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Abstract

In this paper, we consider the problem of learning a sparse graph from the Laplacian
constrained Gaussian graphical model. This problem can be formulated as a
penalized maximum likelihood estimation of the precision matrix under Laplacian
structural constraints. Like in the classical graphical lasso problem, recent works
made use of the `1-norm with the goal of promoting sparsity in the Laplacian
constrained precision matrix estimation. However, through empirical evidence,
we observe that the `1-norm is not effective in imposing a sparse solution in this
problem. From a theoretical perspective, we prove that a large regularization
parameter will surprisingly lead to a solution representing a complete graph, i.e.,
every pair of vertices is connected by an edge. To address this issue, we propose a
nonconvex penalized maximum likelihood estimation method, and establish the
order of the statistical error. Numerical experiments involving synthetic and real-
world data sets demonstrate the effectiveness of the proposed method. An open
source R package is available at https://github.com/mirca/sparseGraph.

1 Introduction

Gaussian graphical models (GGM) have been widely used in a number of fields such as finance,
bioinformatics, and image analysis [1, 31, 38]. Graph learning under GGM can be formulated to
estimate the precision matrix that captures the conditional dependency relations between random
variables [10, 29]. In this paper, the goal is to learn a sparse graph under the Laplacian constrained
GGM, where the precision matrix obeys Laplacian structural constraints.

The general GGM has received broad interest in statistical machine learning, where the problem can
be formulated as a sparse precision matrix estimation. The papers [1, 9, 58] proposed the `1-norm
penalized maximum likelihood estimation, also known as graphical lasso, to encourage sparsity in
its entries. Various extensions of graphical lasso and their theoretical properties are also studied
[11, 18, 21, 35, 41, 42, 47, 55, 56]. To reduce the estimation bias, nonconvex penalties like the
smooth clipped absolute deviation (SCAD) [16], minimax concave penalty (MCP) [60], and capped
`1-penalty [61] have been introduced in estimating a sparse precision matrix [2, 7, 27, 33, 46, 54, 60].
However, those methods mentioned above focus on general graphical models, and cannot be directly
extended to Laplacian constrained GGM because of the multiple constraints on the precision matrices.
Moreover, unlike the above GGM cases, this paper will show that the `1-norm is not effective in
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promoting sparsity in the penalized maximum likelihood estimation of the Laplacian constrained
precision matrices.

In recent years, Laplacian constrained GGM has received increasing attention in signal processing
and machine learning over graphs [6, 13, 23, 26, 30, 37, 48]. Under the Laplacian constrained GGM,
graph learning can be formulated as Laplacian constrained precision matrix estimation. Unlike the
general GGM, the precision matrix in Laplacian constrained GGM enjoys the spectral property that
its eigenvalues and eigenvectors can be interpreted as spectral frequencies and Fourier basis [48],
which is useful in computing graph Fourier transform in graph signal processing [37, 48], and graph
convolutional networks [3, 36, 45]. The authors in [12, 14, 19, 59] formulated the graph signals
as random variables under the Laplacian constrained GGM. The learned graph under Laplacian
constrained GGM favours smooth graph signal representations [12], since the graph Laplacian
quadratic term quantifies the smoothness of graph signals [22, 24]. However, sparse graph learning
under the Laplacian constrained GGM remains to be further explored. For example, how to effectively
and efficiently learn a sparse graph and how to characterize the estimation error under the Laplacian
constrained GGM are to be investigated.

