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Learning Sparse Undirected Connected Graphs
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data generating process: Laplacian-constrained Gaussian Markov Random
Field (L-GMRF) with rank p− 1
its p× p precision matrixΘ is modeled as a combinatorial graph Laplacian
state of the art (Egilmez et al. 2017)1, (Zhao et al. 2019)2:

minimize
Θ�0

tr(SΘ)− log det? (Θ + J) + λ‖Θ‖1,o�,
subject to Θ1 = 0,Θij = Θji ≤ 0

(1)

where J = 1
p11
>, ‖Θ‖1,o� =

∑
i>j |Θij| is the entrywise `1-norm, and λ ≥ 0

1HE Egilmez et al. Graph learning from data under Laplacian and structural constraints. IEEE Journal
of Selected Topics in Signal Processing 11 (6), 825-841.

2L Zhao et al. Optimization algorithms for graph laplacian estimation via ADMM and MM. IEEE
Transactions on Signal Processing 67 (16), 4231-4244.



Are sparse solutions recoverable via `1-norm?
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TL;DR: they aren’t
empirically:

(a) ground-truth (b) λ = 0 (c) λ = 0.1 (d) λ = 10



Are sparse solutions recoverable via `1-norm?
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theoretically:

Theorem
Let Θ̂ ∈ Rp×p be the global minimum of (1) with p > 3. Define s1 = maxk Skk and
s2 = minij Sij. If the regularization parameter λ in (1) satisfies
λ ∈ [(2+ 2

√
2)(p+ 1)(s1 − s2),+∞), then the estimated graph weight Ŵij = −Θ̂ij

obeys

Ŵij ≥
1

(s1 − (p+ 1)s2 + λ)p
> 0, ∀ i 6= j.

Proof
Please refer to our supplementary material



Our framework for sparse graphs
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nonconvex formulation:

minimize
w≥0

tr(SLw)− log det(Lw + J) +
∑

i hλ(wi) (2)

L is the Laplacian operator and hλ(·) is a nonconvex regularizer such as
Minimax Concave Penalty (MCP)
Smoothly Clipped Absolute Deviation (SCAD)



Our framework for sparse graphs
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Algorithm 0: Connected sparse graph learning
Data: Sample covariance S, λ > 0, ŵ(0)

Result: Laplacian estimation: Lŵ(k)

1 k← 1
2 while stopping criteria not met do
3 . update z(k−1)i = h′λ(ŵ(k−1)

i ), for i = 1, . . . , p(p− 1)/2
4 . update ŵ(k) = arg minw≥0− log det(Lw + J) + tr(SLw) +

∑
i z

(k−1)
i wi

5 . k← k + 1
6 end



Sneak peek on the results: synthetic data
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Sneak peek on the results: S&P 500 stocks
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(a) GLE-ADMM (benchmark) λ = 0 (b) NGL-MCP (proposed) λ = 0.5



Reproducibility
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The code for the experiments can be found at
https://github.com/mirca/sparseGraph

Convex Research Group at HKUST:
https://www.danielppalomar.com

https://github.com/mirca/sparseGraph
https://www.danielppalomar.com

