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Student’s ¢ VAR Modeling With Missing Data Via
Stochastic EM and Gibbs Sampling

Rui Zhou"”, Junyan Liu

Abstract—The vector autoregressive (VAR) models provide a
significant tool for multivariate time series analysis. Owing to
the mathematical simplicity, existing works on VAR modeling are
rigidly inclined towards the multivariate Gaussian distribution.
However, heavy-tailed distributions are suggested more reason-
able for capturing the real-world phenomena, like the presence
of outliers and a stronger possibility of extreme values. Further-
more, missing values in observed data is a real problem, which
typically happens during the data observation or recording pro-
cess. Although there exist numerous works on VAR modeling with
heavy-tailed distributions, they assume the availability of complete
data and are not applicable in the presence of missing data. In this
paper, we propose an algorithmic framework to estimate the pa-
rameters of a VAR model with heavy-tailed Student’ s ¢ distributed
innovations from incomplete data based on the stochastic approxi-
mation expectation maximization (SAEM) algorithm coupled with
a Markov Chain Monte Carlo (MCMC) procedure. We propose
two fast and computationally cheap Gibbs sampling schemes, both
based on MCMC procedure. The algorithms developed are effec-
tive in capturing the heavy-tailed phenomenon and being robust
against outliers and missing data. In addition, owing to their low
computational complexity, the algorithms are amenable for high-
dimensional and big data applications. Extensive experiments with
both synthetic data and real financial data corroborate our claims.

Index Terms—Chain monte carlo (MCMC), heavy-tailed
innovations, missing values, SAEM, Markov, VAR model.

I. INTRODUCTION

HE autoregressive process is a simple mathematical struc-
T ture widely used in the study of time series data [1]. A
univariate autoregression is a single-equation, single-variable
linear fit in which the present value of a variable is explained by
its own lagged values. On the other hand, a vector autoregression
(VAR) is a system of N-equation, N-variable linear model in
which each variable is in turn explained by its own lagged
values, plus current and past values of the remaining N — 1
variables. More precisely, a VAR model of order or lag p, namely
VAR(p), explains the current observation of N variables as the
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affine transformation of the previous p observations plus some
innovation noises, i.€.,

p
yi =0+ Y Piyiit+er, (1)

i=1

wherey; € R¥ is the t-th observation of N time series variables,
¢, € RY isaconstant vector, ®; € RV*N j =1,... parethe
autoregressive coefficient matrices, and e, € RY is the innova-
tion noise [2]. This simple setup provides a systematic way to
capture and analyze the rich dynamics in multivariate time series.
The vector autoregressive (VAR) models constitute an important
tool for multivariate time series analysis, and are widely used
for data description, forecasting, structural inference, and policy
analysis [1], [3]-[5].

Classical VAR modeling is rigidly inclined towards the multi-
variate Gaussian distribution, possibly owing to the simplicity in
the mathematical analysis. The maximum likelihood estimation
(MLE) method for estimating the parameters of a Gaussian
VAR has been well studied [2]. However, it has been recognized
and widely accepted that the empirical observations in various
applications do not fit the Gaussian assumption, e.g., financial
time series data [6], internet data [7], etc. The traditional method
based on Gaussian distribution assumption on innovations is not
appropriate for these applications. Furthermore, the Gaussian
based methods are also not reliable to work under the pres-
ence of outliers [8]. The outliers are now ubiquitous in the
majority of applications [9]. For example, sensors might return
unreliable data because of the impulsive noise [10], the stock’s
return might be incorrectly recorded as 200% after a reverse
three-for-one stock split as its price is tripled accordingly in
market [11].

In this regard, using some heavy-tailed distributions, e.g., Stu-
dent’s t distribution, are shown to offer a more viable alternative
for modeling real-world phenomena and tackling the spurious
effect of outliers, particularly because their tails are non-thin and
hence more realistic. The application of Student’s ¢ distributions
has shown promising results in a wide variety of areas such
as cluster analysis, discriminant analysis, multiple regression,
robust projection indices, and missing data imputation [12]—
[16]. Also for the VAR analysis modeling, the innovation with
Student’s ¢ distribution has shown promising results [16].

Furthermore, missing values typically happen during the data
observation or recording process, wherein values may not be
measured, values may be measured but get lost, or values may be
measured but are considered unusable. For example, the sensors

1053-587X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 08,2020 at 01:08:28 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-9463-0390
https://orcid.org/0000-0002-3505-8697
https://orcid.org/0000-0003-0415-8625
https://orcid.org/0000-0001-5250-4874
mailto:rui.zhou@connect.ust.hk
mailto:jliubl@connect.ust.hk
mailto:palomar@ust.hk
mailto:ksandeep@iitd.ac.in

ZHOU et al.: STUDENT’S t VAR MODELING WITH MISSING DATA VIA STOCHASTIC EM AND GIBBS SAMPLING

might fail to upload the data from time to time because of a
local power cut or communication interruption [17]. The issue of
missing data also arises in the joint analysis of multiple univari-
ate time series sampled at different frequencies. In financial data
analysis, we usually have to jointly consider several variables
that may have different sampling frequencies, e.g.,the stocks’
return can be recorded daily while some aggregate macro indi-
cators are available only at monthly, or even annual frequencies
[18].

In theory, data are typically assumed complete, and algorithms
are designed for complete data which may be not suitable for
data with missing values [19]. There are some approaches to
deal with missing values, but they are either statistically blind
(e.g., discarding missing values, spline, interpolation that could
destroy the statistics of the data), or are based on the Gaussian
assumption [20], and not appropriate for heavy-tailed data. Thus,
apart from heavy-tailed phenomena and the presence of outliers,
another major obstacle in the analysis of VAR modeling is the
issue of missing data. Existing methods, however, have not been
able to tackle these challenges jointly. Very recently, the authors
in [13], [21] have tackled these issues, but they are limited to the
univariate model. The generalization of the univariate case to
the multivariate case is non-trivial, due to the presence of cross
relations between multiple variables.

