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= data generating process: Laplacian constrained Gaussian Markov random field
(LGMRF) withrankp — 1
= its p x p precision matrix L is modeled as a combinatorial graph Laplacian
> state-of-the-art':
. . . o l T

minimize tr (LS) — log det (L + 511 ) ,

subjectto L1 =0, L;; = L;; <0,
= where § = 1 X'T X is the sample covariance matrix
= con: sensitive to outliers or may not be adequate in case X is heavy-tailed

distributed

'J.Ying, J. V. de M. Cardoso, and D. P. Palomar. Nonconvex sparse graph learning under
Laplacian-structured graphical model. In Advances in Neural Information Processing Systems (NeurlPS),
2020

114




100-
75-
50-

25-

0-
-0.04 -0.02 0.00 0.02 0.04
Log-returns

S. I. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer-Verlag New York,
2007.
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Proposed Formulations



assuming x follows a Student-t distribution with positive semidefinite inverse
scatter matrix @ modeled as a combinatorial graph Laplacian

the pdf of x is then
V+Dp

p(x) x /det™(O) <1 + wT(-)m)_ 2 , v >2

v

given n realizations of x, the robustified version of the MLE for connected graph
learning is:

P z; Lwz; I
minimize —Zlog 1+ —+—— ] —logdet [ ®@ + -11" |,
w>0,0>0 n i1 1% P

subjectto © = Lw, dw = d,

where L is a linear operator that maps a vector of edge weights w into a valid
Laplacian matrix and dw £ diag (Lw) 4




= rank(Lw) =p—k
= Fan’s? theorem:

SN (Lw) = VGH&E}Ln}gi,r{]/ing:Itr (VTE'wV)

'y

k-component heavy-tailed graph learning:

minimize

Vo x| Lwx;
1 14 =TT * T
w>00-0,V  n ; Og< T ogdet* (©) + ntr(LwVV"),

subjectto © = E't_u, rank(@) =p—k,ow=d, V'V =1,V € RP*F,

m

we employ the alternating direction method of multipliers (ADMM) and
majorization-minimization (MM) to find stationary points of the proposed
optimization problems

= see our supplementary material for convergence proofs
2K. Fan. On a theorem of Weyl concerning eigenvalues of linear transformations I. Proceedings of the i

National Academx of Sciencesi 35311 2:652—655i 1949.




Experiments



= US Stock Market (p = 82 S&P500 stocks, n = 1006 daily observations)

= Foregin Exchange (p = 34 currencies, n = 522 daily observations)
= Cryptocurrencies (p = 41 most traded cryptos, n = 1218 daily observations)

= sparse models for connected graphs: GLE3, NGL*
= k-component graphs: CLR®, SGL®

3. Zhao et al. Optimization algorithms for graph Laplacian estimation via ADMM and MM. [EEE TSP 2019.
“J.Ying et al. Nonconvex sparse graph learning under Laplacian-structured graphical model. NeurIPS,
2020.

5 . . . . .
GF. Nie et al. The constrained Laplacian rank algorithm for graph-based clustering. AAAI, 2016. T

S. Kumar et al. Structured graeh learning via LaElacian seectral constraints. NeurIPSi 2019.



(a) GLE, modularity = 0.31 (b) NGL, modularity = 0.49 (c) proposed, modularity = 0.54
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(a) SGL, modularity = 0.29 (b) CLR, modularity = 0.33 (c) proposed, modularity = 0.56
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(a) GLE, modularity = 0.34 (b) NGL, modularity = 0.46 (c) proposed, modularity = 0.58
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(a) SGL, modularity = 0.62 (b) CLR, modularity = 0.79 (c) proposed, modularity = 0.84
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(a) GLE, modularity = 0.19 (b) NGL, modularity = 0.40 (c) proposed, modularity = 0.52
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(a) SGL, modularity = 0.36

(b) CLR, modularity = 0.66
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(c) proposed, modularity = 0.79
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Thank You!!
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