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Abstract—The optimal mean-reverting portfolio (MRP) design
problem is an important task for statistical arbitrage, also known
as pairs trading, in the financial markets. The target of the problem
is to construct a portfolio of the underlying assets (possibly with an
asset selection target) that can exhibit a satisfactory mean rever-
sion property and a desirable variance property. In this paper, the
optimal MRP design problem is studied under an investment lever-
age constraint representing the total investment positions on the
underlying assets. A general problem formulation is proposed by
considering the design targets subject to a leverage constraint. To
solve the problem, a unified optimization framework based on the
successive convex approximation method is developed. The supe-
rior performance of the proposed formulation and the algorithms
are verified through numerical simulations on both synthetic data
and real market data.

Index Terms—Portfolio optimization, pairs trading, mean re-
version strategy, cointegration, algorithmic trading, quantitative
trading, asset selection, leverage constraint, nonconvex optimiza-
tion, sparse optimization, successive convex approximation.

I. INTRODUCTION

S TATISTICAL arbitrage [2], also known as Stat Arb, is a
quantitative investment and trading strategy widely used

by many parties in the financial markets, e.g., institutional in-
vestors, hedge funds, mutual funds, proprietary trading firms,
and individual investors [3]. In statistical arbitrage, the trad-
ing basket usually consists of many financial assets of pos-
sibly different categories such as equities, options, bonds, fu-
tures, commodities, etc. To arbitrage from the markets, investors
need to buy the under-priced assets and short-sell or, more
plainly, borrow and sell the over-priced ones. The profits will
finally be locked in by unwinding the trading positions when
the mispricings of the assets correct themselves in the future.
Such an investment strategy is usually coined as a contrarian
relative-value strategy [4]. In statistical arbitrage, the arbitrage
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opportunities exist as a consequence of the market inefficiency
[5]. As revealed by the name, the design of trading baskets and
trading actions largely relies on statistical analysis [6].

Statistical arbitrage dated back to the well-known trading
strategy called pairs trading [7]–[9], which was firstly developed
at Morgan Stanley by a quantitative trading group under the lead
of Nunzio Tartaglia in the mid 1980s in the Wall Street [10]. Pairs
trading, as a special scenario, falls into the umbrella of statistical
arbitrage and, as indicated by the name, it is often used when
there are only two assets in the trading basket. Since statistical
arbitrage is able to hedge the overall market or systematic risk,
and hence the profits are independent from the movements and
the conditions of the prevailing markets (volatile, flat, or falling),
it is also named as a market neutral strategy or an absolute return
strategy [11], [12].

In statistical arbitrage, the trading basket is used to design
a “spread” which characterizes the mis-pricings (also called
the “relative pricing”) of the underlying assets. The designed
spread is stationary, hence mean-reverting, and virtually rep-
resents the price for a synthetic mean-reverting asset [13]. In
order to make profits, the trading process is carried out based
on the mean reversion (MR) behavior of the spread around its
statistical equilibrium, and hence named mean reversion trading
or convergence trading [14]. For example, a simple mean rever-
sion trading design could be buying the spread when it is below
the equilibrium and selling it when it is above the equilibrium.
Statistical arbitrage or pairs trading is accordingly also referred
to as spread trading in the literature [15]–[17]. In practice, there
are many existing methods to design a trading spread based on
different philosophies, such as the distance method [18], the
cointegration analysis method [7], the factor analysis method
[19], the Copulas method [20], the stochastic modeling method
[21], [22], and so on. In this paper, we will only focus on the
cointegration analysis method where the spread is constructed
by a formal time series analysis [23]. The concept of “cointe-
gration” was first come up with by Clive W. J. Granger in [24]
and later in [25] to describe the linear stationary relationships
within nonstationary time series which are named to be cointe-
grated. Later, the cointegrated vector autoregressive model was
put forward into time series modeling [26], [27] to efficiently
estimate the cointegration relations. To honor the discovery of
cointegration statistical property in time series, Granger was
awarded the Nobel Prize in Economic Sciences in 2003. The
cointegration relations have been verified by empirical analyses
in many different financial markets to get statistical arbitrage
opportunities [28]–[30].
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Traditionally, cointegration analysis methods like the Engle-
Granger ordinary least squares (OLS) method [25] and the Jo-
hansen method [26] are used to estimate the trading spreads from
the underlying assets. An asset that naturally shows stationarity
is a spread as well [31], e.g., the option implied volatility for
stocks. Inherent correlations, however, may exist among differ-
ent spreads. For example, when using the Johansen method, al-
though many distinct spreads could be estimated from the same
underlying assets, they essentially fall into the same “cointe-
gration space”. When having multiple spreads, a natural and
interesting question is put forward: Can we design an opti-
mal portfolio of these underlying assets? This question will
be addressed in this paper. A portfolio of the mean-reverting
spreads is named a mean-reverting portfolio (MRP) or some-
times a long-short portfolio. To design an optimal MRP, two
factors should be considered. Firstly, the designed MRP should
exhibit a strong MR property so that it has frequent mean-
crossing points and hence brings in more trading opportunities.
Secondly, the designed MRP should exhibit large variance prop-
erty so that each trade can provide sufficient profit. These two
factors together naturally result in a multi-objective optimiza-
tion problem, i.e., to find a desirable trade-off between MR and
variance.

In [32], the author first proposed to design an MRP by op-
timizing a criterion characterizing the mean reversion strength.
Later, authors in [33] and [34] realized that directly solving
the MRP design problem in [32] could result in a portfolio
with very low variance, then the variance control was taken
into consideration and several new mean reversion criteria were
also brought up. However, all the aforementioned MRP design
problems were carried out by imposing an �2-norm constraint
on the portfolio weights. In [35], the authors argued that the �2-
norm has a physical meaning of power constraint in many signal
processing problems (like beamforming in wireless communi-
cations), but its practical significance in the financial context is
unclear. As a result, the investment budget constraint (a linear
constraint) was firstly proposed in [35] and then in [13]. Com-
pared to [33] and [34], the proposed methods in [13] make the
designed portfolio more explainable and practical, in a sense
that it explicitly represents the budget allocation on different
underlying assets. However, one prominent issue incurred by
the methods of using investment budget constraints as in [13] is
that the designed portfolio could lead to a very large leverage
(i.e., the total dollar position, both in longs and shorts), which
makes the methods not always acceptable for practical use in
real investments.

In this paper, we are going to propose a new formulation for
the optimal MRP design problem by jointly optimizing the two
factors (i.e., MR and variance) subject to an investment leverage
constraint. To make it clear, the contributions of the paper are
summarized as follows.

� A general problem formulation for optimal MRP design
is proposed that aims at finding a desirable trade-off be-
tween the MR and the variance of the portfolio, while sub-
ject to a practical leverage constraint instead of a budget
constraint. Different MR criteria and variance criteria are
considered in the formulation. The portfolio leverage con-
straint takes two cases into consideration, namely, the case

of cointegration space and the case of naturally stationary
assets.

� Besides the MR and variance criteria, the asset selection
criterion is further considered in the optimal MRP design
problem. Finally, the formulation becomes a constrained
nonconvex problem.

� A unified algorithm framework based on the successive
convex approximation (SCA) method named SCA-MRP
is proposed to solve the MRP design problem, which tack-
les the original highly nonconvex problem by solving a
sequence of easy convex subproblems.

� In order to efficiently solve the convex inner subproblems
in SCA-MRP and to address different design cases in prac-
tice, several methods are proposed. The Armijo-like back-
tracking line search method is proposed to accelerate the
SCA-MRP algorithm.

� The algorithm complexity and convergence to a stationary
point are analyzed for the SCA-MRP algorithm.

� Numerical simulations on both synthetic and real market
data are carried out to address the efficacy of the proposed
MRP design problem formulation and the algorithms.