To this end, the major goals of this paper are to develop
MLE-based methods for parameter estimation of the Student’s ¢
VAR model with missing values. The likelihood of the Student’s
t VAR model with missing values does not lead itself to a closed-
form expression, thus we utilize the expectation-maximization
(EM) method [22]. To tackle the unavailability of a closed-form
expression for the expectation, we resort to the stochastic ap-
proximation EM (SAEM) method, which performs the expecta-
tion step based on the stochastic approximation using samples
of latent data generated from the distribution conditional on the
observed data and current parameter estimates. Designing sam-
pling schemes is critical to the effective implementation of the
proposed framework, we propose two fast and computationally
cheap Gibbs sampling schemes, both based on the Markov chain
Monte Carlo (MCMC) procedure. The algorithms developed are
effective in capturing the heavy-tailed phenomenon and robust
against outliers and missing data. In addition, owing to their
low computational complexity, the algorithms are amenable for
high-dimensional and big data applications. Extensive experi-
ments with both synthetic data and real financial data corroborate
our claims.

The paper is organized as follows. We first give the prelim-
inary knowledge on the multivariate Student’s ¢ distribution in
Section II and then pose the problem formulation in Section III.
In Section IV, we derived our algorithm based on the SAEM
algorithm to solve the proposed MLE problem. In Section V,
we propose two Gibbs sampling schemes for generating realiza-
tions of latent data. The complexity analysis of the two Gibbs
sampling schemes is discussed in Section VI. The numerical
experiments on synthetic data and real financial data are given
in Section VII. Finally, the conclusion of this paper is given in
Section VIII.
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II. PRELIMINARY KNOWLEDGE ON THE MULTIVARIATE
STUDENT’S ¢t DISTRIBUTION

The multivariate Student’s ¢ distribution is a widely used
heavy-tailed distribution. The /N-dimensional multivariate Stu-
dent’s ¢ distribution, denoted as MVT(u, X, v), has the proba-
bility density function (pdf)

fMVT <X7 M, Ea V)

I (“5%) 1 T -1
= N N 1 1+- - b - ,
O L - (x—n) (x — )
(2)

where v is the degrees of freedom, X is the IV x N positive
definite scatter matrix, p is the N-dimensional mean vector and
['(a) = [;°t(@ Y exp(—t)dt is the gamma function [12]. The
smaller v is, the heavier the tail is. Note that the multivariate
Gaussian distribution is a special case of multivariate Student’s
t-distribution with v — +o0. Interestingly, the above multivari-
ate Student’s ¢ distribution can be represented in a hierarchical
structure as

_viN
2

i 1
x|r ‘AN (u, 2) :
T

i v ov
7 "~% Gamma (5, 7) ,

where N (u, X) is the multivariate Gaussian distribution with

mean vector p and covariance matrix . Gamma(a, b) denotes

gamma distribution of shape a and rate b with pdf

3

—br)

_ papla—n) R (bT), 4
fom (1) T Ta) 4)
The hierarchical structure will play an important role in our
analysis and algorithm design, discussed in detail in Section I'V.

III. PROBLEM FORMULATION

Suppose we have observations from an /N-dimensional time
series y1,¥ya2, ..., yr following a VAR model of order p as in
(1). Collecting all the coefficients in ¥ € RN*(NpH+1) a5 ¥ =
[y @1 -+ ®,] and denoting by x; = [1,y7, - ,yF 1],
the VAR model of order p can be compactly written as:

yi = WX + €. (5)

where ; € R" is the innovation noise following an i.i.d. pro-
cess. To model the real world phenomena more closely, we as-
sume €, in (5) to follow a zero-mean N -dimensional multivariate
Student’s ¢ distribution, i.e., MVT(0, 3, v).

We are interested in estimating the unknown parameters using
the MLE method. Given all the parameters ¥, 3, and v, the
distribution of y; (¢ > p) conditional on all the preceding data
Fi—1, which consists of y1, y2, ..., ¥:—1, only depends on the

previous p samples y;—p, ..., y¢—1, i.€.,
p (Yt|‘Il7 27 V’]:t—l)
=p (yt“Il7 27 V\Yt—py--- a}’t—l)

= fuvr (Yo ¥x-1, 5, v)
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Fig. 1. The datamatrix Y = (Yo, Ym), where Y consists of the observed

data marked with purple blocks, while Ym consists of the missing data marked
with black blocks.

D ()

(vm)N det (Z)T (%)

1 Ty -5
x {1+ > (ye —Ox1) 7 (yr — ¥x4 1) ,
(6)

Denote by 8 = (¥, X, v) € O the unknown parameter set with
® :={0|X >~ 0,v > 0}, where 3 > 0 means X must be a
positive definite matrix, and Y = [y1,...,y7] € RV*T the
complete time series data matrix. Note that we are not enforcing
stationarity of the VAR process. But it can be considered by
introducing extra constraints on W [23]. Ignoring the marginal
distribution of yy,...,y,, the (conditional) log-likelihood of
the observed time series is

ayt1)> . (7)

In many real world applications, however, the observations are
not fully recorded or available resulting in partially observable
data. For an illustration see Figure 1.

Denote by Y, the observed data and Y, the missing data.
We can then write the log-likelihood of the observed data as

1(6;Y,)

T
= log (/ H p(Yt|‘I’,2,V,Ytp7--~,Yt1)de>
t

=p+1

T
I pril®. S vy sy,
t=p+1

1(6;Y) =log <

T
= log (/ I Auvr e ex0,2,0) de) N )

t=p+1

The MLE problem for the Student’s £ VAR model with missing
data is formulated as

maxgmlze 1(6;Y,). 9)

The problem (9) is extremely challenging, with the difficulty
stemming from the integral in (8) that does not have a closed-
form expression. The MLE problem of the multivariate Student’s
t parameters with missing data has been tackled traditionally
via the expectation-maximization (EM) approach, but these are
limited to the i.i.d data model [12]. Developing EM-based ap-
proaches for modeling the Student’s ¢ VAR model under missing
data is extremely challenging and still missing in the literature.
The aim of this paper is to bridge the gap in the literature and
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develop an EM-based algorithm to estimate the parameters of
the Student’s ¢ VAR process under missing data. But before that,
some background on the EM algorithm and its variants are given
in Appendix A.