This paper focuses on the problem of learning a sparse graph under the Laplacian constrained GGM.
The contributions of this paper are summarized as follows. First, we find an unexpected behavior
of the `1-norm in Laplacian constrained GGM. Through empirical evidence, we observe that the
widely used `1-norm is not effective in imposing a sparse solution under the Laplacian constrained
GGM. From a theoretical perspective, we prove that a large regularization parameter of the `1-norm
will lead to a solution representing a complete graph, i.e., every pair of vertices is connected by an
edge, instead of a sparse graph. Second, we propose a nonconvex penalized maximum likelihood
estimation method by solving a sequence of weighted `1-norm penalized sub-problems, and establish
the order of the statistical error. To the best of our knowledge, this is the first work to analyze
the non-asymptotic optimization performance guarantees on both optimization error and statistical
error under the Laplacian constrained GGM. Finally, numerical experiments on both synthetic and
real-world data sets demonstrate the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Problem formulation and related work are
provided in Section 2. We present the proposed method and the theoretical results in Section 3.
Experimental results are provided in Section 4. We draw the conclusions in Section 5.

Notation Lower case bold letters denote vectors and upper case bold letters denote matrices. Both
Xij and [X]ij denote the (i, j)-th entry of the matrix X . X> denotes transpose of matrix X . [p]
denotes the set {1, . . . , p}. The all-zero and all-one vectors or matrices are denoted by 0 and 1,
respectively. ‖x‖, ‖X‖F and ‖X‖2 denote Euclidean norm, Frobenius norm, and operator norm,
respectively. Let supp+(x) = {i ∈ [p] |xi > 0} for x ∈ Rp. dxe denotes the least integer greater
than or equal to x. Let ‖x‖max = maxi |xi| and 〈x,y〉 =

∑
i xiyi. For functions f(n) and g(n), we

use f(n) . g(n) if f(n) ≤ Cg(n) for some constant C ∈ (0,+∞). Sp+ and Sp++ denote the sets of
positive semi-definite and positive definite matrices with the size p× p, respectively.

2 Problem Formulation and Related Work

We first formulate the problem of learning a graph under the Laplacian constrained GGM. After that,
we discuss related work.

2.1 Laplacian Constrained Gaussian Graphical Model

We define a weighted, undirected graph G = (V, E ,W ), where V denotes the set of nodes, and the
pair (i, j) ∈ E if and only if there is an edge between node i and node j. W ∈ Rp×p+ is the weighted
adjacency matrix with Wij denoting the graph weight between nodes i and j. The graph Laplacian
L ∈ Rp×p, also known as combinatorial graph Laplacian, is defined as L = D −W , where D is
a diagonal matrix with Dii =

∑p
j=1Wij . In this paper, we focus on the case of connected graphs,

implying that there is only one graph component. According to spectral graph theory [8], the rank of
the Laplacian matrix for a connected graph with p nodes is p− 1. Then it is easy to check that the set
of Laplacian matrices for connected graphs can be formulated as

SL = {Θ ∈ Sp+|Θij = Θji ≤ 0, ∀ i 6= j, Θ · 1 = 0, rank(Θ) = p− 1}, (1)
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where 0 and 1 denote the constant zero and one vectors, respectively. Next, we will define Laplacian
constrained Gaussian Markov random fields, and without loss of generality we assume the random
vector x has zero mean.
Definition 2.1. A zero-mean random vector x = [x1, . . . , xp]

> ∈ V p−1 is called a Laplacian
constrained Gaussian Markov Random Fields (LGMRF) with parameters (0,Θ) with Θ ∈ SL, if
and only if its density function qL : V p−1 → R follows

qL(x) = (2π)−
p−1
2 det?(Θ)

1
2 exp

(
− 1

2
x>Θx

)
, (2)

where det? denotes the pseudo determinant defined by the product of nonzero eigenvalues [20], V p−1
is a (p− 1)-dimensional subspace of Rp defined by V p−1 := {x ∈ Rp|1>x = 0}.

Note that we restrict x into a subspace because the LGMRF does not have a density with respect to
the p-dimensional Lebesgue measure. According to the disintegration theorem, we can construct a
conditional probability measure defined on V p−1 and then the density of LGMRF with this measure
satisfies (2). In this sense, the LGMRF can be interpreted as a GMRF conditioned on the linear
constraint 1>x = 0 and thus each observation x(k) of an LGMRF also satisfies 1>x(k) = 0. For
convenience, we still denote Θ in (2) as the precision matrix, though it formally does not exist [44].

