Nonconvex Sparse Graph Learning under Laplacian-structured Graphical Model

a talk by

Jiaxi Ying, José Vinícius de M. Cardoso, and Daniel P. Palomar
The Hong Kong University of Science and Technology

Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada
Learning Sparse Undirected Connected Graphs

- data generating process: Laplacian-constrained Gaussian Markov Random Field (L-GMRF) with rank $p - 1$
- its $p \times p$ precision matrix Θ is modeled as a combinatorial graph Laplacian
- state of the art (Egilmez et al. 2017)\(^1\), (Zhao et al. 2019)\(^2\):

\[
\begin{align*}
\text{minimize} \quad & \text{tr}(S\Theta) - \log \det^*(\Theta + J) + \lambda \|\Theta\|_{1,\text{off}}, \\
\text{subject to} \quad & \Theta \succeq 0, \Theta 1 = 0, \Theta_{ij} = \Theta_{ji} \leq 0
\end{align*}
\]

(1)

where $J = \frac{1}{p} 11^\top$, $\|\Theta\|_{1,\text{off}} = \sum_{i>j} |\Theta_{ij}|$ is the entrywise ℓ_1-norm, and $\lambda \geq 0$

\(^1\)HE Egilmez et al. Graph learning from data under Laplacian and structural constraints. *IEEE Journal of Selected Topics in Signal Processing* 11 (6), 825-841.

\(^2\)L Zhao et al. Optimization algorithms for graph laplacian estimation via ADMM and MM. *IEEE Transactions on Signal Processing* 67 (16), 4231-4244.
Are sparse solutions recoverable via ℓ_1-norm?

- **TL;DR:** they aren’t
- empirically:

(a) ground-truth

(b) $\lambda = 0$

(c) $\lambda = 0.1$

(d) $\lambda = 10$
Are sparse solutions recoverable via ℓ_1-norm?

- theoretically:

Theorem

Let $\hat{\Theta} \in \mathbb{R}^{p \times p}$ be the global minimum of (1) with $p > 3$. Define $s_1 = \max_k S_{kk}$ and $s_2 = \min_{ij} S_{ij}$. If the regularization parameter λ in (1) satisfies $\lambda \in [(2 + 2\sqrt{2})(p + 1)(s_1 - s_2), +\infty)$, then the estimated graph weight $\hat{W}_{ij} = -\hat{\Theta}_{ij}$ obeys

$$\hat{W}_{ij} \geq \frac{1}{(s_1 - (p + 1)s_2 + \lambda)p} > 0, \quad \forall i \neq j.$$

Proof

Please refer to our supplementary material 😊
Our framework for sparse graphs

- nonconvex formulation:

\[
\minimize_{w \geq 0} \quad \text{tr}(SLw) - \log \det(Lw + J) + \sum_i h_\lambda(w_i)
\]

(2)

\(L\) is the Laplacian operator and \(h_\lambda(\cdot)\) is a nonconvex regularizer such as

- Minimax Concave Penalty (MCP)
- Smoothly Clipped Absolute Deviation (SCAD)
Our framework for sparse graphs

Algorithm 0: Connected sparse graph learning

Data: Sample covariance S, $\lambda > 0$, $\hat{w}^{(0)}$

Result: Laplacian estimation: $\mathcal{L}\hat{w}^{(k)}$

1. $k \leftarrow 1$

2. while stopping criteria not met do

3. ▶ update $z_i^{(k-1)} = h'_\lambda(\hat{w}_i^{(k-1)})$, for $i = 1, \ldots, p(p-1)/2$

4. ▶ update $\hat{w}^{(k)} = \arg \min_{\mathbf{w} \geq 0} -\log \det(\mathcal{L}\mathbf{w} + \mathbf{J}) + \text{tr}(S\mathcal{L}\mathbf{w}) + \sum_i z_i^{(k-1)}w_i$

5. ▶ $k \leftarrow k + 1$

6. end
Sneak peek on the results: synthetic data
Sneak peek on the results: S&P 500 stocks

(a) GLE-ADMM (benchmark) $\lambda = 0$

(b) NGL-MCP (proposed) $\lambda = 0.5$
Reproducibility

- The code for the experiments can be found at https://github.com/mirca/sparseGraph
- Convex Research Group at HKUST: https://www.danielppalomar.com