IV. PARAMETER ESTIMATION OF STUDENT’S ¢t VAR MODEL

Here we derive our algorithm to estimate the parameters
6 = (¥,X,v) of the Student’s ¢ VAR model based on the EM
type algorithm. When applying the EM type algorithm, the
selection of latent variables plays an important role. For the
MLE problem (9), if we treat only the Y, as latent variables, it
is still difficult to obtain the distribution p(Z|Y,0®)), and then
the expression of the subsequent Q(0|60%)) will become too
difficult to obtain. Therefore, we incorporate the hierarchical
structure of multivariate Student’s ¢-distribution to avoid such
dilemma. Since £, ~ MVT(0, 2, v), we can represent €, as

i, 1
el BTN <0, 2) ,

Tt

Ty il Gamma (U V) . (10)

2’2
Then we can develop an EM type algorithm to solve the MLE
problem (9) by regarding both the missing data Y, and the
mixture weights 7 = [741,...,7r]7 as latent variables.

A. E Step

The complete data log-likelihood can be expressed as in
equation (11) shown at bottom of the next page, where the items
independent of @ are considered as a constant,

_ TY QTYY TYY
MO - [SO SO,l e SO,p ] ’
Ty\T T
e &)
T, T, T
siY STy ... sTY (12)
M, = . . . . )
TY TYY TYY
Sp Sp,l Sp,p

h(s(Yo,Ym,T),0) contains the items depending on 6 and
is linear in s(Yo, Ym, 7) for a given 0, and s(Yo, Ym,T) =
(s87 57 {s]¥}, {S;37}) is the collection of minimal suffi-
cient statistics with

T
s1°87T = Z log 74,
t=p+1
T
st = Z Tt,
t=p+1
T
- .
siy: E Ttytfivz:()v"'apv
t=p+1
T
YY _ T o
S = > myiiyl; ii=0,...,p.  (13)
t=p+1

Then, the expectation of the complete data log-likelihood
1(0; Yo, Ym, T) over the latent data X, and 7 can be expressed
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as There is no closed-form expression for p(Ym, 7 | Yo, ), and
thus, we cannot obtain an expression 51 in closed-form. It

(9|0(k)) makes the subsequent double integral rather complicated and

o [1(6; Yo, Yo, 7)] difficult. Therefore, instead of pursuing the exact expression of

(Y, 7¥o,600) o nm 5(k+1) ' we turn to the SAEM-MCMC algorithm, which gener-

/ 1(0;:Yo, Ym,T)p (Ym 7| Yo O(k)) dYmdr ates L samples Oflatentvariables{(Yr(nk+1’l),-r(kﬂ*l))}l:l’__’L
7 7 ’ 7 from the Markov chain, and approximate the 5 1) by a stochas-

(k)) tic approximation. More specifically, the expected minimal suf-
/ / s (Yo, Ym,7),0)p (Ym’ 7 Yo,07) dYmdr ficient statistics 5(**1) can be approximated by

+ t.
cons Sk _
& L
=h </ $(Yo,Ym,T)p (Ym,‘r | Y,, 0" )) dedT,9> 30 Jr7(k) (i ZS (YO,Y,(T]k+1’l),T(k+1’l)> - g(k)) .
+ const. =1 a7
=h (§(k+1),0) + const. (14)

Then we can have the approximation of the expected log-

likelihood
where

Q <0|0(k)> =h (é(k+1), 0) + const. (18)
SR _ / 5 (Yo, Y, 7)p (Y, | Yo,6%) d¥mdlr.

. a5 B m Step
Therefore, the computation of (6 0( )) actually reduces to the o o
calculation of 5*+1) To obtain the closed-form expression for After obtaining the approximation of the expected complete

the expectation 5t1) we need to first obtain the distribution data log-likeliihoo.d fupction .Q(Qw(k)l , We(k():an update the
(Y, 7 | Yo, B(k)) and then compute the double integral. The parameter estimation via maximizing Q(0]0'"’) over 0:
p(Ym, 7 | Yo, B(k)) can be expressed as

61 = argmax Q (9|0<’€>) , (19)
b (Ym’T | Y°’0(k>) with
p (Y, Yo, | 6%) o (016™)
- Y, | 6% _
p(Yolo®) = (T —p) {Slog5 —logT(5) } = — log (det (%))
Yo, Yo, 7| 6" Ul opan (k .
o<pg m OVT| ) +§(<81g )(+1)_(s )(k+1)>
y b Z*1
] 5 2 (r)? lexp (—%m) B 1Tr{21 <(S,,.xx)(k+1)
t=pt 1 % det (277X /1) 2 0,0
coxp (<2 (v - ) B (e wx)). g~ MR e eT) } + const. 20)

v b))
16 Yo Yo 7) = losp (Y.716) = o [] (o (5. 5) f (vrwen. 5 )

2
t=p+1

T v)2 T 2l ex —5T T
— Z log{ (2) ( ) p ( ) exp (_5 (Yt o l:[,)(1571)T 2—1 (yt _ ,I,th)>}

i ) det (273 /1)

T v r-1 v
— Z log{ (2) (Tt) 2 T exp ( Tt) exp (—%Tr (271 (}’tytT o QYthlllI’T + ‘I’thxtTl‘I’T)))}

' (%) \/det (2n3/7,)

t=p+1
a N T, v v v v
_ o It _ _ - 7y - - logTm _ T
_t§1(210g2ﬂ' loth)+(T p)(Qlog(2) IOg(F(Q)))+2(S =)
— = Plog (det (2)) — %Tr (=71 (S0YY — 2Mo ¥ + M, U T))
=h(s(Yo,Ym,T),0) + const. (11)
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The optimization of parameter v is decoupled with the optimiza-
tion of (¥, X). Thus, v can be updated as

S ERTORCIE)
v argmyax{2 g5 og 5

+ % ((SlogT)(k+l) - (ST)(kJrl)) }a
2y
which admits a unique solution [12, Proposition 1], and can be
easily solved by the one-dimension search, e.g., the bisection
method. The update for ¥ and 3 can be easily found by setting
the derivatives of Q(0|0®)) with respect to ¥ and X to zero:

80 (9|0<k>)
At =

0Q (016™) p_,
Ty (kD)
5521 ) = = - o {(sp) " —am e

+ oM@

— MY s temTY — o

j=o
(22)
which gives us

1

P = MY (M) 23)

2(/€+1) — 1 {(Sg}ax) (k+1) M((Jk+1) (q,(k-l—l))T
T—-p ’

_ kD) (Mékﬂ))T

] T
+ kD pp(EHD (\Iﬂk“)) } (24)

The complete SAEM-MCMC algorithm is to perform the E
step and M step iteratively until the convergence, that is:
1) Stochastic E step: generate L  realizations
(YLD 241D with [ = 1,.. ., L, and then evaluate
§(%) as in (17).
2) M step: obtain 8%+ as in (21), (23), and (24).