Sparse graph learning under the Laplacian constrained Gaussian graphical model could be formulated
as the penalized maximum likelihood of the precision matrix with Laplacian structural constraints,

min
Θ∈SL

− log det(Θ + J) + tr (ΘS) +
∑
i>j

hλ(Θij), (3)

where S is the sample covariance matrix, hλ is a regularizer, depending on a regularization parameter
λ ≥ 0, which serves to enforce sparsity. For example, hλ(Θij) = λ|Θij |. J = 1

p1p×p is a constant
matrix with each element equal to 1

p . Note that we replace det?(Θ) with det(Θ + J) in (3) as done
in [14], because the matrix J is rank-1 and the nonzero eigenvalue of J is 1 with the associated
eigenvector orthogonal to the row and column spaces of Θ ∈ SL.

2.2 Related Work

Recently, the authors in [14, 24, 32, 62] proposed the `1-norm penalized maximum likelihood
estimation under the Laplacian constrained GGM to learn a sparse graph. The authors in [14, 62]
designed a primal-dual algorithm that introduces additional variables to handle Laplacian structural
constraints, while the authors in [32] proposed a block coordinate descent method to solve the
optimization problem. To learn a structured graph such as k-component graph, the authors in [24]
proposed the `1-norm regularized maximum likelihood with Laplacian spectral constrains. More
recently, the authors in [25] proposed a framework with re-weighted `1-norm to learn structured
graphs by imposing spectral constraints on graph matrices. However, the proposed algorithms in
[24, 25] have to compute the eigenvalue decomposition in each iteration which is computationally
expensive in the high-dimensional regime. Note that all the methods mentioned above lack theoretical
analysis on estimation error. In this paper, we will show that the `1-norm is not effective in promoting
sparsity under the Laplacian constrained GGM, and further propose a nonconvex estimation method
with theoretical guarantees on estimation error.

3 `1-norm Analysis and Proposed Method

In this section, we first present an unexpected behavior of the `1-norm in learning a sparse graph under
the Laplacian constrained GGM. Then, we propose a nonconvex penalized maximum likelihood
estimation method. Finally, we present the theoretical results in the analysis of estimation error. The
proofs of all the theorems are deferred to the supplementary material.

3.1 `1-norm Regularizer

Sparsity is often explored in high-dimensional Gaussian graphical models in order to reduce the
number of samples required. The effectiveness of the `1-norm regularized maximum likelihood
estimation has been widely demonstrated in a number of fields. One common rule of thumb for
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graphical lasso is that the estimated graph will get sparser when a larger regularization parameter is
used. However, we find an unexpected behavior of the `1-norm in the Laplacian constrained GGM.

The `1-norm regularized maximum likelihood estimation of the Laplacian constrained precision
matrices [14, 62] can be formulated as

min
Θ∈SL

− log det(Θ + J) + tr (ΘS) + λ
∑
i>j

|Θij |, (4)

where S is the sample covariance matrix and λ is the regularization parameter. It is easy to check
that (4) is a convex optimization problem.
Theorem 3.1. Let Θ̂ ∈ Rp×p be the global minimum of (4) with p > 3. Define s1 = maxk Skk
and s2 = minij Sij . If the regularization parameter λ in (4) satisfies λ ∈ [(2 + 2

√
2)(p+ 1)(s1 −

s2),+∞), then the estimated graph weight Ŵij = −Θ̂ij obeys

Ŵij ≥
1

(s1 − (p+ 1)s2 + λ)p
> 0, ∀ i 6= j.

Theorem 3.1 ensures that a large regularization parameter of the `1-norm will make every graph
weight strictly positive and thus the estimated graph is a complete graph, i.e., every pair of vertices is
connected by an edge. This theoretical result is consistent with empirical observations depicted in
Figure 1, where the number of edges in the graph estimated by the optimization (4) grows along with
the increase of λ, and the estimated graph in Figure 1(d) is fully connected with all the graph weights
strictly positive and small.