The remaining sections of this paper are organized as fol-
lows. In Section II, the optimal MRP design problem is briefly
introduced. A general problem formulation for the optimal MRP
design is given in Section III. Section IV generally introduces
the SCA method. The SCA-based algorithm called SCA-MRP
is elaborated in Section V and three efficient algorithms to solve
the convex subproblems are given in Section VI. The algorithm
complexity analysis and convergence analysis are given in Sec-
tion VII. Numerical performance is evaluated in Section VIII
and, finally, concluding remarks are drawn in Section IX.

Notations: Boldface upper case letters denote matrices, bold-
face lower case letters denote column vectors, and italics de-
note scalars. We denote by 1 the all-one vectors and by I the
identity matrices, respectively. We denote by R (R+ ) the real
(nonnegative real) numbers. The N -dimensional real vectors
are denoted by RN . We use N to denote the natural field. The
K ×K-dimensional symmetric matrices are denoted by SK .
Superscripts (·)T and (·)−1 denote the matrix transpose opera-
tion and the matrix inverse operation, respectively. For a vector
x, xi denotes the ith element. For a matrix X, xi,j denotes the
(ith, jth) element. For symmetric matrices A and B, A � B
(A � B) means A−B is a positive semidefinite (positive defi-
nite) matrix. Other notations will be introduced along this paper
when required.

II. OPTIMAL MEAN-REVERTING PORTFOLIO DESIGN

A. Mean-Reverting Portfolio (MRP)

For a financial asset, e.g., a common stock, a future contract,
or a portfolio of them, its price at time t is denoted by pt ∈ R + ,
and then its corresponding logarithmic price or log-price yt ∈ R
is given by yt � log (pt)1. Let yt � [y1,t , . . . , yM ,t ]

T denote the
log-prices of M assets. The (log-price) spread st is given by st �
βT yt , where β � [β1 , . . . , βM ]T denotes the weights or hedge
ratios. Suppose there exists a subspace, termed cointegration

1The log (·) is the natural logarithm function.
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space, with N (usually N ≤M ) cointegration relations defined
by B � [β1 , . . . ,βN ]. Then these N spreads are obtained as

st � BT yt , (1)

where every element of st is a spread. Specifically, if the asset
log-prices are stationary in nature, every element of yt can be
defined as a spread, i.e., st = yt with B = I (N = M ).

Different spreads may possess different mean reversion and
variance properties in nature. The objective of the MRP design
problem is to construct a portfolio of the underlying spreads to
attain desirable trading properties. For the N spreads in st , the
MRP is denoted by the portfolio weight w � [w1 , . . . , wN ]T

with its resulting spread given by

zt � wT st =
N∑

n=1

wnsn,t . (2)

Based on (1) and (2), we can further get the spread zt defined
on the underlying assets as follows:

zt � wT
p yt , (3)

where wp � Bw ∈ RM denotes the MRP weights on the under-
lying assets and represents the dollar value proportion invested
on the underlying assets. For each asset m = 1, . . . , M , the
sign of wp,m indicates the type of positions, namely, wp,m > 0
means a long position (i.e., it is bought), wp,m < 0 means a
short position (i.e., it is short-sold), and wp,m = 0 means no
position on the asset.

In the following, we continue to introduce some criteria for
MR, variance, and asset selection.

B. Mean Reversion (MR) Criteria

Several MR criteria were used in [13], [34] and will be briefly
introduced here. We start by defining the ith order (lag-i) auto-
covariance matrix for the spreads st as Mi � Cov (st , st+i) =
E
[
(st − E [st ]) (st+i − E [st+i ])

T
]

with i ∈ N. Specifically,

when i = 0, M0 stands for the (positive definite) covariance
matrix of st . Since we can always compute the centered form
for st , as s̃t = st − E [st ], without loss of generality, st will be
used to denote s̃t in the following.

1) Predictability Statistics pre (w): Consider a centered
univariate stationary autoregressive process zt = ẑt−1 + εt ,
where ẑt−1 is the prediction of zt at time t− 1, and εt denotes a
white noise. The predictability statistics [36] is proposed to mea-
sure how close a random process is to a white noise and defined
by pre � σ2

ẑ /σ2
z , where σ2

z � E
[
z2

t

]
and σ2

ẑ � E
[
ẑ2

t−1
]
. Given

the spread zt = wT st , the predictability statistics for spread
zt = wT st is computed as

pre (w) � wT Tw
wT M0w

, (4)

where T � MT
1 M−1

0 M1 . To design a spread zt as close as
possible to white noise, we need to minimize pre (w).

2) Portmanteau Statistics por (p,w): The portmanteau
statistics of order p [37] for a centered univariate stationary
process zt is defined as por (p) �

∑p
i=1 ρ2

i , where ρi is the ith

order autocorrelation of zt defined as ρi � E [ztzt+i ] /E
[
z2

t

]
.

The measure por (p) is used to test whether a random process
is close to a white noise. To design a spread zt close to white
noise, we need to minimize porz (p) with a prespecified order
p. Given zt = wT st , we can get por (p,w) as follows:

por (p,w) �
p∑

i=1

(
wT Miw
wT M0w

)2

. (5)

3) Crossing Statistics cro (w) and Penalized Cross-
ing Statistics pcro (p,w): The zero-crossing rate for a
centered stationary process zt is defined as zcr �
(T − 1)−1 ∑T

t=2 1 {ztzt−1 ≤ 0}, where

1 {ztzt−1 ≤ 0} �
{

1, ztzt−1 ≤ 0
0, otherwise

is the indicator function defined on zt . It tests the probability
that a process crosses its mean per unit of time. According to
[38], for a centered stationary Gaussian process, zero-crossing
rate is defined as zcr = π−1 arccos (ρ1). To design a spread
exhibiting sufficient zero-crossings, we should minimize ρ1 . So
given zt = wT st , we define the crossing statistics as

cro (w) � wT M1w
wT M0w

. (6)

Besides minimizing the criterion cro (w), it is also proposed
to minimize the absolute high order autocorrelations |ρi |’s
(i = 2, . . . , p) [13]. Based on cro (w), the penalized crossing
statistics of order p is defined as follows:

pcro (p,w) � wT M1w
wT M0w

+ η

p∑

i=2

(
wT Miw
wT M0w

)2

, (7)

where η is a positive prespecified factor.

C. Variance Criteria

Given a spread zt = wT st , its variance is naturally given
by Var [zt ] = E

[
z2

t

]
= wT M0w. Another criterion we will

consider is the standard deviation of zt which is given by
Std [zt ] =

√
wT M0w.

D. Asset Selection Criterion

In portfolio design problems, allocating capital to all the as-
sets can increase significantly the transaction costs, which mo-
tivates to select a subset of assets [39]. To realize this asset
selection goal in MRP design, it is desirable to pursue sparsity
in the cointegration space B. Based on the �0-“norm”2 [40], the
asset selection criterion is accordingly given by ‖Bw‖0 .

E. Portfolio Leverage Constraint

Constraints on portfolio weights in portfolio design problems
represent the investment policy and allocation [41]. As we men-
tioned in the introduction, the returns from statistical arbitrage

2Strictly speaking, it is not a norm. For x ∈ RN , the �0 -“norm” ‖x‖0 �∑N

i=1 sgn (|xi |), where sgn (·) is the sign function.
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are usually small. Hence, investors in practice may want to use
leverage to multiply the returns.

In [32]–[34], the �2-norm ‖w‖2 was considered as a portfolio
constraint. The �2-norm is commonly used as a power con-
straint in electrical engineering like wireless communications
and radar, but its practical significance in financial applications
is unclear since imposing the �2-norm on portfolio weights does
not carry any physical meaning in a financial context. To address
this issue, in our previous paper [13], the budget constraint
1T w = 1 was proposed, but still fails to take the “portfolio
leverage” into account which is the key practical consideration
in portfolio design. In this paper, we will use a general invest-
ment leverage constraint given as follows:

W � {w | ‖Bw‖1 ≤ L} ,

where B is the cointegration space and L means the total in-
vestment leverage considering both long and short positions
deployed on the underlying financial assets.