C. Maximization Step With Partly Known Information

The parameters might be partly known under some circum-
stances. For example, v can be set as 400 if one assumes that

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

the innovations are Gaussian distributed, and ®; may be set
as I in the random walk [24]. If v or X is known a priori, we
shall skip their update in the maximization step. However, when
the parameter ¥ = [¢ ®1 --- P, ] is partly known, i.e., one
or more items in collection {¢,, @1, ..., P, } are given as prior
knowledge, the corresponding parameters should be fixed during
the iterations [25]. Then the update scheme in (23) will not be
applicable any more. We can easily handle this case by simple
matrix manipulation: given the prior knowledge on ¥, we can
always find a permutation matrix P € R(NPHD*(Np+1) to make
the columns interchanged on W, satisfying

(¥, ¥, | = TP, (25)

where lill is the unknown part in \;l and \ilg is known and ﬁx~ed
all along. Then we can write the Q(0]|0%)) with respect to ¥
as in equation (27) shown at bottom of this page, where

M e () () |

(v, (M)
(wr),, (M),
(26)

r(k+1 k+1
MY — pTM P —

Then we can set the derivative of Q(¥,|6™)) with respect to
W, to zero:

s (00)

_ -1 (k+1) -13 or(k+1)
5 > MY 42, (1\/11 )

11

+3 ¥, (Mg’””)m =0.
) (28)
Then the update for ¥, is
- - . /- - -1
\png) _ {M(()k+1) — ¥, (Mgk+1)) } (Mgk+1) .
21 11
(29)
The W can be recovered by

wttD) — [ gD g, | PT. (30)

V. GENERATION OF REALIZATIONS

In this section, we discuss the way to generate samples of
latent variables (Ym, 7). As the joint pdf of (Y, 7) shown in

Q(10®) = 3T {=" (-
e

g {z 1( oMk+Up | Y ¥

2 2

:% {2 1( PLY IS 'I';T
nf(

+ [ ¥, ¥, PTMVP
@]

[‘1’1 } M(k+1) [ 1
¥,

= (=2 (Mg )1 HEE (M‘“”)11 ¥, + 20,

st (—oM{I T 4 \11M<k+1>\1:T)} + const.

= (—2M{ VPP T 4+ wPP M VPPT ) |+ const

T
T
! @7

) } + const.

4+ const.

)

—~ T R KR

1\~/I§k+1)) o1 \illT) } + const.
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(16) is complicated, and we cannot sample from it directly, we
can generate samples of (Y, 7) in a MCMC procedure by the
Gibbs sampling method. The Gibbs sampling is a MCMC algo-
rithm that draws samples from a joint distribution by generating
a sequence of realizations from the conditional distributions
alternately. The sequence of realizations is a Markov chain, and
they approximate the original joint distribution when reaching
the stationary distribution.

A. Gibbs Sampling Between T and Entire Y

One way to preform the Gibbs sampling is dividing the latent
data into two blocks, i.e., 7 and Y. Then, we can use the Gibbs
sampling by drawing 7 and Y, conditional on each other alter-
nately. More specifically, given the current estimation of param-
eters %) and the current sample (7 (%) Y,(nk’l)) in [-th Markov
chain, we can generate the next sample (7*+10), Y,(nkH’l)) via
the following two steps:

1) sample 7 1D from p(T\Yﬁnk’l), Y,,0")

2) sample Y from p(Ym|r 1D v, 0)

As given in Lemma 1, sampling 7+ is simply drawing
random samples from the gamma distribution. However, the
distribution of p(Ym|T*+1D Yo, 0%)) is still difficult to be
directly identified. Therefore, we can derive such distribution in
a two-stage way:

1) first figure out the distribution of {y,}{_,,, conditional
on T, 0, and {y;}}_;, which turns out to be a multivariate
Gaussian distribution as in Lemma 2;

2) then the missing data Y in {y;}/{_,, can be easily in-
ferred as a multivariate Gaussian distribution from Lemma
3.

Lemma 1: Given'Y and 6, the mixture weights are indepen-

dent from each other, i.e.,

p(r[Y,6) H p(n]Y.0). 31)
t=p+1
In addition, 7 follows a gamma distribution:
7[Y, 6 ~ Gamma (u-;N7 V+()’t*‘l’xt71)T2271(th‘I’xt—l) .
(32)
See Appendix B. |
Lemma 2: Given T,y,, and 6, we have
ol 30~ N (2.5, (33)
Where S’p = [y'{7 e >y17;}T’ S’*p = [Yg{»h y§+2a e aY%]T,
1-th fragment of length NV in fi is
(Z B) gt B3y 09
[NV]
and (i, j)-th block matrix of dimension N x N in X is
~ min(z,5) 1 ‘ ‘ T
2) - B 9), . % ( B¢ ) . (35
(®)en= 2 7 B D= (B ) 09
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Algorithm 1: SAEM-MCMC for Student’s ¢ VAR Param-
eter Estimation by Gibbs Sampling Between 7 and Entire
Ym.

1: Initialize 8 € © and Y

2: fork=0,1,2,...do

3: Simulation: generate L realizations by first sampling
7(E+1LD from p(7'|Yr(nk’l),Yo, 6™)), and then
sampling Y9 from p(Y|rFH1D Y, 0F)).

