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Shrinking the Eigenvalues of M-Estimators of
Covariance Matrix
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Abstract—A highly popular regularized (shrinkage) covariance
matrix estimator is the shrinkage sample covariance matrix (SCM)
which shares the same set of eigenvectors as the SCM but shrinks
its eigenvalues toward the grand mean of the eigenvalues of the
SCM. In this paper, a more general approach is considered in
which the SCM is replaced by an M-estimator of scatter matrix
and a fully automatic data adaptive method to compute the opti-
mal shrinkage parameter with minimum mean squared error is
proposed. Our approach permits the use of any weight function
such as Gaussian, Huber’s, Tyler’s, or t weight functions, all of
which are commonly used in M-estimation framework. Our sim-
ulation examples illustrate that shrinkage M-estimators based on
the proposed optimal tuning combined with robust weight function
do not loose in performance to shrinkage SCM estimator when the
data is Gaussian, but provide significantly improved performance
when the data is sampled from an unspecified heavy-tailed ellipti-
cally symmetric distribution. Also, real-world and synthetic stock
market data validate the performance of the proposed method in
practical applications.

Index Terms—Elliptically symmetric distributions, m-
estimators, regularization, sample covariance matrix, shrinkage.

I. INTRODUCTION

CONSIDER a sample of p-dimensional vectors {xi}ni=1

sampled from a distribution of a random vector x with
mean vector equal to zero (i.e., E[x] = 0). One of the first
task in the analysis of high-dimensional data is to estimate
the covariance matrix. The most commonly used estimator is
the sample covariance matrix (SCM), S = 1

n

∑n
i=1 xix

�
i , but

its main drawbacks are its loss of efficiency when sampling
from distributions which have heavier tails than the multivari-
ate normal (MVN) distribution and its sensitivity to outliers.
Although being unbiased estimator of the covariance matrix
cov(x) = E[xx�] for any sample lengthn ≥ 1, it is well-known
that the eigenvalues are poorly estimated when n is not orders
of magnitude larger than p. In such cases, one commonly uses

Manuscript received June 17, 2020; revised October 26, 2020; accepted
December 6, 2020. Date of publication December 11, 2020; date of current
version January 5, 2021. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Augusto Aubry. The work
of Esa Ollila was supported by Academy of Finland Under Grant 298118.
(Corresponding author: Esa Ollila.)

Esa Ollila is with the Department of Signal Processing and Acoustics, Aalto
University, FI-00076 Aalto, Finland (e-mail: esa.ollila@aalto.fi).

Daniel P. Palomar is with the Hong Kong University of Science and Technol-
ogy, Hong Kong (e-mail: palomar@ust.hk).

Frédéric Pascal is with the CNRS Université Paris-Saclay, CentraleSupélec,
Laboratoire des signaux et systémes, 91190 Gif-sur-Yvette, France (e-mail:
frederic.pascal@centralesupelec.fr).

This article has supplementary downloadable material available at https://doi.
org/10.1109/TSP.2020, provided by the authors.

Digital Object Identifier 10.1109/TSP.2020.3043952

a regularized SCM (RSCM) with a linear shrinkage towards a
scaled identity matrix, defined as

Sβ = βS + (1− β) tr(S)
p

I, (1)

where β ∈ [0, 1] is the regularization parameter. The RSCM
Sβ shares the same set of eigenvectors as the SCM S, but
its eigenvalues are shrinked towards the grand mean of the
eigenvalues of the SCM S. That is, if d1, . . . , dp denote the
eigenvalues of S, then βdj + (1− β)d̄ are the eigenvalues of
Sβ , where d̄ = p−1

∑p
j=1 dj . Optimal computation of β such

that Sβ has minimum mean squared error (MMSE) has been
developed for example in [1], [2] or in [3] for certain structured
target matrices. A Bayesian approach has been considered in [4].

