Graphical Models in Heavy-tailed Markets

a talk by

José Vinícius de M. Cardoso, Jiaxi Ying, and Daniel P. Palomar The Hong Kong University of Science and Technology

Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual

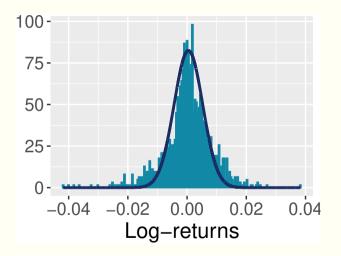
MLE for the Laplacian Matrix

- data generating process: Laplacian constrained Gaussian Markov random field (LGMRF) with rank p-1
- its $p \times p$ precision matrix L is modeled as a combinatorial graph Laplacian
- state-of-the-art¹:

- where $S = \frac{1}{n} X^{T} X$ is the sample covariance matrix
- con: sensitive to outliers or may not be adequate in case X is heavy-tailed distributed

¹J. Ying, J. V. de M. Cardoso, and D. P. Palomar. Nonconvex sparse graph learning under Laplacian-structured graphical model. In Advances in Neural Information Processing Systems (NeurIPS), 2020

Heavy-tails in Financial Markets



S. I. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer-Verlag New York, 2007.

Proposed Formulations

Student-t Graph Learning Formulation

- assuming x follows a Student-t distribution with positive semidefinite inverse scatter matrix Θ modeled as a combinatorial graph Laplacian
- the pdf of x is then

$$p(oldsymbol{x}) \propto \sqrt{\det^*(oldsymbol{\Theta})} \left(1 + rac{oldsymbol{x}^ op oldsymbol{\Theta} oldsymbol{x}}{
u}
ight)^{-rac{
u+p}{2}}, \
u > 2$$

 \blacksquare given n realizations of x, the robustified version of the MLE for connected graph learning is:

$$\begin{array}{ll} \underset{w \geq 0, \Theta \succeq \mathbf{0}}{\text{minimize}} & \frac{p + \nu}{n} \sum_{i=1}^n \log \left(1 + \frac{\mathbf{x}_i^\top \mathcal{L} \mathbf{w} \mathbf{x}_i}{\nu} \right) - \log \det \left(\mathbf{\Theta} + \frac{1}{p} \mathbf{1} \mathbf{1}^\top \right), \\ \text{subject to} & \mathbf{\Theta} = \mathcal{L} \mathbf{w}, \, \mathfrak{d} \mathbf{w} = \mathbf{d}, \end{array}$$

where \mathcal{L} is a linear operator that maps a vector of edge weights w into a valid Laplacian matrix and $\mathfrak{d}w \triangleq \operatorname{diag}(\mathcal{L}w)$

k-component Graphs

- $rank(\mathcal{L}\boldsymbol{w}) = p k$
- Fan's² theorem:

$$\sum_{i=1}^{k} \lambda_{i}\left(\mathcal{L}oldsymbol{w}
ight) = \min_{oldsymbol{V} \subset \mathbb{R}^{p imes k}} \operatorname{tr}\left(oldsymbol{V}^{ op} \mathcal{L}oldsymbol{w} oldsymbol{V}
ight)$$

▶ k-component heavy-tailed graph learning:

$$\begin{array}{ll} \underset{\boldsymbol{w} \geq \mathbf{0}, \boldsymbol{\Theta} \succeq \mathbf{0}, \boldsymbol{V}}{\text{minimize}} & \frac{p+\nu}{n} \sum_{i=1}^n \log \left(1 + \frac{\boldsymbol{x}_i^\top \mathcal{L} \boldsymbol{w} \boldsymbol{x}_i}{\nu}\right) - \log \det^* \left(\boldsymbol{\Theta}\right) + \eta \mathrm{tr}(\mathcal{L} \boldsymbol{w} \boldsymbol{V} \boldsymbol{V}^\top\right), \\ \mathrm{subject \ to} & \boldsymbol{\Theta} = \mathcal{L} \boldsymbol{w}, \ \mathrm{rank}(\boldsymbol{\Theta}) = p-k, \\ \mathfrak{d} \boldsymbol{w} = \boldsymbol{d}, \ \boldsymbol{V}^\top \boldsymbol{V} = \boldsymbol{I}, \ \boldsymbol{V} \in \mathbb{R}^{p \times k}. \end{array}$$

- we employ the alternating direction method of multipliers (ADMM) and majorization-minimization (MM) to find stationary points of the proposed optimization problems
- see our supplementary material for convergence proofs ⊜

²K. Fan. On a theorem of Weyl concerning eigenvalues of linear transformations I. Proceedings of the National Academy of Sciences, 35(11):652–655, 1949.