4: Stochastic approximation: evaluate 5(*) as in (17).

Maximization: update 01 agin (21), (23), and

(24).

6: if stopping criteria is met then

7 terminate loop

8

9

forl=1,2..., L.

91

end if
end for

with (x)() being the first NV elements of the vector x, (X)n
being the upper left N x N block of the matrix X, and

S, Py P,
In Oy - +-- Oy
B On IN On - On (36)
Oy -+ --- Iy Oy
Proof: See Appendix C. |

Lemma 3: [26] Assume (a, b) oy N(p, X), then we have

i.i.d
a ~ N(H’avza)a

ii.d
b|Cl, ~N (/’l’b\aa 2b|a,) y 37
where p1 and Xy, can be written as
Hpja =ty + Sp.a X" (@ ),
Ypla = Xp — Sba2q Tab (38)

Finally, we find that the Gibbs sampling between 7 and
entire Y, is simply drawing the random samples from gamma
distribution and Gaussian distribution separately. Then the com-
plete SAEM-MCMC algorithm for estimating the parameters of
Student’s ¢ VAR model is given in Algorithm 1.

Parallel Implementation: As given in Lemma 2, sampling
the entire Yy, involves the calculation of mean and covariance
matrix ofa N x (T — p)-dimensional Gaussian distribution and
the subsequent drawing the realizations from the conditional
Gaussian distribution. The computational cost of such oper-
ation is expected to be very heavy in practical applications.
For example, for the financial data in daily or even higher
frequencies, 1" could easily reach more than 103, and then the
computational cost of the previous sampling scheme becomes
unacceptable. Instead, we can accelerate the sampling procedure
by first partitioning the missing data into groups wrapped by at
least p consecutive fully observed samples before and after (if
available) themselves, and then sampling the Y, inside each
missing group in parallel. For example, as shown in Figure 2, we
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Fig. 2. An example of partitioning the missing data into groups for VAR(1)
model parameter estimation.

can partition out two missing groups from Y, in Figure 1 when
we estimate the parameters of a VAR model with p = 1. Lemma
4 guarantees that the distribution of missing data are inter-group
independent. More specifically, to sample the missing data in
second missing group of Figure 2, we can apply the following
two steps:

1) identify the distribution of {y;};" m2+p conditional on T,
6, and {y; ;’lel,p as a Gaussian dlstrlbutlon with the
employment of Lemma 2 in each partitioned missing
group,

2) sample missing data in {y;};*%,
sian distribution using Lemma 3.

The missing data in the first missing group of Figure 2 can be

sampled by easily repeating the above two steps but setting m; =
4 and my = 5. The total computational cost can be expected to
reduce as the length of each group has been significantly smaller
than the original dataset.

from conditional Gaus-

Lemma4: Givenm; < ms, T, Yo, and 0, if {yt}?lzl,;llfp and
{y:}/22P, | are fully observed, we have
p ({yem}2,, 7.6, Yo)
=p ({yt,m}{fm1 7,0, {yt,o};":Q,If’,p) . (39

where y; m and y, o are the missing data and observed data in
Y+, respectively.
Proof: See Appendix D. |

B. Gibbs Sampling Among {T.yp+1.m, - - -
Operation

. yT.m}: An Atom

We have given a Gibbs sampling scheme in the previous
section, which works by employing Gibbs sampling between
T and entire Y,. The computational cost of sampling the entire
Y, can be reduced by partitioning the data into several missing
groups according to the rule and then sampling missing data
in each missing group in parallel. However, in some extreme
cases, we may meet the consecutive missing pattern, making
it impossible to partition the Yy, into more than one missing
group or some partitioned missing groups are still significantly
large. For example, as in Figure 3, the Gibbs sampling in missing
groups can not help reduce any computational cost in this case.
We can divide the latent data by a finer grained division as T
and {y;m}._;, and then employ the Gibbs sampling among
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Y1 Y2 ¥3 Y2 Y5 Ve Yr

Fig. 3. Anexample of observed Y with consecutive missing values.

Algorithm 2: SAEM-MCMC for Student’s ¢ VAR Param-
eter Estimation by Gibbs Sampling Between 7 and Y,
Atoms.

1: Initialize ®) € © and Y,(T?"l) forl=1,2... L.

2: fork=0,1,2,...do

3: Simulation: generate L realizations by first sampling
7LD from p(r|YED, Yo, 0%), and then

sampling y(-k LD

(k+1,0)
im  conditional on {Yt iy }t s

{y(k 1 e 1. Yo, 7LD and 0% for
j=p+1,...,T.

4: Stochastic approximation: evaluate §) as in (17).

5: Maximization: update 0% +D agin (21), (23), and
(24).

6: if stopping criteria is met then

7 terminate loop

8: end if

9: end for

these blocks. We call such sampling scheme by the atom sam-
pling operation. More specifically, given the current estimation
of parameters 8(*) and the current sample (70, YD) in
[-th Markov chain, we can generate the next sampler via the
following steps:

1) sample 7+ from p(T|Y(k’l Y,,0%)

2) for j=p+1,...,T, sample y(lﬁ'1 D" conditional on

{ (k+1 l)}t L {y(k l)}t—J+1’ Yo, (k+1,l)’ and 8F)

The samphng procedure of y( LD canbe performed by simi-

lar procedure as in previous section: first 1dent1fy the distribution
of {y:}] 7+p conditional on 7, 6, and {y;}/_ jl »» Which can be
easily found as a Gaussian distribution using Lemma 2 by re-
garding {Yt}J —j—p as the first p full observations in a time series
of length 2p + 1, then sample y; m from a conditional Gaussian
distribution. The complete algorithm for SAEM-MCMC method
with atom sampling is given in Algorithm 2.

Remark 5: It should be noted that we can also accelerate the
procedure by first partitioning data into missing groups, and then
performing the atom sampling on missing data inside each group
in parallel. But the totally computational cost should be exactly
the same as performing the atom sampling on the original Y.