(a) Ground-truth (b) λ = 0 (c) λ = 0.1 (d) λ = 10

Figure 1: Graph learning using the `1-norm regularization with different regularization parameters. The number
of nonzero edges in (b), (c) and (d) are 135, 286 and 1225, respectively. The true graph in (a) has 49 edges and
the graph in (d) is fully connected. The relative errors of the learned graphs in (b), (c) and (d) are 0.14, 0.64 and
0.99, respectively.

It is well-known that a larger regularization parameter of graphical lasso will lead to a larger threshold,
and the elements in the solution with their absolute values less than the threshold will be shrunk
to zero. Therefore, the resultant solution of the graphical lasso will get sparser. The unexpected
behavior of the `1-norm characterized in Theorem 3.1 is due to the Laplacian constraints in the
formulation (4). Because of the Laplacian constrains Θ · 1 and Θij = Θji ≤ 0 for any i 6= j, the
term tr (ΘS) + λ

∑
i>j |Θij | in (4) can be written as

∑
i>j(λ + Sii + Sjj − Sij − Sji)|Θij |. To

intuitively understand the behavior of the `1-norm in (4), suppose that λ is sufficiently large such that
tr (ΘS) + λ

∑
i>j |Θij | can be approximated well by

∑
i>j λ|Θij | well. Then (4) will be reduced

to the optimization problem as below

min
Θ∈SL

− log det(Θ + J) + λ
∑
i>j

|Θij |. (5)

Let Θ̃ be the optimal solution of (5). By calculation, we obtain that W̃ij = −Θ̃ij = 2
pλ for any i 6= j.

Notice that every graph weight W̃ij is strictly positive, and a large λ will lead every weight to be very
small, which are consistent with the empirical results in Figure 1.

It is worth mentioning that the optimization (4) can be approximated well by (5) only when the two
constraints Θ·1 and Θij = Θji ≤ 0 appear together. Therefore, the `1-norm can still work well under
the generalized Laplacian constrains [14, 39, 40], i.e., Sg =

{
Θ ∈ Sp++|Θij = Θji ≤ 0, ∀i 6= j

}
.

The set Sg is the convex cone of the symmetric M -matrices, and this graphical model with sign
constraints is closely related to Gaussian distributions with multivariate total positivity [15, 28, 49,
50, 53].
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3.2 Proposed Algorithm

Problem (3) is a constrained optimization problem with Θ ∈ SL including multiple constraints. We
first simplify the Laplacian structural constraints in (1) by introducing a linear operator defined in
[25] that maps a vector x ∈ Rp(p−1)/2 to a matrix Lx ∈ Rp×p as below.

Definition 3.2. The linear operator L : Rp(p−1)/2 → Rp×p, x 7→ Lx, is defined by

[Lx]ij =


−xk i > j,

[Lx]ji i < j,

−
∑
j 6=i[Lx]ij i = j,

(6)

where k = i− j + j−1
2 (2p− j).

The adjoint operator L∗ of L is defined so as to satisfy 〈Lx,Y 〉 = 〈x,L∗Y 〉, ∀x ∈ Rp(p−1)/2 and
Y ∈ Rp×p.
Definition 3.3. The adjoint operator L∗ : Rp×p → Rp(p−1)/2, Y 7→ L∗Y , is defined by

[L∗Y ]k = Yi,i − Yi,j − Yj,i + Yj,j , (7)

where i, j ∈ [p] obeying k = i− j + j−1
2 (2p− j) and i > j.

By introducing the linear operator L, we can simplify the definition of SL in (1) as below.
Theorem 3.4. The Laplacian set SL defined in (1) can be written as

SL =
{
Lx| x ≥ 0, (Lx + J) ∈ Sp++

}
, (8)

where J = 1
p1p×p and x ≥ 0 means every entry of x is non-negative.

