Nonconvex Sparse Graph Learning under Laplacian-structured Graphical Model

a talk by

Jiaxi Ying, José Vinícius de M. Cardoso, and Daniel P. Palomar

The Hong Kong University of Science and Technology

Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada

Learning Sparse Undirected Connected Graphs

- data generating process: Laplacian-constrained Gaussian Markov Random Field (L-GMRF) with rank p - 1
- its $p \times p$ precision matrix Θ is modeled as a combinatorial graph Laplacian
- state of the art (Egilmez et al. 2017)¹, (Zhao et al. 2019)²:

$$\begin{array}{ll} \underset{\boldsymbol{\Theta} \succeq \boldsymbol{0}}{\text{minimize}} & \operatorname{tr}(\boldsymbol{S}\boldsymbol{\Theta}) - \log \det^{\star} \left(\boldsymbol{\Theta} + \boldsymbol{J}\right) + \lambda \|\boldsymbol{\Theta}\|_{1, \text{off}}, \\ \text{subject to} & \boldsymbol{\Theta} \mathbf{1} = \mathbf{0}, \boldsymbol{\Theta}_{ij} = \boldsymbol{\Theta}_{ji} \leq \mathbf{0} \end{array}$$
(1)

where $J = \frac{1}{p} \mathbf{1}^{\top}$, $\|\mathbf{\Theta}\|_{1,\text{off}} = \sum_{i>j} |\Theta_{ij}|$ is the entrywise ℓ_1 -norm, and $\lambda \ge 0$

²L Zhao *et al.* Optimization algorithms for graph laplacian estimation via ADMM and MM. *IEEE Transactions on Signal Processing* 67 (16), 4231-4244.

¹HE Egilmez *et al.* Graph learning from data under Laplacian and structural constraints. *IEEE Journal of Selected Topics in Signal Processing* 11 (6), 825-841.

Are sparse solutions recoverable via ℓ_1 -norm?

TL;DR: they aren't

empirically:

Are sparse solutions recoverable via ℓ_1 -norm?

theoretically:

Theorem

Let $\hat{\Theta} \in \mathbb{R}^{p \times p}$ be the global minimum of (1) with p > 3. Define $s_1 = \max_k S_{kk}$ and $s_2 = \min_{ij} S_{ij}$. If the regularization parameter λ in (1) satisfies $\lambda \in [(2 + 2\sqrt{2})(p+1)(s_1 - s_2), +\infty)$, then the estimated graph weight $\hat{W}_{ij} = -\hat{\Theta}_{ij}$ obeys

$$\hat{W}_{ij} \geq rac{1}{(s_1-(p+1)s_2+\lambda)p} > 0, \quad orall \, i
eq j.$$

Proof

Please refer to our supplementary material 😂

Our framework for sparse graphs

nonconvex formulation:

 $\mathcal L$ is the Laplacian operator and $h_\lambda(\cdot)$ is a nonconvex regularizer such as

- Minimax Concave Penalty (MCP)
- Smoothly Clipped Absolute Deviation (SCAD)

Our framework for sparse graphs

Algorithm 0: Connected sparse graph learning

Data: Sample covariance S, $\lambda > 0$, $\hat{w}^{(0)}$ **Result:** Laplacian estimation: $\mathcal{L}\hat{w}^{(k)}$

 $\mathbf{1} \ k \leftarrow 1$

2 while stopping criteria not met do

3
$$Delta$$
 update $z_i^{(k-1)} = h_\lambda'(\hat{w}_i^{(k-1)})$, for $i=1,\ldots,p(p-1)/2$

4 | \triangleright update $\hat{\boldsymbol{w}}^{(k)} = \arg\min_{\boldsymbol{w} \ge \boldsymbol{0}} - \log \det(\mathcal{L}\boldsymbol{w} + \boldsymbol{J}) + \operatorname{tr}(\boldsymbol{S}\mathcal{L}\boldsymbol{w}) + \sum_{i} z_{i}^{(k-1)} w_{i}$

5
$$\triangleright k \leftarrow k + 1$$

6 end

Sneak peek on the results: synthetic data

Sneak peek on the results: S&P 500 stocks

(a) GLE-ADMM (benchmark) $\lambda = 0$

(b) NGL-MCP (proposed) $\lambda=0.5$

The code for the experiments can be found at https://github.com/mirca/sparseGraph

Convex Research Group at HKUST: https://www.danielppalomar.com