III. THE OPTIMAL MRP DESIGN PROBLEM

A. Problem Formulation

Considering the three design criteria previously described,
i.e., MR criterion, variance criterion, and asset selection crite-
rion, a general problem formulation for the optimal MRP design
problem is given as follows:

minimize
w

F (w) � U (w) + μV (w) + γS (w)

subject to w ∈ W,
(8)

which is a nonconvex constrained problem. The constant μ > 0
defines the trade-off between the portfolio MR measure and
variance preference. The regularizing parameter γ ≥ 0 controls
the sparsity level. The three terms U (w), V (w), and S (w)
composing the objective are described below in detail.

T1) The mean reversion term U (w) considering different
MR criteria can be jointly represented as

U (w) � ξ
wT Hw
wT M0w

+ζ

(
wT M1w
wT M0w

)2

+ η

p∑

i=2

(
wT Miw
wT M0w

)2

,

which contains as specific cases the predictability statistics
pre (w) (ξ = 1, H = T, and ζ = η = 0), the portmanteau
statistics por (p,w) (ξ = 0 and ζ = η = 1), the crossing statis-
tics cro (w) (ξ = 1, H = M1 , and ζ = η = 0), and the penal-
ized crossing statistics pcro (p,w) (ξ = 1, H = M1 , ζ = 0, and
η > 0).

T2) The variance term V (w) can be represented in the fol-
lowing four different forms:

V (w) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1/
(
wT M0w

)
(VarInv (w))

1/
√

wT M0w (StdInv (w))

−wT M0w (VarNeg (w))

−
√

wT M0w (StdNeg (w)) .

T3) The asset selection term S (w) is given by

S (w) � ‖Bw‖0 =
∑M

m=1 sgn (|[Bw]m |) ,

where sgn (·) is the sign function and [a]m denotes the mth
element in a.

B. Observations and Insight

In this section, we will focus on the analysis of the optimal
MRP design problem formulation in (8). Some observations and
insight are given in the following.

Lemma 1: Given any two colinear MRPs: w1 and w2 �
αw1 (w1 �= 0 and α �= 0), we have: i) U (w1) = U (w2);
ii) V (w1) > (<, =) V (w2), when |α| < (>, =) 1; iii)
S (w1) = S (w2); iv) F (w1) = F (w2), when |α| = 1; and
v) |α|‖Bw1‖1 = ‖Bw2‖1 .

Proof: The proof is trivial and hence omitted. �
In Lemma 1, the points i)-iii) reveal that increasing the lever-

age level L on an MRP can only increase its variance, but not
change its MR and asset selection properties. The point iv) re-
veals that two MRPs with the opposite sign of weights w are
essentially the same; or in other words, two trading spreads de-
fined by wT st and −wT st are the same. This is really to the
nature of MRP design, because in statistical arbitrage the actual
investment not only depends on w, which defines a spread, but
also on whether a long or short position is taken on this spread
later in the trading stage.

Based on Lemma 1, we further have the following result.
Lemma 2: Denote the set of optimal solutions of Problem

(8) as W
 � {w
 |F (w
) ≤ F (w) , ∀w �= 0,w ∈ W}, then
W
 ⊆ bd (W) (the boundary of setW).

Proof: The proof is trivial and hence omitted. �
Lemma 2 essentially reveals the inequality leverage constraint

is always active, i.e., the designed MRPs always attain the total
leverage L.

As mentioned before, the cointegration matrix B, in prac-
tice, is commonly estimated based on time series modeling.
However, the matrix B is not unique [23]. (Assuming the singu-
lar value decomposition B = UΣVT , the cointegration space
(i.e., the column space of B) is given byR (U)). Then based on
Lemma 2, another intriguing observation for the MRP design
problem (8) is given in the following.

Proposition 3: Suppose there exist B, B′ ∈ R (U) with the
corresponding designed optimal MRPs from Problem (8) de-
noted as W


p �
{
w


p |w

p = Bw
 , ∀w
 ∈ W


}
and W′
p �{

w′
p |w′
p = B′w′
 , ∀w′
 ∈ W′
} respectively, we haveW

p =

W′
p .
Proof: See Appendix A. �
This result reveals that the optimal MRP w


p designed from
Problem (8) does not depend on the explicit form of B, but
instead only on the subspaceR (U).

C. Mild Problem Modifications

The objective function F (w) in (8) is not well-defined at 0
making it discontinuous over W . Some mild modifications to
F (w) will be introduced in this section. Firstly, since U (w)
and V (w) (refer to VarInv (w) and StdInv (w)) are singular
at 0, we propose to reduce this “singularity” by defining two
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modified criteria Uε (w) and V ε (w) as follows:

Uε (w) � ξ
wT Hw

wT M0w + ε
+ ζ

(
wT M1w

wT M0w + ε

)2

+ η

p∑

i=2

(
wT Miw

wT M0w + ε

)2

,

(9)

and

V ε (w) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1/
(
wT M0w + ε

)
(VarInv (w))

1/
√

wT M0w + ε (StdInv (w))

−wT M0w + ε (VarNeg (w))

−
√

wT M0w + ε (StdNeg (w)) ,

(10)

where ε > 0 is a small constant. Secondly, since the sparsity
criterion S (w) is nonconvex and discontinuous, the following
smooth nonconvex sparsity function will be considered

Sε (w) �
∑M

m=1

[
1− exp

(
−ε−1 |[Bw]m |2

)]
, (11)

where compared to S (w) the function 1− exp(−ε−1 (·)2) is
used to approximate sgn (·) with ε > 0 controlling the approx-
imation tightness [42]. Finally, the the modified objective is
given as F ε (w) � Uε (w) + μV ε (w) + γSε (w) which is al-
most “equivalent” to F (w).

Now, we are ready to discuss the solving procedure for the
optimal MRP design problem in (8). We will firstly introduce a
general algorithmic framework based on the idea of successively
approximating the original nonconvex problem with a series of
convex subproblems, and the derived algorithms are expected to
be simple and efficient with provable convergence to a stationary
point.

IV. THE SUCCESSIVE CONVEX APPROXIMATION METHOD

The successive convex approximation (SCA) method [43] is a
general optimization framework especially for solving noncon-
vex optimization problems. In this paper, we will use the SCA
method proposed in [44] which is based on solving a sequence
of simpler strongly convex problems, preserves feasibility of
the iterates for the original nonconvex problem, and also has
guaranteed convergence.

Specifically, an optimization problem is given as follows:

minimize
x

f (x)

subject to x ∈ X ,
(12)

where X ⊆ RN is convex and f (x) is nonconvex and (possi-
bly) nonsmooth. In order to solve Problem (12) which could
be difficult to tackle directly, starting from an initial feasible
point x(0) , the SCA method solves a series of subproblems with
surrogate functions f̃

(
x;x(k)

)
(or simply denoted as f̃ (k) (x))

approximating the original objective f (x) over the set X . A
sequence

{
x(k)

}
is generated by the following rules:

{
x̂(k+1) = arg min

x∈X
f̃(x;x(k)) (a)

x(k+1) = x(k) + γ(k)(x̂(k+1) − x(k)). (b)
(13)

Fig. 1. Solving Problem (8) with objective F (w) by solving a sequence of
strongly convex subproblems with quadratic objective functions F̃

(
w; w(k )

)

(or F̃ (k ) (w)) in (14). (Illustration is shown in one dimension.)

The first step is to generate the descent direction (i.e., x̂(k+1) −
x(k)) by solving a best-response problem (a), and the second
step is the variable update rule with γ(k) to be the step-size.