As a result of Theorem 3.4, we introduce the linear operator L defined in (6) and reformulate the
optimization (3) as

min
w≥0
− log det(Lw + J) + tr (SLw) +

∑
i

hλ(wi). (9)

Notice that we remove the constraint (Lx + J) ∈ Sp++ in (9) compared with the constraint set in (8),
because any w in the feasible set of (9) must obey (Lx + J) ∈ Sp++, following from the fact that
Lw + J must be positive semi-definite for any w ≥ 0.

To solve the problem (9), we follow the majorization-minimization framework [51], which consists
of two steps. In the majorization step, we design a majorized function f(w|ŵ(k−1)) that locally
approximates the objective function F (w) at ŵ(k−1) satisfying

f(w|ŵ(k−1)) ≥ F (w) and f(ŵ(k−1)|ŵ(k−1)) = F (ŵ(k−1)). (10)

Then in the minimization step, we minimize the majorized function f(w|ŵ(k−1)). We assume hλ is
concave (refer to Assumption 3.5 for the choices of hλ). Here we find f(w|ŵ(k−1)) by linearizing∑
i hλ(wi). Set fk(w) = f(w|ŵ(k−1)) to simplify the notation and obtain

fk(w) = − log det(Lw + J) + tr (SLw) +
∑
i

h′λ(ŵ
(k−1)
i )wi, (11)

By minimizing fk(w), we establish a sequence {ŵ(k)}k≥1 by solving a sequence of sub-problems

ŵ(k) = arg min
w≥0
− log det(Lw + J) + tr (SLw) +

∑
i

z
(k−1)
i wi, (12)

where z(k−1)i = h′λ

(
ŵi

(k−1)
)

, i ∈ [p(p − 1)/2]. We can see
∑
i z

(k−1)
i wi is equivalent to∑

i z
(k−1)
i |wi| because w ≥ 0 and z(k−1)i ≥ 0 by Assumption 3.5. Thus the problem (12) can

be viewed as a weighted `1-norm penalized maximum likelihood estimation under the Laplacian
constrained Gaussian graphical model. The iteration procedure is summarized in Algorithm 1.
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To solve the problem (12), we develop a projected gradient descent algorithm with backtracking line
search. To obtain ŵ(k), the algorithm starts with w

(k)
0 and then establishes the sequence {w(k)

t }t≥0
by the projected gradient descent as below. In the t-th iteration, we update w

(k)
t by

w
(k)
t = P+

(
w

(k)
t−1 − η∇fk(w

(k)
t−1)

)
, (13)

where P+(a) = max(a,0) and∇fk(w
(k)
t−1) = −L∗(Lw(k)

t−1+J)−1+L∗S+z(k−1). The sequence
{w(k)

t }t≥0 will converge to ŵ(k). Here we set w(k)
0 = ŵ(k−1) which is the limit point of the sequence

{w(k−1)
t }t≥0. To establish the theoretical results in Section 3.3, the initial point ŵ(0) of Algorithm 1

is chosen such that |supp+(ŵ(0))| ≤ s, where s is the number of nonzero edges in the true graph. In
addition, the proposed method can be extended to estimate other structured matrices such as Hankel
matrices with the usage of Hankel linear operator [4, 57].

Algorithm 1 Nonconvex Graph Learning (NGL)

Input: Sample covariance S, λ, ŵ(0);
k ← 1;

1: while Stopping criteria not met do
2: Update z(k−1)i = h′λ(ŵ

(k−1)
i ), for i = 1, . . . , p(p− 1)/2;

3: Update ŵ(k) = arg minw≥0− log det(Lw + J) + tr (SLw) +
∑
i z

(k−1)
i wi;

4: k ← k + 1;
5: end while
Output: ŵ(k).

3.3 Theoretical Results

Before we present the theoretical results, we first list the assumptions needed for establishing our
theorems.