VI. COMPLEXITY ANALYSIS

In this section, we give a detailed discussion on the com-
putational complexity of two Gibbs sampling schemes in our
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proposed algorithm. We analyze the per-iteration complexity
of the two Gibbs sampling schemes on Y, i.e., the entire
sampling and atom sampling. In practice, we shall always choose
to perform the Gibbs sampling by partitioning missing groups,
which enable us to do the sampling in parallel without incurring
additional computational cost. Therefore, it is reasonable to
assume that Y, has already been a missing group partitioned
out from the original data. In addition, we assume that Y is
an observed data matrix of Ti, (I < I') observations contain
missing values.

1) Entire Sampling: In each Markov chain of one entire
sampling, we shall first compute the Gaussian moments & and
3. To simplify the computation, we can first compute and store
{B/ }]-T:_(ﬁ’_l, whose computational cost is O(N3p3(T —p —
2)). Then, for computing fi, the cost is O(N?p*(T —p — 1) +
N2(p+1)(T — p)); for computing 3, the cost is O((2N> +
N?)(T — p)?). The computational cost for drawing Yy from
the conditional Gaussian distributionis O(N3(T' — p)?). So, the
total per iteration cost for the entire sampling scheme is about
O(N*p*(T — p) + LN*(T — p)*).

2) Atom Sampling: In each Markov chain of one atom sam-
pling, we can regard the sampling procedure as employing entire
sampling in Ty, short time series of length 2p + 1. Therefore
in each iteration the computational cost for the atom sampling
scheme is O(N3p* + LN3p*Tr,). The above complexity anal-
ysis is consistent with our numerical analysis in Figure 5.

The two Gibbs sampling schemes should be properly chosen
in order to reduce the computational cost as much as possible.
From the above analysis, we recommend to use the atom sam-
pling when the 7" is too large compared with the order number
p. Besides, it can be expected that using the entire sampling can
converge faster in terms of required iterations than using the
atom sampling.

VII. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of our proposed
methods on estimating the Student’s ¢ VAR parameters using
both synthetic data and real data. We first compare the two
proposed estimation methods in term of time usage and estima-
tion error. The robustness of the two algorithms will be further
assessed by feeding the algorithm with corrupted data containing
missing values and outliers. Then in real data experiments, we
make the prediction on stock returns by fitting our proposed
Student’s ¢ VAR model with the historical returns. The dataset
is always partitioned into missing groups when possible.

A. Synthetic Data

We first illustrate the performance of our proposed methods
in synthetic datasets. We consider a VAR(2) model with number
of variables N = 20, the diagonal elements of "¢ and ®§U°
are respectively set as 0.3 and 0.1, and the elements of d)g“e
and off-diagonal elements of ®'"® and &4 are independently
drawn from a uniform distribution on [—0.1,0.1]. The data is
generated with innovations following the Student’s ¢ distribution
with ¢ = 5 and "™ a Toeplitz covariance matrix of the

form (£™€),;; = 0.5/"77/. We also manually set some elements
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Fig. 5. Comparison on time usage per iteration versus the number of samples

with consecutive missing values.

in Y missing in such way: some columns of Y are selected and
10 elements of each selected column are randomly removed.
The missing percentage is defined as the ratio of the number
of picked columns over 7". The SAEM-MCMC algorithms are
implemented with L = 10 Markov chains and the parameters
are initialized as v(©) = 6, (¥ =TI, and ¥®) = [0 T I]. For
the step size, we set 7(’“) =1for1l <k <50and 'y(’“) = %50
for k > 50.
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1) Algorithm Performance: Here we compare our two pro-
posed algorithms in terms of final estimation results and time
usage in each iteration. First, we generate the data with num-
ber of samples 7" = 800 and set missing percentage to 20%
by manually deleting some randomly selected data. Figure 4
shows the square error of the estimated parameters versus itera-
tions. The two proposed algorithms based on different sampling
schemes can finally converge to almost the same results. The
entire sampling method seems to converge faster than the atom
sampling method. However, as we have discussed before, the
computational load of the entire sampling become unacceptable
when 7" grows large. In Figure 5, we set N = 4 and compare the
average per-iteration time usage for sampling of two proposed
schemes. It shows that the entire sampling has advantage over
the atom sampling in terms of computational time when the 7" is
relatively small. Besides, we also observe that the two proposed
algorithms are not sensitive to the initialization in terms of final
estimation accuracy.

2) Robustness To Missing Data: Now we illustrate the ro-
bustness of our proposed algorithms in comparison with other
benchmarks. As we have mentioned in the introduction, the pa-
rameter estimation method assuming the Gaussian VAR model
has been developed [20]. Besides, we consider two simple but
general methods to dealing with missing data: the omit-variable
method and imputation method. The omit-variable method ex-
cludes the variables with missing data from the analysis, i.e.,
removes the term p(y:|¥,3, v,y p,...,yi-1) in [(0;Y) if
any missing data exist in y;_p, ..., y;. The imputation method
replaces the missing data with substituted data and then uses the
imputed dataset to estimate the parameters. We use the popular R
package Amelia, which can be used to generate several imputed
datasets [27]. As suggested in [27], 5 imputed datasets are
probably adequate unless the missing percentage is very high.
The final estimates from the imputation method can be obtained
by taking the average of estimates over all imputed datasets. The
data are generated exactly following the Student’s £ VAR model.
We first set the missing percentage to 20% and compare the final
estimation results versus the number of samples 7. The criteria
of estimation performance is chosen as the mean square error
(MSE) between the final estimate and the true parameters, i.e.,

R
Vo 1 Ur g ple true ||
MSE(&% )_R;‘ﬁTQ T ptue 9 P
. 1 B 7
MSE(¥) = >OI®, - e,
! (40)

where R is number of data realizations and is set to 200 in our
simulation part. In Figure 6, we can see that the MSE of all
parameters decreases when 7' grows large, and our proposed
algorithms show the best performance. Besides, we can see that
assuming Student’s ¢ innovations is always better than assuming
the Gaussian innovations. In Figure 7, we fix T" = 800 and com-
pare the final estimation results versus the missing percentage.
With designed ability to directly handle the missing data, our
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samples (with Student’s ¢ VAR synthetic data and missing percentage 20%).
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centage (with Gaussian VAR synthetic data, number of samples 7" = 800, and
outlier percentage 1.5%).
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Fig.9. Mean square error of the coefficient matrix versus the outlier percentage
(with Gaussian VAR synthetic data, number of samples 7" = 800, and missing
percentage 20%).

proposed algorithms achieve the best performance and are most
unresponsive to missing value.