Datasets and Benchmark Algorithms

Datasets (Log-returns)

- US Stock Market (p = 82 S&P500 stocks, n = 1006 daily observations)
- Foregin Exchange (p = 34 currencies, n = 522 daily observations)
- Cryptocurrencies (p = 41 most traded cryptos, n = 1218 daily observations)

Benchmark Models

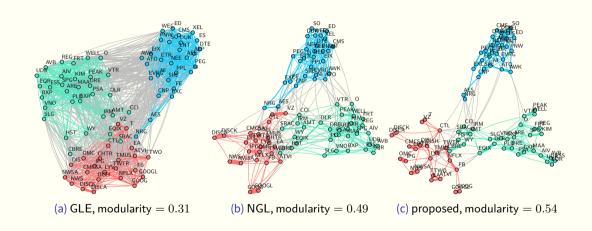
- sparse models for connected graphs: GLE³, NGL⁴
- k-component graphs: CLR^5 , SGL^6

³L. Zhao *et al*. Optimization algorithms for graph Laplacian estimation via ADMM and MM. IEEE TSP 2019.

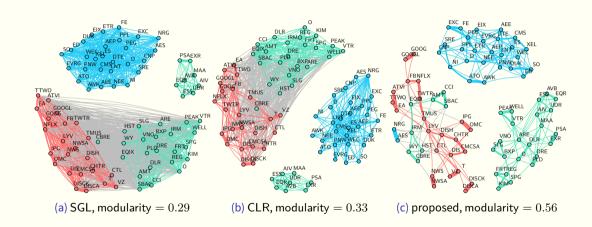
⁴J. Ying *et al*. Nonconvex sparse graph learning under Laplacian-structured graphical model. NeurIPS, 2020.

⁵F. Nie *et al*. The constrained Laplacian rank algorithm for graph-based clustering. AAAI, 2016. ⁶S. Kumar *et al*. Structured graph learning via Laplacian sp<u>ectral constraints. NeurIPS, 2019.</u>

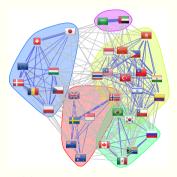
US Stock Market



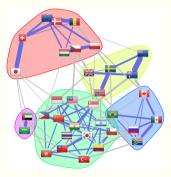
US Stock Market



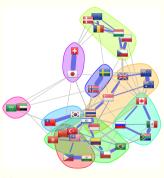
Foreign Exchange



(a) GLE, modularity =0.34

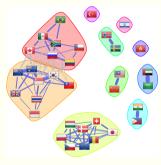


(b) NGL, modularity =0.46

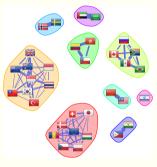


(c) proposed, modularity =0.58

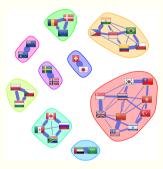
Foreign Exchange



(a) SGL, modularity =0.62

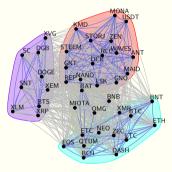


(b) CLR, modularity =0.79

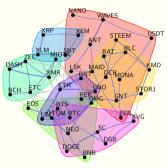


(c) proposed, modularity =0.84

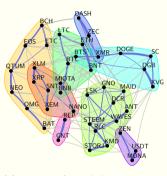
Cryptocurrencies



(a) GLE, modularity =0.19



(b) NGL, modularity =0.40



(c) proposed, modularity =0.52

Cryptocurrencies