Convergence to a stationary solution of the original noncon-
vex optimization problem in (12) can be established under the
following mild assumptions on the problem:

A1) X is nonempty, closed, and convex;
A2) ∇xf (x) is L∇f -Lipschitz continuous on X ;
A3) f (x) is coercive on X .
And as to f̃

(
x;x(k)

)
, the following conditions are needed:

B1) given x(k) , f̃
(
x;x(k)

)
is c-strongly convex on X for

some c > 0, i.e.,∇2
x f̃
(
x;x(k)

) � cI;
B2) ∇x f̃

(
x(k) ;x(k)

)
= ∇xf

(
x(k)

)
for all x(k) ∈ X ;

B3) ∇x f̃ (x;x) is continuous for all x ∈ X .
It is easy to see that the key point to use SCA is to find a good

approximation function f̃
(
x;x(k)

)
, which could make the best

response problem easy to solve and result in a fast convergence.
In the following, we are going to apply the SCA method for the
optimal MRP design problem in (8).

V. PROBLEM SOLVING BASED ON THE SCA METHOD

A. Using SCA For MRP Design

Applying the SCA method to Problem (8), we have the convex
approximation function F̃ (k)(w) at the (k + 1)th iteration for
the objective Fε (w) given as follows:

F̃ (k)(w) � Ũ (k)(w)+μṼ (k)(w)+γS̃(k)(w)+τ‖w−w(k)‖22 ,
(14)

with τ ≥ 0 denoting a parameter on the proximal term added for
convergence [44]. An illustrative figure for the relation between
Fε (w) and F̃ (k)(w) is given in Figure 1.

1) On The Approximation Term Ũ (k) (w): The term
Ũ (k) (w) is a convex approximation for the MR term Uε (w).
Based on the general idea of SCA, there could be many choices
on deriving such an approximation. When Uε (w) is chosen as
pre (w) or cro (w) (i.e., ratio of quadratic functions), the convex
approximation is chosen to be a linearization of the criterion,
which is simply given as

Ũ (k) (w) � b(k)T
U w, (15)
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Fig. 2. Three different convex approximation functions for u (w) in Equation (18) at approximation point w(k ) = (0.3, 0.2)T .

where b(k)
U is given in Equation (16). When Uε (w) is chosen

as por (p,w) or pcro (p,w), in which case a “square of ratio
of quadratic functions” term is involved, a nice approximation
technique by exploring the convex curvature of Uε (w) given in
Example 4 will be employed.

Example 4: We first define a function u (w) as

u (w) �
(

wT Miw
wT M0w + ε

)2

. (18)

At a given point w(k) , we describe three possible choices
of the convex approximation function ũ(k) (w) in Equation
(19) together with their visualizations in Figure 2. The func-
tion ũ

(k)
1 (w) is based on the direct linearization of u (w) and

ũ
(k)
2 (w) is designed by linearization w.r.t. partial variables.3

To obtain the third approximation function ũ
(k)
3 (w), u (w) is

convexified by linearizing the fractional term inside the square
operation (·)2 .

By comparing the subfigures (a), (b), and (c) in Figure 2, we
can find that ũ

(k)
3 (w) gives a much tighter approximation than

the other two.

3The details are given in Appendix B.

For ũ
(k)
3 (w), it is easy to verify that the approximation tech-

nique ensures it has the same gradient as u (w) at w(k) . We

can also observe that the matrix
(
d(k)

0,i − d(k)
i,0

)(
d(k)

0,i − d(k)
i,0

)T

in ũ
(k)
3 (w) is in fact an approximation to the true Hessian

matrix, which is known as an outer product approximation or
Levenberg-Marquardt approximation [45]. Thus, it is reasonable
to assume that based on ũ

(k)
3 (w) the overall resulting algorithm

is able to largely maintain the information on the curvature of
the cost function, even if higher order derivatives with respect
to the gradient are never explicitly computed. In fact, this is
an interesting line of reasoning, which could eventually lead to
improved approximations for the cost functions.

Finally, for por (p,w) or pcro (p,w), using the approxima-
tion technique for ũ

(k)
3 (w) in Example 4, we have Ũ (k) (w) as

follows:

Ũ (k) (w) � wT A(k)
U w + b(k)T

U w, (20)

where A(k)
U and b(k)

U are given in (21) (shown at the bottom of
the next page) and (16), respectively.

2) On The Approximation Term Ṽ (k) (w): The Ṽ (k) (w)
denotes the convex (i.e., linearization) approximation for the

b(k)
U � 2ξ

(
d(k)

0,h − d(k)
h,0

)
+ 2ζr

(k)
1

(
d(k)

0,1 − d(k)
1,0

)
+ 2η

p∑

i=2

r
(k)
i

(
d(k)

0,i − d(k)
i,0

)
(16)

with

r
(k)
i �

(
w(k)T Miw(k))/

(
w(k)T M0w(k) + ε

)
, i = 1, . . . , p, r

(k)
h �

(
w(k)T Hw(k))/

(
w(k)T M0w(k) + ε

)
,

d(k)
0,i �

(
Miw(k))/

(
w(k)T M0w(k) + ε

)
, i = 1, . . . , p, d(k)

0,h �
(
Hw(k))/

(
w(k)T M0w(k) + ε

)
, (17)

d(k)
i,0 �

(
r

(k)
i M0w(k))/

(
w(k)T M0w(k) + ε

)
, i = 1, . . . , p, d(k)

h,0 �
(
r

(k)
h M0w(k))/

(
w(k)T M0w(k) + ε

)
,

ũ
(k)
1 (w) �

(
r

(k)
i

)2 + 4r
(k)
i

(
d(k)

0,i − d(k)
i,0

)T (w −w(k))

ũ
(k)
2 (w) � 4

(
r

(k)
i

)3 − (r(k)
i

)2 − 4r
(k)
i

(
d(k)

i,0

)T w + 2r
(k)
i

(
wT Miw

)
/
(
w(k)T M0w(k) + ε

)

ũ
(k)
3 (w) �

[
r

(k)
i + 2

(
d(k)

0,i − d(k)
i,0

)T (w −w(k))]2

=
(
r

(k)
i

)2 + 4r
(k)
i

(
d(k)

0,i − d(k)
i,0

)T (w −w(k))+ 4
(
w −w(k))T (d(k)

0,i − d(k)
i,0

)(
d(k)

0,i − d(k)
i,0

)T (w −w(k))

(19)
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variance term V ε (w) given by

Ṽ (k) (w) � b(k)T
V w, (22)

where

b(k)
V �
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 2(w(k)T M0w(k) + ε)−2M0w(k) (VarInv (w))
− (w(k)T M0w(k) + ε)−

3
2 M0w(k) (StdInv (w))

− 2M0w(k) (VarNeg (w))
− (w(k)T M0w(k) + ε)−

1
2 M0w(k) (StdNeg (w)) .

3) On The Approximation Term S̃(k) (w): The S̃(k) (w) is
the convex approximation for the sparsity term Sε (w). To derive
it, we need the following lemma.

Lemma 5: At any point x(k) ∈ R, a tight upperbound func-
tion for s (x) � 1− exp

(−ε−1x2
)

is obtained as follows:

s (x) ≤ s̃(k) (x) � ε−1 exp
(−ε−1(x(k))2)x2

+ 1− exp
(−ε−1(x(k))2)(1 + ε−1(x(k))2),

for ∀x ∈ R.
Proof: The proof is trivial and hence omitted. �
From Lemma 5, we have∇x s̃(k)

(
x(k)

)
= ∇xs

(
x(k)

)
. Then,

based on the function s̃(k) (x), the approximation for S (w) is
accordingly given as follows:

S̃(k) (w) � wT A(k)
S w, (23)

with A(k)
S � ε−1BT Diag

[
exp

(−ε−1
(
Bw(k) 
Bw(k)

))]
B,

where exp (·) is taken elementwise and Diag [d] is a matrix with
diagonal elements formed by d.