We denote the true graph weights by w? ∈ Rp(p−1)/2, which are non-negative, i.e., w? ≥ 0. Let
S? = {i ∈ [p(p − 1)/2] |w?i > 0} be the support set of w? and s be the number of the nonzero
weights, i.e., |S?| = s. Let λmax(Lw?) denote the maximum eigenvalue of Lw?. We impose some
mild conditions on the sparsity-promoting function hλ in Assumption 3.5 and the true graph weights
w? in Assumption 3.6.

Assumption 3.5. The function hλ : R→ R satisfies the following conditions:

1. hλ(0) = 0, and h′λ(x) is monotone and Lipschitz continuous for x ∈ [0,+∞);

2. There exists a γ > 0 such that h′λ(x) = 0 for x ≥ γλ;

3. h′λ(x) = λ for x ≤ 0 and h′λ(cλ) ≥ λ/2, where c = (2 +
√

2)λ2max(Lw?) is a constant.

Assumption 3.6. The graph weights w? represent a connected graph. The minimal nonzero graph
weight satisfies mini∈S? w?i ≥ (c+ γ)λ & λ, where c and γ are defined in Assumption 3.5.

Remark 3.7. In Assumption 3.5, the conditions on hλ(x) are mainly made over x ∈ [0,+∞) because
of the nonnegativity of w in the optimization (12). In Assumption 3.5, the first two conditions are
made to promote sparsity and unbiasedness [34], and hold for a variety of nonconvex sparsity-
promoting functions including MCP [60] and SCAD [16]. In the third condition, we specify h′λ(x)
for x ≤ 0 only for theoretical analysis. The condition h′λ(cλ) ≥ λ/2 can always hold by tuning
parameters due to the conditions h′λ(0) = λ and h′λ(γλ) = 0. In Assumption 3.6, the conditions on
the true graph weights w? are mild. In our theorems, the regularization parameter λ is taken with the
order

√
log p/n that could be very small when the sample size n increases. The assumptions on the

minimal magnitude of signals are often employed in the analysis of nonconvex optimization [17, 52].

In the following theorem, the choice of the regularization parameter λ is set according to a user-
defined parameter α > 2. A larger α yields a larger probability with which the claims hold, but also
leads to a more stringent requirement on the number of samples.
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Theorem 3.8. Under Assumptions 3.5 and 3.6, take the regularization parameter λ =√
4αc−10 log p/n for some α > 2. If the sample size n is lower bounded by

n ≥ max(94αc−10 λ2max(Lw?)s log p, 8α log p),

then with probability at least 1− 1/pα−2, the sequence ŵ(k) returned by Algorithm 1 satisfies∥∥ŵ(k) −w?
∥∥ ≤ 2(3

√
2 + 4)λ2max(Lw?)

√
αc−10 s log p/n︸ ︷︷ ︸

Statistical error

+

(
3

2 +
√

2

)k ∥∥ŵ(0) −w?
∥∥︸ ︷︷ ︸

Optimization error

,

where c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2
max

)
is a constant.

The statement in Theorem 3.8 holds with overwhelming probability. Theorem 3.8 shows that the
estimation error between the estimated and true graph weights is bounded by two terms, i.e., the
optimization error and statistical error. The optimization error, ( 3

2+
√
2
)k‖ŵ(0) − w?‖, decays to

zero at a linear rate with respect to the iteration number k. The statistical error is with the order of√
s log p/n, and a large sample size n will lead to a small statistical error. We can see the statistical

error is independent of k, implying that it will not decrease during iterations in the algorithm.
Corollary 3.9. Under the same assumptions and conditions as stated in Theorem 3.8, the sequence
ŵ(k) returned by Algorithm 1 satisfies∥∥Lŵ(k) − Lw?

∥∥
F
≤ 4(2

√
2 + 3)λ2max(Lw?)

√
αc−10 s log p/n︸ ︷︷ ︸

Statistical error

+

(
3

2 +
√

2

)k∥∥Lŵ(0) − Lw?
∥∥
F︸ ︷︷ ︸

Optimization error

,

with probability at least 1− 1/pα−2. Moreover, if k ≥ d4 log(4αc−10 )e, then the estimation error is
dominated by the statistical error and we obtain∥∥Lŵ(k) − Lw?