However, the estimator in (1) remains sensitive to outliers and
non-Gaussianity. M-estimators of scatter [5] are popular robust
alternatives to SCM. We consider the situation where n > p and
hence a conventional M-estimator of scatter Σ̂ exists under mild
conditions on the data (see [6]) and can thus be used in place
of the SCM S in (1). We then propose a fully automatic data
adaptive method to compute the optimal shrinkage parameter β.
First, we derive an approximation for the optimal parameter βo
attaining the minimum MSE and then propose a data adaptive
method for its computation. The benefit of our approach is that
it can be easily applied to any M-estimator using any weight
function u(t). Our simulation examples illustrate that a shrink-
age M-estimator using the proposed tuning and a robust weight
function does not loose in performance to optimal shrinkage
SCM estimator when the data is Gaussian, but is able to provide
significantly improved performance in the case of heavy-tailed
data and in the presence of outliers.

Earlier works, e.g., in [7]–[15], proposed regularized M-
estimators of scatter matrix either by adding a penalty function to
M-estimation objective function or a diagonal loading term to the
respective first-order solution (M-estimating equation). We con-
sider a simpler approach that uses a conventional M-estimator
and shrinks its eigenvalues to the grand mean of the eigenvalues.
Our approach permits computation of the optimal shrinkage
parameter for any M-estimation weight function. Preliminary
study of the proposed estimators has appeared in a conference
proceeding [16].

Finally, we note some related but different approaches to
what is pursed in this paper. For example, covariance matrix
estimation in the low sample size large dimensionality setting
commonly arises in radar signal processing, where often some
constrained, mismatched or structured estimation framework
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of the covariance matrix is exploited. See e.g., [17]–[22]. On
the other hand, there are also other approaches for parameter
tuning of regularized covariance matrix estimators such as cross-
validation or expected likelihood approach [23]–[25].

The paper is structured as follows. Section II introduces the
proposed shrinkage M-estimator framework while Section II
discusses automatic computation of the optimal shrinkage pa-
rameter under the assumption of sampling from unspecified
elliptical distribution. Extension to complex case is discussed
in Subsection III-A. Section IV addresses the most commonly
used M-estimators, namely, the Gaussian weight function, Hu-
ber’s weight function, Tyler’s weight and t-distribution weight
function. We provide simulation studies in Section V and ex-
perimental results in Section VI. In Section VI we validate
the promising performance of the proposed approach both in
the case of real-world and synthetic stock market data. Finally,
Section VII concludes, while proofs of theorems and lemmas
are kept in the Appendix.

II. SHRINKAGE M-ESTIMATORS OF SCATTER

In this paper, we assume thatn > p (except for Gaussian loss)
and consider an M-estimator of scatter matrix [5] that solves an
estimating equation

Σ̂ =
1

n

n∑
i=1

u(x�i Σ̂
−1
xi)xix

�
i , (2)

where u : [0,∞)→ [0,∞) is a non-increasing weight function.
An M-estimator is a sort of adaptively weighted SCM with
weights determined by function u(·). To guarantee existence
of the solution, it is required that the data verifies the condition
stated in [6]. An M-estimator of scatter which shrinks the eigen-
values towards the grand mean of the eigenvalues is then defined
as:

Σ̂β = βΣ̂+ (1− β) tr(Σ̂)

p
I. (3)

Thus Σ̂β is indexed by the shrinkage parameter β ∈ [0, 1]. If
β = 1, then Σ̂β coincides with the conventional M-estimator in
(2) while if β = 0, then Σ̂β equals an identity matrix scaled by
mean of the eigenvalues of Σ̂. Next we discuss the commonly
used weight functions u.