Finally, by combining Ũ (k) (w), Ṽ (k) (w), and S̃(k) (w),
F̃ (k) (w) is accordingly written as

F̃ (k) (w) � wT A(k)w + b(k)T w, (24)

where A(k) � A(k)
U + γA(k)

S + τI, and b(k) � b(k)
U +

μb(k)
V − 2τw(k) . Based on the approximation F̃ (k) (w) for

F (w), the subproblem to solve in the (k + 1)th iteration is

minimize
w

wT A(k)w + b(k)T w

subject to ‖Bw‖1 ≤ L,
(25)

which is a convex problem. We can observe that the objective
function in Problem (25) is quadratic in variable w instead of
nonconvex in w as in Problem (8). Since it is convex, this
problem can be efficiently solved, and some efficient methods
for different cases will be discussed in detail in Section VI.

B. SCA-MRP: The Overall Algorithm

Based on SCA, in order to solve the original nonconvex prob-
lem in (8), we just need to iteratively solve a convex subprob-

Algorithm 1: SCA-MRP: An SCA-Based Algorithm for
The Optimal MRP Design Problem (8).

Require: H, Mi (i = 0, . . . , p), μ, γ, B, L and τ
1: Set k = 0, γ(0) and w(0) .
2: repeat
3: Compute A(k) and b(k) in (24)
4: ŵ(k+1) = arg min

w∈W
wT A(k)w + b(k)T w

5: w(k+1) = w(k) + γ(k)(ŵ(k+1) −w(k))
6: k ← k + 1
7: until some convergence criterion is met

lem in (25). We name this SCA-based algorithm SCA-MRP and
summarize it in Algorithm 1. The algorithm can be guaranteed
to converge globally when the step-size γ(k) is chosen prop-
erly. A practical approach to choosing γ(k) is the Armijo-like
backtracking line search rule [46], which is given as follows:

Given α, β ∈ (0, 1) , l = 0

While ΔF ε(w(k)) > −αβl‖Δw(k)‖22
l = l + 1

Let γ(k) = βl for k = 0, 1, 2, . . . ,

where ΔF ε
(
w(k)

)
� F ε

(
w(k) + βlΔw(k)

)− F ε
(
w(k)

)

with Δw(k) � ŵ(k+1) −w(k) .

VI. SOLVING METHODS FOR THE INNER SUBPROBLEM

In SCA-MRP, we need to solve a sequence of convex subprob-
lems in each iteration (see Step 4 in Algorithm 1). This inner
subproblem has no closed-form solution, but we can resort to
the off-the-shelf public or commercial solvers like SeDuMi [47],
SDPT3 [48], and MOSEK [49] or some popular convex optimiza-
tion toolboxes (scripting languages) like YALMIP [50] and CVX
[51]. However, as an alternative to the general-purpose solvers
and toolboxes, we can also develop problem-specific algorithms
to solve this problem more efficiently.

A. Algorithm Based on the ADMM Method

For the sake of notational simplicity, we omit the superscript
(k) in the SCA subproblem (25) and recast it as follows:

minimize
w

wT Aw + bT w

subject to ‖Bw‖1 ≤ L,
(26)

where A � 0.
The alternating direction method of multipliers (ADMM) is a

method that can solve a convex optimization problem by break-
ing it into smaller parts, each of which are then easier to handle

A(k)
U � 4ζ

(
d(k)

0,1d
(k)T
0,1 + d(k)

1,0d
(k)T
1,0 − d(k)

0,1d
(k)T
1,0 − d(k)

1,0d
(k)T
0,1

)

+ 4η

p∑

i=2

(
d(k)

0,i d
(k)T
0,i +d(k)

i,0 d(k)T
i,0 −d(k)

0,i d
(k)T
i,0 −d(k)

i,0 d(k)T
0,i

) d(k)
0,i ’s and d(k)

i,0 ’s are defined in Eq. (17) (21)
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[52]. It has recently been applied on applications in a number of
areas. To solve Problem (26) based on ADMM, we first rewrite it
by introducing an auxiliary variable z = Bw, then the problem
becomes

minimize
w ,z

wT Aw + bT w

subject to ‖z‖1 ≤ L, Bw − z = 0,
(27)

We further define an indicator function for the �1 -norm ball set as

IC (z) �
{

0, z ∈ C �
{
z
∣∣ ‖z‖1 ≤ L

}

+∞, otherwise,
. Problem (27)

can be written in the following standard ADMM form:

minimize
w ,z

wT Aw + bT w + IC(z)

subject to Bw − z = 0.
(28)

And the augmented Lagrangian is given as follows:

Lρ (w, z,u (y))

= wT Aw + bT w + IC(z) + yT (Bw − z) +
ρ

2
‖Bw − z‖22

= wT Aw + bT w + IC(z) +
ρ

2
‖Bw − z + u‖22 + const.,

where ρ > 0 is the penalty parameter which serves as the dual
update step-size and the scaled dual variable u � 1

ρ y. Then, the
ADMM updates are given in three variable blocks (w, z,u) by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(k+1) = arg min
w

{
wT Aw + bT w

+
ρ

2

∥∥∥Bw − z(k) + u(k)
∥∥∥

2

2

}

z(k+1) = arg min
z

{
IC(z) +

ρ

2

∥∥∥z−Bw(k+1) − u(k)
∥∥∥

2

2

}

= ΠC(Bw(k+1) + u(k))

u(k+1) = u(k) + Bw(k+1) − z(k+1) ,

where the z update step is essentially a projection onto set C
with ΠC (·) denoting the projection operator.

Specifically, the update of variable w amounts to solving a
convex quadratic programming (QP) which has the closed-form
solution:

w(k+1) = −(2A + ρBT B)−1(b + ρBT (u(k) − z(k))).

By defining h(k) � Bw(k+1) + u(k) , the variable z update is
equivalent to solving

minimize
z

∥∥∥z− h(k)
∥∥∥

2

2

subject to ‖z‖1 ≤ L,
(29)

which is the classical projection onto the �1-norm ball
problem with efficient algorithms for problem solving [53,
Lemma 1][54]. An efficient water-filling-like algorithm based
on sorting is given in Algorithm 2.

In Algorithm 2, sgn (·) is the sign function which extracts
the sign of a real number; abs (·) is the absolute value function;

Algorithm 2: Euclidean Projection Onto An �1-Norm Ball
(29).
Require: h and L

1: if ||h||1 ≤ L then
2: z = h
3: return z
4: else
5: a = sign(h) and b = abs(h)
6: Sort the elements in b as b(1) ≥ b(2) ≥ · · · ≥ b(N )

7: ρ = arg max
1≤j≤N

{
j | b(j ) > 1

j

(∑j
i=1 b(i) − L

)}

8: θ = 1
ρ

(∑ρ
i=1 b(i) − L

)

9: zj = aj max{bj − θ, 0}, 1 ≤ j ≤ N
10: return z
11: end if

and b(j ) (1 ≤ j ≤ N) denotes the j-th largest element in b.
This algorithm gives a water-filling-like closed-form solution to
Problem (29). In this ADMM-based algorithm, we have three
blocks of variables to minimize, which could possibly be slow
for convergence. For the primal variable w update, we also
need to solve a convex QP involving the matrix inversion. In the
following, we will develop an alternative algorithm.

B. Algorithm Based on the M-ADMM Method

The following method to solve the convex inner problem
in (26) is based on majorized ADMM (M-ADMM) [55].
Compared to the vanilla ADMM, M-ADMM introduces the
majorization-minimization (MM) [56] idea to find an upper-
bound function for the variable update. By minimizing instead
an upperbound function, a cheap closed-form variable update
can be achieved in many cases.