∥∥
F
.
√
s log p/n,

where c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2
max

)
is a constant.

Corollary 3.9 presents the estimation error between the estimated and true precision matrices in the
Laplacian constrained GGM. The order of statistical error is upper bounded by

√
s log p/n, which

matches the order of minimax lower bound [5, 42, 43] for the Gaussian graphical model. Yet it is still
unknown if

√
s log p/n is the minimax rate of convergence for estimating sparse precision matrices

under the Laplacian constrained GGM. Furthermore, the proposed estimation method can achieve the
order of

√
s log p/n by solving only d4 log(4αc−10 )e sub-problems. Notice that d4 log(4αc−10 )e is

independent of the dimension size p and sample size n.

4 Experimental Results

In this section, we conduct numerical simulations on both synthetic data and real-world data to verify
the performance of the proposed method. We use relative error (RE) and F-score (FS) to evaluate the
performance of the algorithms, which are defined as

RE =

∥∥Θ̂−Θ?
∥∥
F

‖Θ?‖F
, FS =

2tp

2tp + fp + fn
, (14)

where Θ̂ = Lŵ and Θ? = Lw? denote the estimated and true precision matrices, respectively. The
true positive number is denoted as tp, i.e., the case that there is an actual edge and the algorithm
detects it, the false positive is denoted as fp, i.e., the case that there is no actual edge but algorithm
detects one, and the false negative is denoted as fn, i.e., the case that the algorithm failed to detect an
actual edge. The F-score takes values in [0, 1], where 1 indicates perfect structure recovery. For our
algorithm, we test two nonconvex penalties, MCP and SCAD, defined respectively by

h′MCP,λ(x) =

{
λ− x

γ x ∈ [0, γλ],
0 x ∈ [γλ,∞),

h′SCAD,λ(x) =

{
λ x ∈ [0, λ],
(γλ− x)/γ − 1 x ∈ [λ, γλ],
0 x ∈ [γλ,∞),

7



(a) (b) (c)

Figure 2: Performance measures (a) Number of positive edges, (b) Relative error and (c) F-score as a function of
regularization parameter λ in learning random Barabasi-Albert graphs. The true number of positive edges is 49
and the sample size ratio is n/p = 100.

(a) (b) (c)

Figure 3: Performance measures (a) Number of positive edges, (b) Relative error and (c) F-score as a function of
the sample size ratio of n/p in learning random Barabasi-Albert graphs. The true number of positive edges is 49.
The regularization parameter λ for each algorithm is fine-tuned.

where we only define h′MCP,λ(x) and h′SCAD,λ(x) for x ≥ 0 because of the nonnegativity constraint
in (12). We set γ equal to 1.01 in h′MCP,λ(x) and 2.01 in h′SCAD,λ(x) for all the experiments. The
compared methods include the state-of-the-art GLE-ADMM algorithm [62] and the baseline projected
gradient descent with the `1-norm.

4.1 Synthetic Data

We generate the data matrix X ∈ Rp×n with each column of X independently sampled from the
LGMRF with Θ = Lw?, where w? is the true weights from a random Barabasi-Albert graph of
degree 1. The number of nodes in the Barabasi-Albert graph is p = 50, and the weights associated
with edges are uniformly sampled from U(2, 5). The sample covariance matrix is constructed by
S = 1

nXX>, where n is the number of samples. The curves in Figures 2 and 3 are the results of
an average of 100 Monte Carlo realizations and the shaded areas around the curves represent the
one-standard deviation confidence interval.

Figure 2 presents the results of the random Barabasi-Albert graphs learned by GLE-ADMM [62], the
projected gradient descent with `1-norm and the proposed method with the two regularizers. It is
observed that both GLE-ADMM and the baseline projected gradient descent with `1-norm achieve
the best performance in terms of sparsity, relative error and F-score when λ = 0, which defies the
purpose of introducing the `1-norm regularizer. In contrast, the proposed methods enhance sparsity
when increasing λ. It is observed that, with λ equal to 0.1 or 0.25, the proposed methods achieve the
true number of nonzero edges, and an F-score of 1, implying that all the zero and nonzero edges of
the true graph are correctly identified by the proposed methods.