The RSCM Sβ in (1) is obtained when one uses the Gaussian
weight function uG(t) = 1 ∀t. Terminology ‘Gaussian’ stems
from the fact that Σ̂ = S is the maximum likelihood estimate
(MLE) of the covariance matrix of MVN distribution. We return
to this in Section III. Huber’s weight function is defined as

uH(t; c) =

{
1/b, for t � c2

c2/(tb), for t > c2
(4)

where c > 0 is a user defined tuning constant that determines
the robustness and efficiency of the estimator and b is a scaling
factor; see Subsection IV-B for more details. Another popular
choice is MVT-weight function [6]:

uT(t; ν) =
p+ ν

ν + t
(5)

in which case the corresponding M-estimator Σ̂ is also the MLE
of the scatter matrix parameter of the multivariate t (MVT) distri-
bution with ν > 0 degrees of freedom (d.o.f.). We return to this
estimator in Subsection IV-D. Finally, another classic choice,
with nice robustness properties, is Tyler’s [26] M-estimator, in
which case the weight function is

uTyl(t) =
p

t
. (6)

Both Huber’s and MVT-weight function yield Tyler’s weight
function as special cases; namely, for ν = 0, one notices that
uT(t; ν = 0) = uTyl(t) and in the limit case as c→ 0 Huber’s
weight function tends to Tyler’s weight function.

We would like to stress that n > p is a necessary assumption
for all but Gaussian weight functions for a solution Σ̂ to (2) to
exist. We do not include the limit case n = p since any affine
equivariant M-estimator Σ̂ when n = p and data is in general
position is just a scalar multiple of the SCM S, that is, Σ̂ = γS for
some γ > 0 [27]. For example, M-estimator based on Huber’s or
t-weights are affine equivariant. Moreover, note that Theorem
2 in [28] ensures similar results in the large sample regime.
Namely, the following convergence is proved

‖Σ̂− Ŝnp‖ a.s−−−−→
n,p→∞ 0

withn/p→ c ∈ (0, 1) and Ŝnp is an appropriate weighted SCM,
and the norm denotes the spectral norm.

An M-estimator is a consistent estimator of the M-functional
of scatter matrix, defined as

Σ0 = E
[
u(x�Σ−10 x)xx�

]
. (7)

If the population M-functional Σ0 is known, then by defining a
1-step estimator

C =
1

n

n∑
i=1

u(x�i Σ
−1
0 xi)xix

�
i , (8)

we can compute

Cβ = βC+ (1− β)[tr(C)/p]I, (9)

which serves as a proxy for Σ̂β . Naturally, such an estimator
is fictional, since the initial value Σ0 is unknown. The 1-step
estimator C is, by its construction, an unbiased estimator of Σ0,
i.e., E[C] = Σ0.

Ideally we would like to find the value of β ∈ [0, 1] for which
the corresponding estimator Σ̂β attains the minimum MSE, that
is,

βo = argmin
β

{
MSE(Σ̂β) = E

[∥∥Σ̂β −Σ0‖2F
]}

, (10)

where ‖ · ‖F denotes the Frobenius matrix norm (i.e., ‖A‖2F =
tr(A�A) and ‖A‖2F = tr(AHA) for real-valued and complex-
valued matrices, respectively, where (·)H denotes the Hermitian
transpose). Since solving (10) is not feasible due to the implicit
form of M-estimators, we instead solve the following much
simpler problem:

βapp
o = argmin

β

{
MSE(Cβ) = E

[∥∥Cβ −Σ0

∥∥2
F

]}
. (11)
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Such approach was also used in [29] to derive an optimal param-
eter for the shrinkage Tyler’s M-estimator of scatter proposed
by the authors.

Before stating the expression for βapp
o we introduce a spheric-

ity measure of scatter, defined as

γ =
ptr(Σ2

0)

tr(Σ0)2
. (12)

Sphericity γ [30], [31] measures how close Σ0 is to a scaled
identity matrix: γ ∈ [1, p] where γ = 1 if and only if Σ0 ∝ I
and γ = p if Σ0 has rank equal to 1.

Theorem 1: Suppose x1, . . . ,xn is an i.i.d. random sample
from any p-variate distribution, and u is a weight function for
which the expectation E[tr(C2)] exists. The oracle parameter
βapp
o in (11) is

βapp
o =

‖Σ0 − ηoI‖2F
E

[∥∥C− (tr(C)/p)I
∥∥2
F

] (13)

=
p(γ − 1)η2o

E[tr(C2)]− p−1E[tr(C)2]
(14)

where ηo = tr(Σ0)/p and γ is defined in (12). Note that βapp
o ∈

[0, 1) and the value of the MSE at the optimum is

MSE(Cβapp
o

) =
E[tr(C)2]− tr(Σ0)

2

p

+ (1− βapp
o )

∥∥Σ0 − ηoI
∥∥2
F
. (15)

Proof: The proof is postponed to Appendix A. �
In the next section, we derive a more explicit form of βapp

o

by assuming that the data is generated from an unspecified
elliptically symmetric distribution.

