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1 Graphical Model
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• A graph G = (V , E ,W ) is an intuitive way to represent relationships between entities.
•Nodes: V = {1, 2, . . . , p} correspond to the entities.
• Edges: E = {(1, 2), . . . , (i, j), . . .} encodes conditional dependence between entities.
•Weights: W is weight matrix withWij the graph weight between node i and node j.
1.1 Laplacian Constrained Gaussian Graphical Model
•Graph Laplacian: L = D −W , where D: the degree matrix with Dii =

∑p
j=1Wij.• SL: the set of all graph Laplacians for connected graphs,

SL := {Θ ∈ Sp+|Θij = Θji ≤ 0, ∀ i 6= j, Θ · 1 = 0, rank(Θ) = p− 1}, (1)
where 0 and 1 are the constant zero and one vectors.

Definition 1 (L-GMRF). A zero-mean random vector x = [x1, . . . , xp]
> ∈ V p−1 is called aLaplacian constrained GaussianMarkov RandomFields (L-GMRF) with parameters (0,Θ)with Θ ∈ SL, if and only if its density function qL : V p−1→ R follows

qL(x) = (2π)−
p−1
2 det?(Θ)

1
2 exp

(
− 1

2
x>Θx

)
, (2)

where det?: the product of nonzero eigenvalues; V p−1 := {x ∈ Rp|1>x = 0}.
2 `1-norm Analysis and Proposed Method
2.1 `1-norm Does Not Work
The `1-norm regularized maximum likelihood estimation of Laplacian constrained pre-cision matrices [1, 2] can be formulated as

min
Θ∈SL

− log det(Θ + J) + tr (ΘS) + λ
∑
i>j

|Θij|, (3)
where S: sample covariance matrix; λ: regularization parameter; J : constant matrixwith each element equal to 1

p.
Theorem 2. Let Θ̂ ∈ Rp×p be the global minimum of (3) with p > 3. Define s1 = maxk Skk
and s2 = minij Sij. If the regularization parameter λ in (3) satisfies λ ∈ [(2 + 2

√
2)(p +

1)(s1 − s2),+∞), then the estimated graph weight Ŵij = −Θ̂ij obeys

Ŵij ≥
1

(s1 − (p + 1)s2 + λ)p
> 0, ∀ i 6= j.

Theorem 2 shows that a large regularization parameter of the `1-norm will make ev-
ery graph weight strictly positive and the estimated graph is fully connected.

(a) Ground-truth (b) λ = 0 (c) λ = 0.1 (d) λ = 10

Figure 1: Graph learning using `1-norm with di�erent regularization parameters. Thenumber of nonzero edges in (a), (b), (c) and (d) are 49, 135, 286 and 1225.

2.2 Proposed Method
The penalized maximum likelihood of the precision matrix with Laplacian structural con-straints can be formulated as

min
Θ∈SL

− log det(Θ + J) + tr (ΘS) +
∑
i>j

hλ(Θij), (4)
where hλ: nonconvex sparsity-promoting function such as SCAD and MCP.To handle the constraint Θ ∈ SL, we introduce a linear operator L [3] that maps avector w to a Laplacian matrix Lw. For example w = [w1, w2, w3, w4, w5, w6]>,

Lw =


∑
i=1,2,3wi −w1 −w2 −w3

−w1
∑
i=1,4,5wi −w4 −w5

−w2 −w4
∑
i=2,4,6wi −w6

−w3 −w5 −w6
∑
i=3,5,6wi

 .
With the usage of the linear operator L, the optimization (4) can be reformulated as

min
w≥0

− log det(Lw + J) + tr (SLw) +
∑
i

hλ(wi). (5)
We establish a sequence {ŵ(k)}k≥1 by solving a sequence of sub-problems

ŵ(k) = arg min
w≥0

− log det(Lw + J) + tr (SLw) +
∑
i

h′λ

(
ŵi

(k−1)
)
wi. (6)

The optimization (6) can be solved by a projected gradient descent algorithm with back-tracking line search.
Algorithm 1 Nonconvex Graph Learning (NGL)
Input: Sample covariance S, λ, ŵ(0);

k ← 1;
1: while Stopping criteria not met do
2: Update z(k−1)

i = h′λ(ŵ
(k−1)
i ), for i = 1, . . . , p(p− 1)/2;

3: Update ŵ(k) = arg minw≥0− log det(Lw + J) + tr (SLw) +
∑
i z

(k−1)
i wi;

4: k ← k + 1;
5: end while
Output: ŵ(k).
2.3 Theoretical Results
Assumption 3. The function hλ : R→ R satisfies the following conditions:
1. hλ(0) = 0, and h′λ(x) is monotone and Lipschitz continuous for x ∈ [0,+∞);
2. There exists a γ > 0 such that h′λ(x) = 0 for x ≥ γλ;
3. h′λ(x) = λ for x ≤ 0 and h′λ(cλ) ≥ λ/2, where c = (2 +

√
2)λ2

max(Lw?) is a constant.
Assumption 4. The minimal nonzero graph weight satisfies mini∈S?w

?
i ≥ (c + γ)λ & λ,where c and γ are defined in Assumption 3.

Theorem 5. Under Assumptions 3 and 4, take the regularization parameter λ =√
4αc−1

0 log p/n for some α > 2. If the sample size n is lower bounded by

n ≥ max(94αc−1
0 λ2

max(Lw?)s log p, 8α log p),

then with probability at least 1 − 1/pα−2, the sequence ŵ(k) returned by Algorithm 1
satisfies∥∥ŵ(k) −w?

∥∥ ≤ 2(3
√

2 + 4)λ2
max(Lw?)

√
αc−1

0 s log p/n︸ ︷︷ ︸
Statistical error

+

(
3

2 +
√

2

)k ∥∥ŵ(0) −w?
∥∥︸ ︷︷ ︸

Optimization error

,

where c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2
max

)
is a constant.

Theorem 5 shows that the estimation error is bounded by the optimization error andstatistical error. The optimization error decays to zero at a linear rate with respect tothe iteration number k. The statistical error is with the order of√s log p/n, and a largesample size n will lead to a small statistical error.

3 Experimental Results
3.1 Synthetic Data
The data matrix X ∈ Rp×n with each column independently sampled from L-GMRF. Theground-truth graph is a random Barabasi-Albert graph with 50 nodes, and the weightsare randomly sampled from U(2, 5). The compared methods include the state-of-the-artGLE-ADMM algorithm [2] and the baseline projected gradient descent with `1-norm.

(a) (b) (c)
Figure 2: Performance measures (a) Number of positive edges, (b) Relative error and(c) F-score as a function of regularization parameter λ.

(a) (b) (c)
Figure 3: Performance measures (a) Number of positive edges, (b) Relative error and(c) F-score as a function of the sample size ratio n/p.
3.2 Real-world Data
The data set is 2019-nCoV [4] from 98 Chinese patients a�ected by the outbreak of2019-nCoV on early February, 2020. The features include age, gender, and location.The labels represent the life status of patients, alive (green) or no longer alive (red).

(a) (b) (c)
Figure 4: The learned graphs using the 2019-nCoV data set by (a) GLE-ADMM, (b) NGL-SCAD (proposed method), and (c) NGL-MCP (proposed method).
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