3) Robustness to Outliers: Now we illustrate the robustness
of our proposed algorithm to outliers. We set 7' = 800 and gener-
ate the data with innovations following the Gaussian distribution,
i.e., with v — o0 in Student’s ¢ VAR model. Then the outliers
are added in this way: some columns of Y are picked and 10
element of each picked column is randomly chosen and set to be
20. The outlier percentage is defined as the ratio of the number of
picked columns over T'. In Figure 8, we set the outlier percentage
to 1.5% and compare the estimation performance versus missing
percentage. It is clear the difference in estimation between
assuming a Gaussian distribution or a Student’s ¢. In Figure 9,
we show the estimation results versus the outlier percentage. It
should be emphasized that when outlier percentage is set as 0,
i.e., the synthetic data is generated following exactly Gaussian
VAR model, our proposed methods can achieve almost the same
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Fig. 10. Quantile-quantile plot of the innovations of real stocks returns.

estimation results as method assuming Gaussian innovation.
Similar to previous simulation, our proposed algorithms can
always achieve the best performance.

B. Real Data

Here we show a practical application of Student’s ¢ VAR
model in predicting the future stocks return. Considering the
daily returns of the three stocks: AAPL, GOOGL, and AMZN
from Jan. 2019 to Oct. 2019 of overall 200 observations (ex-
cluding the weekends and public holidays). The order of VAR
model is selected as p = 1 via Akaike information criterion
[28] by fitting the data with the Student’s ¢ VAR model of
different orders. In Figure 10, we first fit the stock returns using
the Gaussian VAR model and the Student’s ¢ VAR model, and
then plot the quantile-quantile (QQ) plot of the corresponding
innovations versus the fitted Gaussian distribution and Student’s
t distribution. It is obvious that the innovations fits better with
Student’s ¢ distribution.

We use the first 160 observations as the training data and the
last40 observations as the testing data. First, we fit the Student’s ¢
VAR model and Gaussian VAR model with the training data and
obtain the estimated coefficient matrix W. Then, we make the
one-step-ahead predictions for the test data as y; = \ilxt_l with
t =161, ...,200, and measure the mean square prediction error
(MSPE) as 1 3°7% 6, ly: — ¥¢]13. Further more, we corrupt
the training dataset by randomly picking 10% observations and
removing 1 data points in each observation. The fitting procedure
and the prediction using two models are performed again but fed
with the corrupted training data. The one-step-ahead prediction
performances of the models are reported in Table I where the
relative MSPE of each model is calculated by comparing with the
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TABLE 1
COMPARISON OF PREDICTION ON REAL STOCK RETURNS
Methods MSPE Relative MSPE (—rt é’a’ glgef NI
Complete data Gaussian VAR 5.574 x 10~% 93.3% > 0.1 0.096 0.031
Student’s t VAR 5518 x 10~ % 92.4% > 0.1 0.098 0.035
Gaussian VAR + omit-variable 6.150 x 10— % 103.0% > 0.1 > 0.1 0.025
Gaussian VAR + imputation 6.099 x 10~ % 102.1% > 0.1 > 0.1 0.043
Incomplete data Gaussian VAR . . 5.972 X 10:4 100% — — —
Student’s ¢ VAR + omit-variable | 6.478 x 10~ % 108.5% 0.038 0.037 0.058
Student’s ¢ VAR + imputation 6.237 x 10~% 104.4% 0.057 > 0.1 0.042
Student’s ¢ VAR (prop.) 5.674 x 10~% 94.9% 0.077 > 0.1 0.025

Gaussian VAR model method directly fed with incomplete data.
The Diebold-Mariano (DM) test [29] for the null hypothesis of
global equal performances between two predictors is performed
with the following Hj : the candidate method has equal pre-
diction performance as the benchmark Gaussian VAR model
method directly fed with incomplete data. Finally, our proposed
algorithms report smaller MPSEs than those of the methods
not capable of directly handing the missing data or based on
the assumption of Gaussian distributed innovations. Even fed
with corrupted data set, the prediction from our proposed al-
gorithms are still acceptable in comparsion with methods fed
with complete data. Compared with the benchmark method, our
proposed methods achieves significantly different results with
almost 5% smaller MSPE. Besides, with the ability of directly
handling the missing values, Gaussian VAR and our proposed
Student’s ¢ VAR model can provide better MSPE results than
those of methods based on omit-variable and imputation. This
is because omit-variable method ignores part of the measured
data, resulting in the information loss. While imputation method
draws the missing data, which might not follow the statistical
properties of the available time series data.

VIII. CONCLUSION

In this paper, we have considered the parameter estimation
for the VAR model with heavy-tailed innovations and missing
data. We have formulated the MLE problem for estimating the
parameters assuming the innovations follow the multivariate
Student’s ¢ distribution. An algorithmic framework based on
SAEM-MCMC algorithm has been proposed to solve the MLE
problem. In the framework, two sampling schemes have been
proposed to draw the random realizations of missing data. The
two optional sampling schemes are particularly designed for
reducing computational cost under different problem dimen-
sions and missing patterns. We have shown in the numerical
experiments that our proposed framework has great advantage
in resisting the missing values and outliers, and the two sampling
schemes can achieve almost the same estimation results.