Figure 3 shows that the proposed methods always outperform both GLE-ADMM and the baseline
projected gradient descent with `1-norm in terms of sparsity, relative error, and F-score under different
samples size ratios.
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(a) (b) (c)

Figure 4: The learned graphs using the 2019-nCoV data set by (a) GLE-ADMM, (b) NGL-SCAD (proposed
method), and (c) NGL-MCP (proposed method). The computational time for GLE-ADMM, NGL-SCAD and
NGL-MCP are 2.9, 0.7 and 0.8 seconds, respectively, conducted on a PC with a 2.8 GHz Inter Core i7 CPU and
16 GB RAM. The regularization parameter is set as λADMM = 0, λSCAD = 0.6, and λMCP = 1.2.

4.2 Real-world Data

We conduct numerical experiments on the 2019-nCoV data set1 from 98 anonymous Chinese patients
affected by the outbreak of 2019-nCoV on early February, 2020. The features include age (integer),
gender (categorical), and location (categorical). The label is a binary variable representing the life
status of patients, alive (green) or no longer alive (red). Our goal is to construct a graph from the data
features. To this end, we first pre-process the feature matrix so as to transform the categorical features
into numerical ones via one-hot-encoding, and obtain a feature matrix X with the dimension 98× 32,
i.e., p = 98 and n = 32. We then compute the sample covariance matrix and learn the graphs.

Figure 4 shows that the benchmark GLE-ADMM2 is unable to impose sparsity, diminishing
interpretation capabilities of the graph severely. On the other hand, the proposed methods NGL-
SCAD and NGL-MCP obtain a sparse graph with clearer connections. Note that the 2019-nCoV
data consists of two groups, red and green nodes. It is natural to assume that the nodes belonging to
different groups are dissimilar from each other, while the nodes in the same group are similar. In this
sense, the performance of our learned graphs in Figure 4 are significant, because most connections
are between nodes within the same group, and only a few connections (gray edges) are between nodes
from distinct groups. The learned graphs possibly provide guidance on priority setting in health care
because green nodes (patients alive) that have stronger connections with red nodes (patients that
passed away) may suffer a higher health risk.

It is worth mentioning that the real-world data sets may not exactly follow the Laplacian constrained
GGM. In the case of the data following Laplacian constrained GGM, the formulation (3) can be
viewed as a regularized maximum likelihood estimation of the precision matrix. In a more general
setting with non-Gaussian distribution, (3) can be related to the regularized log-determinant Bregman
divergence optimization, and the learned graph weights can quantify the similarity between nodes.
This is because the trace term in (3) can be written as Laplacian quadratic [12, 22, 24], which tends
to assign a large weight between nodes if their signal values are similar.

5 Conclusions

In this paper, we have considered learning a sparse graph under the Laplacian constrained Gaussian
graphical model. We have proved that a large regularization parameter of the `1-norm leads to
learning a complete graph. Then we have proposed a nonconvex penalized maximum likelihood
method by solving a sequence of weighted `1-norm regularized sub-problems, and have established
the order of the statistical error. A projected gradient descent algorithm has been designed to solve
the sub-problems. Numerical results involving synthetic and real-world data sets demonstrate the
effectiveness of the proposed method.

12019-nCoV data is available in a queryable format via the R package nCov2019 which lives on GitHub:
https://github.com/GuangchuangYu/nCov2019.

2The code for GLE-ADMM lives at https://github.com/dppalomar/spectralGraphTopology.
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Broader Impact

This paper provides an unexpected behavior of the `1 norm in learning sparse graphs, which may
greatly benefit the community of signal processing and machine learning over graphs. This paper
further provides a solution to solve the issue with theoretical guarantees.
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