimality gap. The results reiterate that
the fact the CGL solution is not optimal, while the proposed
methods are optimal.

VII. CONCLUSION

In this paper, we have studied the graph Laplacian estimation
problem under a given connectivity topology. We have proposed
two estimation algorithms, namely, GLE-ADMM and GLE-
MM, to improve the optimality performance of the traditional
CGL algorithm. Both algorithms can achieve an optimality gap
as low as 10−4, around three orders of magnitude more accu-
rate than the benchmark CGL. In addition, we have found that

GLE-ADMM is more efficient in a dense topology, while GLE-
MM is more suitable for sparse graphs. Moreover, we have con-
sidered exploiting the leading eigenvectors of the sample covari-
ance matrix as a nominal eigensubspace. The simulation results
have suggested an improvement in the graph Laplacian estima-
tion when the sample size is smaller than or comparable to the
problem dimension. We have proposed a third algorithm, named
GLENE, based on ADMM for the inclusion of a nominal eigen-
subspace. The optimality gap with respect to the CVX toolbox
is less than 10−4. In a real-data experiment, we have shown that
GLENE is able to reveal the strong correlations between stocks
and, meanwhile, achieve a high sparsity ratio.

APPENDIX A
PROOF OF LEMMA 2

Proof: The proof is as follows:

argmin
C∈C

−Tr
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)
+

ρ

2
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C∈C
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