To use the M-ADMM method, based on Problem (26), we
first define a new variable w̃ � Bw. Then, we can equivalently
have w = B†w̃ and

(
B⊥

)T w̃ = 0,4 where B† is the Moore-
Penrose pseudo-inverse of B, and the columns of B⊥ span the
orthogonal complementary subspace of B, respectively. Then
by defining Ã �

(
B†
)T AB† and b̃ �

(
B†
)T b, Problem (26)

can be equivalently rewritten in terms of w̃ as

minimize
w̃

w̃T Ãw̃ + b̃T w̃

subject to ‖w̃‖1 ≤ L,
(
B⊥

)T
w̃ = 0.

(30)

Based on the indicator function IC (w̃) defined before, the
above problem can be rewritten in the following form:

minimize
w

w̃T Ãw̃ + b̃T w̃ + IC(w̃)

subject to
(
B⊥

)T
w̃ = 0.

(31)

4A simple proof for this is given in Appendix C.
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And the augmented Lagrangian for (31) can be written as

Lρ (w̃,u (y))

= w̃T Ãw̃+b̃T w̃+IC(w̃)+yT
(
B⊥

)T
w̃+

ρ

2

∥∥∥
(
B⊥

)T
w̃
∥∥∥

2

2

= w̃T Ãw̃ + b̃T w̃ + IC(w̃) +
ρ

2

∥∥∥
(
B⊥

)T
w̃ + u

∥∥∥
2

2
+ const.,

where ρ > 0 is the penalty parameter and the scaled dual vari-
able u = 1

ρ y. Based on the augmented Lagrangian, it is easy to
see that we only have two variable blocks (w̃,u) for alternating
minimization. Before we drive the variable update rule, we give
the following useful result.

Lemma 6 ([56]): Let A ∈ SK and B ∈ SK such that B �
A. At any point x(k) ∈ RK , we have xT Ax ≥ xT Bx +
2x(k)T (A−B)x + x(k)T (B−A)x(k) .

Then for the w̃ update, at the (k + 1)th iteration with
iterates

(
w̃(k) ,u(k)(y(k))

)
, by taking MM−ADMM � Ã +

ρ
2 B
⊥ (B⊥

)T
as A and choosing B = λM−ADMM

max I where
λM−ADMM

max � λmax
(
MM−ADMM

)
in Lemma 6, we get

Lρ

(
w̃; w̃(k) ,u(k)

(
y(k)

))

= w̃T MM−ADMM w̃ +
(
b̃ + B⊥y(k)

)T

w̃ + IC(w̃) + const.

≤λM−ADMM
max w̃T w̃+2w̃(k)T (MM−ADMM − λM−ADMM

max I
)
w̃

+
(
b̃ + B⊥y(k)

)T

w̃ + IC(w̃) + const.

= λM−ADMM
max

∥∥∥w̃ − h(k)
∥∥∥

2

2
+ IC(w̃) + const.,

where h(k) � −
((

λM−ADMM
max

)−1
MM−ADMM − I

)
w̃(k) −

1
2

(
λM−ADMM

max
)−1

(
b̃ + B⊥y(k)

)
. Then, the variable updates

in M-ADMM are given as follows:
⎧
⎪⎨

⎪⎩

w̃(k+1) = arg min
w̃

{∥∥∥w̃ − h(k)
∥∥∥

2

2
+ IC (w̃)

}
= ΠC(h(k))

u(k+1) = u(k) +
(
B⊥

)T
w̃(k+1) .

Specifically, for the variable w̃ update, it is the projection onto
the �1-norm ball problem as in (29). In the M-ADMM algorithm,
the number of variable blocks is reduced to 2 compared to the 3
variable blocks in the ADMM algorithm. In fact, when B = I,
by leveraging on this specific structure, more efficient algorithm
can be derived.

C. Specialized Algorithm Based on the MM Method

When B = I, the convex subproblem in (26) is written as

minimize
w

wT Aw + bT w

subject to ‖w‖1 ≤ L.
(32)

Besides using ADMM and M-ADMM, this problem can be
more efficiently solved by the majorization-minimization (MM)
method [56]. Using this primal-only method, we can get rid of
the dual variable update in ADMM and M-ADMM.

From (32), based on Lemma 6, at the (k + 1)th iteration with
iterate w(k) , the objective function in (32) can be majorized as
follows:

wT Aw + bT w

≤ λmax (A)wT w + 2w(k)T (A− λmax (A) I)w

+ bT w + w(k)T (λmax (A) I−A)w(k)

= λmax (A)
∥∥∥w − h(k)

∥∥∥
2

2
+ const.,

where h(k) � − (λ−1
max (A)A−I

)
w(k)− 1

2 λ−1
max (A)b. Then,

the subproblem to solve in MM is given by

minimize
w

∥∥∥w − h(k)
∥∥∥

2

2

subject to ‖w‖1 ≤ L,

which is still a projection onto the �1-norm ball problem and
can be solvedbased on Algorithm 2.

VII. COMPLEXITY AND CONVERGENCE ANALYSIS

A. Complexity Analysis

In this section, we give a detailed discussion on the compu-
tational complexity of our proposed algorithms in Section VI.
We analyze the per-iteration computational cost of the algo-
rithms proposed to solve the inner convex subproblems, i.e., the
ADMM-based algorithm, the M-ADMM-based algorithm, and
the MM-based algorithm.

For the ADMM-based algorithm, the computational cost
for updating three variable blocks w, z, and u are ana-
lyzed separately. The computational cost for updating w is
O(N 3 + MN + 3N 2 + M + 2N). For updating z, the cost is
O(MN + M) (to calculate h(k)) plusO(M) (to do projection).
The cost for updating u is O(MN + 2M). So, the total cost
per iteration (M ≥ N ) isO(N 3 + MN + 3N 2 + M + 2N) +
O(MN + M) +O(M) +O(MN + 2M) ≈ O(N 3).

In the M-ADMM-based algorithm, for pre-processing, com-
puting the Moore-Penrose pseudo-inverse the B† requires com-
plexity ofO(MN 2) and computing the orthogonal compliment
B⊥ needs complexity of O(MN 2). So computing Ã and b̃
requires complexity of O(NM 2 + MN 2) and O(MN), sep-
arately. To recover the variable w, i.e., post-processing, still
needO(MN) time. Therefore the cost for computation outside
the iterations is O(NM 2 + MN 2) +O(MN) +O(MN) ≈
O(NM 2). To compute h(k) in each iteration, it contains costs
of O(2M 2) and O(M 3) to calculate a M ×M matrix (i.e.,

Ã + ρ
2

(
B⊥

)T B⊥) and its largest eigenvalue. However, the
O(M 3) complexity can be reduced by simply replacing the
largest eigenvalue with some easily computed quantity (like
the Frobenius norm since ‖A‖F ≥ λ (A)max ) of that ma-
trix, which only requires cost O(2M 2). Therefore, the over-
all cost for calculating h(k) is O(6M 2 + M 2 + 4M −MN)
and the cost for updating w̃ is O(M). Besides, it requires
O(M 2 + M −MN −N) to update u. Then the overall cost
for each iteration isO(6M 2 + M 2 + 4M −MN) +O(M) +
O(M 2 + M −MN −N) ≈ O(M 2).
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Fig. 3. A system view of the statistical arbitrage trading strategy in finance.

The MM-based algorithm is proposed for the B = I case. It
also needs pretreatment, which costs O(N 3) to calculate the
maximum eigenvalue of a N ×N matrix and O(N 2 + N) to
calculate the constant part of h(k) . The overall computation cost
is of order O(N 3). In each iteration, to update w, O(N 2 + N)
is needed for constructing the majorization function and O(N)
for projection onto l1-norm ball. The total cost per iteration is
of order O(N 2).