APPENDIX
A. EM and Its Stochastic Variants

The EM algorithm is a very powerful iterative algorithm to
solve the MLE problem with missing values or latent variables
[30]. Suppose we have observed the data Y, from a statistical
model described by the parameter set 6, the MLE problem

formulation is

maxjgmize 1(6;Y,), 41)
where 1(0;Y,) = log p(Y,|6) is the log-likelihood of Y, given
6. Sometimes, the objective [(0; Y,) might not have a manage-
able expression since part of the data is missing or some latent
variables cannot be observed. Then it could be very difficult
to directly solve such MLE problem. The EM algorithm was
proposed to deal with this by converting the maximization for
1(0;Y,) into the maximization of a sequence of simpler and
solvable problems. More specifically, denote by Z the missing
data and latent variables, the EM algorithm solves the MLE
problem by iteratively applying the expectation (E) step and
maximization (M) step until convergence:
1) E step: calculate the expected log-likelihood of the com-
plete data (Yo, Z) over the current conditional distribution
of Z given Y, and current estimate of the parameters k).

Q (616M) = /logp(Yo,Z|9)p (21Y0,6%) az,
(42)
where £ is the iteration index.
2) M step: solve the optimization problem to update € as
6+ — argmaxQ (9|0<’€>) . 43)

Actually, the EM algorithm is a particular instance of the more
general majorization-minimization (MM) framework [31].

The EM algorithm is very useful for MLE problems with
latent variables but may have some technical difficulties. One
of the difficulties is obtaining the closed-form expression for
the expectation Q(8/0*)). The Monte Carlo EM (MCEM)
was proposed to tackle such difficulty by approximating the
exact expectation with the sample average of many random
simulations of latent variables [32]. But it is often criticized for
being computationally intensive as it requires a large number of
simulations to approximate well the expectation.

The stochastic approximation EM (SAEM) was proposed to
reduce the number of simulations in the MCEM algorithm [33].
It combines the current simulations with the information in the
previous expectation step. More specifically, the SAEM method
can be summarized by iteratively performing the stochastic E
step and M step:

1) Stochastic E step: first draw L realizations Z(*+1.0)

from the conditional distribution p(Z[Yo, ")) with [ =
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1,..., L. Then calculate the Q(0]0*) by

e

~Q (o)),

where {~} is a decreasing sequence of positive step sizes.
2) M step: solve the optimization problem to update 8 as

(44)

6+ = argmaxQ (0|0(’f)). (45)

When the conditional distribution p(Z|Y,, 6) is very compli-
cated, and the sampling in the stochastic E step of the SAEM
cannot be directly performed, Kuhn and Lavielle proposed to
combine the SAEM algorithm with a Markov Chain Monte
Carlo (MCMC) procedure, which yields the SAEM-MCMC
algorithm [22]. The MCMC is a popular method for sampling
from a probability distribution by constructing a Markov chain.
Suppose the conditional distribution p(Z|Y,, ) is the unique
stationary distribution of the transition probability density func-
tion Ilp, the sampling part of the SAEM is replaced with drawing
realizations Z(*+10 (1 =1,2... L) based on the transition
probability density function Il ) (Z*D,.). For each [, the
sequence {Z(*D}, -, is a Markov chain with the transition prob-
ability density function {II, }. The Markov Chain generation
mechanism needs to be well designed so that the sampling is
efficient and the computational cost is not too high.

B. Proof for Lemma 1
Given Y and 0, the conditional pdf of the T is

p(Y,7]6)
TY,O = — X Y,Te
p(7]Y,0) V(Y [0) p(Y,7(0)
- L eali (vt )
B - t
t=p+1 I (5) v/det (2r%/7) 2
a viN v+0
x H T, 2 1exp < 2 t7t>, (46)
t=p+1

where &, = (y; — ¥x;,_1)" S (y, — ¥x;_;). It implies that
every 7 is independent from each other with

v+ N

_ 1
p(m|Y,0) o7, = exp (—VJ; tn)-

Comparing this expression with the pdf of the gamma distribu-
tion, we get that 7;|'Y, 0 follows a gamma distribution:

(47)

N )
7Y, 0 ~ Gamma vt , v o . (48)
2 2
C. Proof for Lemma 2
Denoting by wy = [yl - -ytT_p_H]T, a=[¢pl,0] c

RN(T=P) and v; = [g;,0] € RV(T-P) we can write the
VAR(p) model into VAR(1) form:

w; = a+ Bw;_1 + vy. 49)
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Through a recursive process based on VAR(1) form, we have

Wpi1 =+ Bwy 4+ vy
Wpt2 = @+ Bwppi +vpio

=a+B(a+Bw, +vy11) + Vi

(I+B)a+B?w, +Bv,1 + vy

(50)
w; =a+Bw;_1 + vy

=a+B(a+Bw; o+ v+ v

t—p—1 t
= Z Bla + Bt’pwp + Z Bt’jvj
=0 j=p+1

<

With the usage of above recursive expression, we can extract y;
as

(G

which shows that the y_,, is sum of a constant vector plus a
affine transformation of a multivariate Gaussian random vari-
ables. Therefore, y_,, still follows the multivariate Gaussian
distribution A (fz, 3) with

() o) = E [xis)

. it+p
—E (ZBJ) ¢o+(Bin)[N]+ > (BHpij)[N] €
=0 (V] j=p+1

(52)

Jj=

i—1
= < Bj> b0 + (Bin)[N],
0 [NV]
(2) i) =E |:(Xi+p - E [XH-PD (Xj+p —E [Xj+p])Ti|
“r jt+p

i+p  j+p

T
:EK 2. 2 BTy, sqs’?)
q=p+1r=p+1

min(i,j)+p

_ Z i(B”P*’J)W]Z((B”P*q)[N])T

-
g=p+1 1

min(4,5)

= Z ! (Biiq)[N]E((Bjiq)[N])T

=1 Tatp

(53)
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D. Proof for Lemma 4

Given 6, 7, and Y, the conditional distribution of

{yem}iZn, is

p ({(vem}2,, I7.6,Yo)
— p(Ym|7'70>Yo)
p ({Yt,m}lilpj,h s {yt,m}f:m2+1 |Ta 07Y0>

xXp (Ym|T7 07 YO)

9 (Y. Yo|7,6) o4
p<Y0|T50)
xp(Ym, Yo|T,0)
T
= H Savr (v Oxe1, 3, v) .
t=p+1
Note here x; 1 = [1,y/ ,,---,y/ ", which implies that

the

distribution of {y;m};=,, depend only on T, 6, and

ma+p
{yt70}t:m17p'
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