III. SHRINKAGE PARAMETER FOR ELLIPTICAL SAMPLES

Maronna [5] developed M-estimators of scatter matrices
originally within the framework of elliptically symmetric dis-
tributions [32], [33]. The probability density function (p.d.f.)
of centered (zero mean) elliptically distributed random vector,
denoted by x ∼ Ep(0,Σ, g), is

f(x) = Cp,g|Σ|−1/2g
(
x�Σ−1x

)
, (16)

where Σ is a positive definite symmetric matrix parameter,
called the scatter matrix, g : [0,∞)→ [0,∞) is the density
generator, which is a fixed function that is independent of x
and Σ, and Cp,g is a normalizing constant ensuring that f(x)
integrates to 1. The density generator g determines the elliptical
distribution. For example, the MVN distribution Np(0,Σ) is
obtained when g(t) = exp(−t/2) and the t-distribution with
ν d.o.f., denoted x ∼ tν(0,Σ), is obtained when g(t) = (1 +
t/ν)−(p+ν)/2. Then the weight function for the MLE of scatter
matrix corresponds to the case that the weight function is of the
form u(t) ∝ −g′(t)/g(t). This yields (5) as the weight function
for the MLE of scatter for t-distribution. If the second moments
of x exists, then g can be defined so that Σ represents the
covariance matrix of x, i.e., Σ = cov(x); see [33] for details.

When x ∼ Ep(0,Σ, g), then the M-functional Σ0 in (7) is
related to underlying scatter matrix parameter Σ via the rela-
tionship

Σ0 = σΣ, (17)

where σ > 0 is a solution to an equation

E

[
ψ

(
r2

σ

)]
= p, (18)

where ψ(t) = u(t)t and r = ‖Σ−1/2x‖. Often σ needs to be
solved numerically from (18) but in some cases an analytic
expression can be derived. If x ∼ Ep(0,Σ, g) and the used
weight function matches with the data distribution, so u(t) ∝
−g′(t)/g(t), then σ = 1.

Next we derive expressions for E[tr(C)2] and E[tr(C2)]
appearing in the denominator of βapp

o in (14). These depend
on a constant ψ1 (which depends on weight function u via
ψ(t) = u(t)t) as follows:

ψ1 =
1

p(p+ 2)
E

[
ψ

(
r2

σ

)2 ]
, (19)

where the statistical expectation is again computed w.r.t. distri-
bution of the positive random variable r = ‖Σ−1/2x‖.

Lemma 1: Suppose x1, . . . ,xn is an i.i.d. random sample
from Ep(0,Σ, g). Then

E
[
tr
(
C2
)]

=

(
1 +

2ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)

2

and

E[tr(C)2] =
2ψ1

n
tr(Σ2

0) +

(
1 +

ψ1 − 1

n

)
tr(Σ0)

2

given that expectation (19) exists.
Proof: The proof is given in Appendix B. �
This then yields the following main result.
Theorem 2: Let x1, . . . ,xn denote an i.i.d. random sample

from an elliptical distribution Ep(0,Σ, g). Then the oracle pa-
rameter βapp

o that minimizes the MSE in Theorem 1 is

βapp
o =

n(γ − 1)

n(γ − 1)(1− 1/n) + ψ1(1− 1/p)(2γ + p)
(20)

where γ is defined in (12) and ψ1 in (19).
Proof: Follows from Theorem 1 after substituting the val-

ues for E[tr(C2)] and E[tr(C)2] derived in Lemma 1 into the
denominator of βapp

o in (14). �
A closely related result is derived in [34, Theorem 1].