The three algorithms for solving the subproblem should be
properly chosen in order to achieve a better computational per-
formance. The per-iteration computational cost for the ADMM-
based and M-ADMM-based algorithms areO(N 3) andO(M 2),
respectively. So, under the condition M ≥ N 1.5 , ADMM is
recommended; otherwise, M-ADMM should be more appro-
priate. Compared to the O(N 3) complexity in ADMM and the
O(M 2) complexity in M-ADMM for each iteration, MM-based
algorithm just needO(N 2) computation per iteration. The time
complexity of the MM-based algorithm is also lower in the pre-
processing stage compared with M-ADMM. So the MM-based
algorithm is highly recommended when B = I.

B. Convergence Analysis

The convergence property for the SCA-MRP algorithm is
given in the following.

Proposition 7: Under assumptions A1)-A3) and B1)-B3),
suppose τ ≥ 0, γ(k) ∈ (0, 1], γ(k) → 0 and

∑
k γ(k) = +∞,

and let
{
w(k)

}
be the sequence generated by SCA-MRP. Then

either SCA-MRP converges in a finite number of iterations to
a stationary solution of Problem (8) or every limit of sequence{
w(k)

}
(at least one such point exists) is a stationary solution

of Problem (8).
Proof: We can first check that the proposed problem satisfies

Assumptions A1)-A3) in Section IV. Given τ ≥ 0 and γ(k) as
above, it is easy to check that the approximation function (24) is
a strongly convex quadratic function and satisfies Assumptions
B1)-B3) in Section IV. Then this result directly follows from
the proof in [46, Theorem 2]. �

VIII. NUMERICAL SIMULATIONS

In this section, we first give a system view of the statistical
arbitrage strategy. Then several performance evaluation metrics
on portfolio investment will be introduced. The performance
of our proposed MRP design problem and the algorithms will
finally be given based on both synthetic data and real market
data.

A. A Flow Diagram of The Statistical Arbitrage Strategy

We summarize the whole statistical arbitrage strategy as
shown in Figure 3.

1) Asset Selection: In this stage, a collection of (possibly
cointegrated) asset candidates are selected to construct an asset
pool. Conducting this process may require prior knowledge on
the underlying financial assets.

2) Parameter Estimation and Cointegration Analysis: The
cointegration analysis (say, Engle-Granger two-step test, Jo-
hansen test, Phillips-Ouliaris test, etc.) will be conducted to test
the hypothesis that there is a statistically significant stationarity
connection within the underlying asset prices. Accordingly, a
cointegration space will be identified in this stage.

3) Mean-Reverting Portfolio Design: This stage is the focus
of this paper. An optimal MRP is designed considering different
criteria based on the assets within the identified cointegration
space. Unit root test may be applied to test the stationarity of
the finally designed spread.

4) Mean Reversion Trading Design: The designed spread
will be firstly traded for an in-sample testing period for param-
eter estimation and trading actions optimization, such as the
mean reversion equilibrium, trading threshold, timing of enter-
ing a position, lightening up a position, adding to a position,
or exiting a position, and so on. After these trading parameters
are obtained, the designed MRP can finally be invested for the
out-of-sample trading.

B. Performance Evaluation Metrics

Some performance metrics for mean reversion trading used
in [13] are briefly introduced in the following.

1) Profit and Loss: We define the profit and loss (P&L) for
the MRP at time t as P&Lt � wT

p rt where the asset returns

rt � yt − yt−1 (please refer to [13] for further details). P&L
measures the amount of profits or losses (in units of dollars) of
an investment on the portfolio for one holding period. In order
to measure the cumulative return performance, we define the
cumulative P&L (not compounding) in one trading from time
t1 to t2 as Cum. P&L (t1 , t2) �

∑t2
t=t1

P&Lt .
2) Return On Investment: Different MRPs may have dif-

ferent leverage properties, the return on investment (ROI) is
introduced as another measure as the rate of return. Within one
trading period, the ROI at time t is defined as ROIt � P&L t

‖wp ‖1 .
3) Sharpe Ratio: The Sharpe ratio (SR) describes how much

excess return one can receive for the extra volatility (square
root of variance). The annualized SR for a trading stage from
time t1 to t2 is defined as SRROI(t1 , t2) �

√
252μR O I

σR O I
, where

μROI � 1
t2−t1

∑t2
t=t1

ROIt is the sample return and σROI �
[

1
t2−t1

∑t2
t=t1

(ROIt − μROI)
2
] 1

2
is the sample standard

deviation, and the factor
√

252 relates the daily SR to the annu-
alized SR (assuming 252 trading days per year).
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Fig. 4. Synthetic log-prices (M = 6) and the spreads (N = 4) generated from
a VECM model of order 1.

Fig. 5. Convergence of the objective function value of different solving
methods for the inner convex problem.

C. Synthetic Data Simulations

In this section, we will first show the superiority of the
proposed algorithm SCA-MRP over some off-the-shelf solvers
based on synthetic data. Following that, we will show the MRP
design problem proposed in this paper is able to design a port-
folio attaining a trade-off between MR and variance, which is a
practical and desirable property for MRP design, but has never
been considered in the literature. The synthetic data is generated
using a vector error correction model (VECM) [23], which mod-
els the stock log-prices with underlying cointegration relations
as shown in Figure 4.

1) Algorithm Performance: We first compare our proposed
algorithms for the inner convex problems in SCA-MRP, i.e.,
the ADMM method, the M-ADMM method, and the MM
method. The proposed methods are first compared with the
standard off-the-shelf packages CVX and MOSEK in Figure 5.
Based on our simulations, the M-ADMM and ADMM algo-
rithms can converge to the optimal solution orders of magnitude
faster compared to CVX and MOSEK. In Case 1 of Figure 5,
M-ADMM method outperforms ADMM method. And in Case
2, where B = I, the MM method achieves the best convergence
performance in terms of runtime in all the tested algorithms

Fig. 6. Convergence of the objective function value for different solving
methods for pro (w, 3) and L = 1.3.

as expected. These convergence results match the complexity
analyses given in Section VII.

We now compare the solution of the original problem based
on SCA-MRP algorithm with the standard solver fmincon in
MATLAB Optimization Toolbox for the MRP design problem
where the MR criterion and the variance criterion are chosen
as the portmanteau statistics of order 3, i.e., pro (w, 3) and
VarInv (w), respectively. For the SCA-MRP algorithm, the in-
ner convex problem is solved by different proposed algorithms.
In the simulations, we use α = 10−5 and β = 0.8 in choosing
the stepsize. From Figure 6, it is easy to see that the SCA-
MRP algorithms can converge to better local optimal solutions
with faster convergence speed compared to fmincon which is
a general-purpose solver. Within all the SCA-MRP algorithms,
the algorithms with inner problem solved by M-ADMM and
ADMM show better convergence performance over those using
CVX and MOSEK.

2) Formulation Property: In this section, we will show that
our proposed MRP design problem in (8) is more practical
and flexible. We compare the design problem model in this
paper with the existing problem formulations in [13], [33]–
[35]. Given a fixed portfolio variance and a fixed �1-norm as
in [33], [34] or a fixed portfolio budget B as in [13], [35],
we compute the MRP w (denoted as “MRP with �2-norm” in
Figure 7(a) and “MRP with budget” in Figure 7(b)). Since, in real
markets, the investment is always guided by the leverage which
essentially tells the total amount of money people can employ,
we accordingly compute the investment leverage L = ‖Bw‖1 in
these cases. Based on this leverage L, we use the newly proposed
MRP design problem in (8) to design a series of MRPs (denoted
as “MRP with leverage” in Figures 7(a) and 7(b)) where the
MR criterion and the variance criterion are chosen as por (w, 3)
and VarInv (w), respectively. We first design the portfolio with
the minimal MR denoted as w


min MR (corresponding to the
case when μ→ 0 in Problem (8)) and the portfolio with the
maximal variance denoted as w


max Var (corresponding to the
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Fig. 7. The trade-off between mean reversion and variance. (Each
point is averaged based on 100 Monte Carlo simulations with random
initializations.)

Fig. 8. Comparisons of ROIs, Sharpe ratios, and cumulative P&Ls between
the MRP designed using our proposed method denoted as MRP (prop.) and one
underlying spread denoted as Spread s1 .

case when μ→∞ in Problem (8)). We also plot the path of the
designed MRPs by tuning the parameter μ. In both Figure 7(a)
and Figure 7(b), it can be found that by tuning parameter μ,
for a fixed leverage the newly proposed design problem can
easily get a trade-off between MR and variance of the MRP.
However, although under the same investment leverage L, the
MRP designed from [13], [33]–[35] is suboptimal no mater
considering its MR property or variance property.

3) Trading Performance: We test the performance our de-
signed MRP through mean reversion trading. The performance
of the designed portfolio based on the proposed problem formu-
lation is compared with spread s1 . Some performance metrics
are reported in Figures 8. From the simulations, we can conclude
that the MRPs designed based on the proposed formulation is
able to generate consistent positive profits and can outperform
the underlying spreads with higher Sharpe ratios of ROIs and
higher cumulative P&Ls.

D. Real Data Simulations

In this section, we test the proposed problem formulation
and algorithms based on real market data. We first select
stocks from the Standard & Poor’s 500 (S&P 500) Index to

Fig. 9. Log-prices for
{

APA, AXP, CAT, COF, FCX, IBM, MMM
}

and three estimated spreads s1 , s2 , and s3 .

Fig. 10. Comparisons of ROIs, Sharpe ratios, and cumulative P&Ls between
the MRP designed using our proposed method denoted as MRP (prop.) and one
underlying spread denoted as Spread s2 .

construct an asset pool, which are denoted by their ticker la-
bels as {APA, AXP, CAT, COF, FCX, IBM, MMM}. The data
is retrieved from Google Finance (https://www.google.com/
finance). Then, a VECM model is fitted to identify the coin-
tegration space R (B). After that, the MRP design problem
proposed in this paper is used to design the optimal MRP where
the MR is chosen as pre (w) and the variance criterion is cho-
sen as VarInv (w). In Figure 9, we show the stock log-prices
and spreads constructed from our asset pool. In Figures 10, 11,
and 12, we show the performance comparisons between our de-
signed MRP and one underlying spread s2 and the MRPs from
the literature [13], [33]–[35]. The log-prices for the designed
spread, and the out-of-sample performance like ROI, Sharpe ra-
tios of ROI, and cumulative P&Ls are reported. The in-sample
training (learning) period is chosen from February 1st, 2010
to March 4th, 2013, and the out-of-sample trading (investing)
period is from March 5th, 2013 to June 27th, 2014. It is easy
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Fig. 11. Comparisons of ROIs, Sharpe ratios, and cumulative P&Ls between
the MRP designed using our proposed method denoted as MRP (prop.) and the
MRP design from [33], [34] denoted as MRP with �2 -norm.

Fig. 12. Comparisons of ROIs, Sharpe ratios, and cumulative P&Ls between
the MRP designed using our proposed method denoted as MRP (prop.) and the
MRP design from [13], [35] denoted as MRP with budget.

to see the designed optimal MRP can achieve a higher Sharpe
ratio and a better final cumulative return performance.

IX. CONCLUSIONS

The optimal mean-reverting portfolio design problem aris-
ing from statistical arbitrage has been considered in this paper.
We have proposed a general problem formulation for MRP de-
sign where a trade-off can be attained between the mean re-
version and variance of an MRP. Asset selection criterion has
been further considered in the problem formulation. A practi-
cal investment leverage constraint has been imposed for MRP
design. To solve the problem, a unified SCA-based algorithm
has been proposed with the inner subproblems efficiently solved
by different algorithms. Numerical results have shown that our
proposed problem formulation can generate consistent profits
and outperform the benchmark methods.

APPENDIX A
PROOF FOR PROPOSITION 3

Given B ∈ R (U), we assume the optimal MRP from Prob-
lem (8) is given by w


p = Bw
 ∈ W

p with w
 ∈ W
 . Accord-

ingly, for another B′ ∈ R (U), we have w′
p = B′w′
 ∈ W′
p
with w′
 ∈ W′
 .

Since B,B′ ∈ R (U), there always exists Q � 0 such that
B′ = BQ. Also notice that the estimation of parameters in
U (w) and V (w) depend on B. Substitute B′ = BQ into
Problem (8) with variable w′. Defining w̄ = Qw′ with the op-
timal set W̄
 , it is easy to see W̄
 =W
 . Accordingly, we get
∀w′
 ∈ W′
 , w′
 = Q−1w̄
 = Q−1w
 with w
 ∈ W
 . Then
we have ∀w′
p ∈ W′
p ,

w′
p = B′w′
 = (BQ)
(
Q−1w


)
= Bw
 = w


p ,

which impliesW′
p =W

p .

APPENDIX B
ON THE DERIVATION OF ũ

(k)
2 (w)

Given u (w) in (18), we define the numerator quadratic func-
tion in (·)2 as t � wT Miw. Then, with a little abuse of notation,
we have

u (t,w) =
(

t

wT M0w + ε

)2

.

A linear approximation function for u (t,w) at
(
t(k) ,w(k)

)
is

given as follows:

ũ
(k)
2 (t,w) =

(
t(k)

w(k)T M0w(k) + ε

)2

+ 2
(

1
w(k)T M0w(k) + ε

)2

t(k)(t− t(k))

− 4(t(k))2
(

1
w(k)T M0w(k) + ε

)3

w(k)T M0(w −w(k)).

Changing the variables back to w (i.e., t = wT Miw and t(k) =
w(k)T Miw(k)), we have

ũ
(k)
2 (w)

=
(

w(k)T Miw(k)

w(k)T M0w(k) + ε

)2

+
1

(
w(k)T M0w(k) + ε

)2

× 2w(k)T Miw(k)(wT Miw −w(k)T Miw(k))

− 4
(

w(k)T Miw(k)

w(k)T M0w(k) + ε

)2
w(k)T M0(w −w(k))
w(k)T M0w(k) + ε

= 4
(

w(k)T Miw(k)

w(k)T M0w(k) + ε

)3

−
(

w(k)T Miw(k)

w(k)T M0w(k) + ε

)2

− 4
(

w(k)T Miw(k)

w(k)T M0w(k) + ε

)2
w(k)T M0w

w(k)T M0w(k) + ε

+ 2
w(k)T Miw(k)

w(k)T M0w(k) + ε

wT Miw
w(k)T M0w(k) + ε

.
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Based on the definitions in (17), we further have

ũ
(k)
2 (w) = 4

(
r

(k)
i

)3
−
(
r

(k)
i

)2
− 4r

(k)
i

(
d(k)

i,0

)T

w

+ 2r
(k)
i

wT Miw
w(k)T M0w(k) + ε

.

APPENDIX C
PROOF FOR THE VARIABLE TRANSFORMATION

Since w̃ = Bw (where B ∈ RM×N with M ≥ N ), we have

w̃ =
[
B B⊥

] [w
0

]
,

where the columns of B⊥ span the orthogonal complementary of
B. Multiplying both sides of the above equation by

[
B B⊥

]T
,

we get
[

BT

(
B⊥

)T

]
w̃ =

[
BT

(
B⊥

)T

] [
B B⊥

] [w
0

]

=
[
BT B 0

0
(
B⊥

)T B⊥

] [
w
0

]
,

and then we have
⎡

⎣
(
BT B

)−1 BT

((
B⊥

)T B⊥
)−1 (

B⊥
)T

⎤

⎦ w̃ =
[
w
0

]
.

Notice that
(
BT B

)−1 BT is the Moore-Penrose pseudo-inverse
of B which can be written as B†. We get the following equiva-
lence relation

w̃ = Bw ⇐⇒
{

B†w̃ = w(
B⊥

)T w̃ = 0
.
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