Namely, [34] considers oracle estimator as in (9) but using a
shrinkage target equal to identity matrix I instead of [tr(C)/p]I
as in this paper. This is due to the fact that [34] assumes
that tr(Σ) = p. Another difference is that [34] assumes that
Σ0 = Σ (so σ = 1), i.e., that the used M-estimator is consistent
to the scatter matrix of the underlying elliptical population.
This assumption implies knowledge of the underlying elliptical
distribution in which case it is natural to use the ML-weight
uML(t) = −2g(t)/g′(t) as was done in [34]. Thus Theorem 2
compared to [34, Theorem 1] holds in the more general case
when the scale tr(Σ) is not known apriori and no assumption
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on the knowledge of the elliptical distribution is imposed. Fur-
thermore, in the next subsesction, we extend the result to the
complex-valued case which was not considered in [34].

Lemma 1 also allows to construct an unbiased estimate of
ϑ = tr(Σ2

0)/p as is shown next.
Theorem 3: Suppose x1, . . . ,xn is an i.i.d. random sample

from Ep(0,Σ, g). Then an unbiased estimate of ϑ = tr(Σ2
0)/p

for any finite n and any p is

ϑ̂ = bn

(
tr(C2)

p
− ψ1an

p

n

[
tr(C)

p

]2)
, (21)

where

an =
n

n+ ψ1 − 1
and bn =

n

n− 1

(
n− 1 + ψ1

n− 1 + 3ψ1

)
(22)

given that expectation (19), defining ψ1, exists.
Proof: First note that

E[ϑ̂] = bn(E[tr(C
2)]/p− an(p/n)E[tr(C)2]/p2). (23)

Then substituting the values of E[tr(C)2] and E[tr(C2)] from
Lemma 1 into (23) yields E[ϑ̂] = tr(Σ2

0)/p. �
It is instructive to consider in more detail the case of Gaussian

loss. In this case, C equals the SCM, C = S, and the statistic ϑ̂
no longer depends on the unknown Σ0. Furthermore, if data is
generated from a Gaussian distributionNp(0,Σ), then ψ1 = 1,
Σ0 = Σ and ϑ̂ in (21) reduces to the estimator that is identical
to the one proposed by [31, Lemma 2.1] in the case that location
is known (μ = 0); see also [3, Theorem 2]. Moreover, [2, Theo-
rem 4] is obtained in the general elliptical case, again assuming
known location parameter (μ = 0).

A. An Extension to the Complex-Valued Case

Consider the case that xi, i = 1, . . . , n are complex-valued
(i.e., xi ∈ C

p) and represent a random sample from a (circular)
complex elliptically symmetric (CES) distribution [33]. The
p.d.f. of a random vectorx ∈ C

p with centered (zero mean) CES
distribution, denoted using same notation x ∼ Ep(0,Σ, g), is

f(x) = Cp,g|Σ|−1g
(
xHΣ−1x

)
, x ∈ C

p,

whereΣ is the positive definite hermitian (PDH) matrix parame-
ter, called the scatter matrix, g : [0,∞)→ [0,∞) is the density
generator, which is a fixed function that is independent of x
and Σ, and Cp,g is a normalizing constant ensuring that f(x)
integrates to 1.

An M-estimator of scatter matrix Σ̂ is a PDH matrix that
solves an estimating equation

Σ̂ =
1

n

n∑
i=1

u(xH
i Σ̂
−1
xi)xix

H
i , (24)

where u : [0,∞)→ [0,∞) is a non-increasing weight function.
Again, u(t) = 1 gives the SCM S = 1

n

∑
i xix

H
i , Huber’s and

Tyler’s weight functions are as earlier, stated in (4) and (6),
respectively, whereas uT(t; ν) =

2p+ν
ν+2t corresponds to MLE of

the scatter matrix parameter when sampling from a p-variate
complex t-distribution with ν d.o.f. We refer to [33], [35] for

more details. We may now define the shrinkage M-estimator
as in (3). Definitions (7)–(9) hold also in the complex-valued
case with obvious modifications (replacing transpose by the
Hermitian transpose).

Theorem 1 did not require an assumption that random vectors
are real-valued, i.e., it holds also when x1, . . . ,xn are i.i.d.
complex-valued random vectors. This means that we only need
to derive expectations in Lemma 1 in the case of random sam-
pling from a CES distribution. First, we define the parameter ψ1

in the complex-valued case as

ψ1 =
1

p(p+ 1)
E

[
ψ

(
r2

σ

)2 ]
, (25)

where the expectation is w.r.t. r = ‖Σ−1/2x‖, where x ∼
Ep(0,Σ, g). The analog of Lemma 1 to complex case is given
next.

Lemma 2: Suppose x1, . . . ,xn is an i.i.d. random sample
from a (circular) complex elliptically symmetric distribution
Ep(0,Σ, g). Then

E
[
tr
(
C2
)]

=

(
1 +

ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)

2

and

E[tr(C)2] =
ψ1

n
tr(Σ2

0) +

(
1 +

ψ1 − 1

n

)
tr(Σ0)

2

given that expectation (25) exists.
Proof: The proof is given in Appendix C. �
Plugging in the expectations above into βapp

o derived in The-
orem 1 yields the following result.

Theorem 4: Let x1, . . . ,xn denote an i.i.d. random sample
from a (circular) p-variate complex elliptically symmetric distri-
bution Ep(0,Σ, g) and assume that expectation (25) exists. Then
the oracle parameter βapp

o that minimizes the MSE in Theorem
1 is

βapp
o =

n(γ − 1)

n(γ − 1)(1− 1/n) + ψ1(1− 1/p)(γ + p)
, (26)

where γ is defined in (12) and ψ1 in (25).
Furthermore, ϑ̂ defined as in (21) with

an =
n

n+ ψ1 − 1
and bn =

n

n− 1

(
n− 1 + ψ1

n− 1 + 2ψ1

)

is an unbiased estimate of ϑ = tr(Σ2
0)/p for any finite n and

any p.

B. Computing the Shrinkage Parameter

In order to construct a data-adaptive estimate of βapp
o (either

in real- or complex-valued cases), all we need to estimate is
the sphericity γ and the constant ψ1. An estimate ψ̂1 of ψ1

is constructed separately for each weight function (Gaussian,
Huber’s, MVT- and Tyler’s weight function) in Section IV.
However, it is also possible to use an empirical (sample mean)
version of (19). Next we discuss computation of the sphericity
estimator γ̂.
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As an estimator γ̂ we use the estimate derived in [14], which
was named as Ell1-estimator in [2], and defined as

γ̂Ell1* =
n

n− 1

(
p tr

(
1

n

n∑
i=1

xix
�
i

‖xi‖2
)
− p

n

)
(27)

which for complex-valued case is defined analogously (trans-
pose replaced with the Hermitian transpose).

Next recall that ϑ̂ defined in (21) is an unbiased estimator
of tr(Σ2

0)/p. This statistics depends on C and ψ1 which are
unknown, but a plug-in estimate of ϑ̂ can be constructed by
replacing C and ψ1 with Σ̂ and ψ̂1, respectively. Dividing
this plug-in statistic further by (tr(Σ̂)/p)2, leads to another
estimator of sphericity, named as Ell2-estimator, and defined
as

γ̂Ell2* = b̂n

(
ptr(Σ̂

2
)

tr(Σ̂)2
− ψ̂1ân

p

n

)
, (28)

where the constants ân and b̂n are as defined in Theorem 3
and Theorem 4 in complex case) but with ψ1 replaced by its
estimate ψ̂1. When one uses Gaussian weight function, then Σ̂ =
S and ψ̂1 = 1 + κ̂, where κ̂ is an estimate of elliptical kurtosis
(cf. Subsection IV-A). In this case, γ̂Ell2* corresponds to Ell2-
estimator of sphericity proposed in [2, Sect. IV.B].

In order to guarantee that the estimators remain in the valid
interval, 1 ≤ γ ≤ p, we use

γ̂Ell1 = min(p,max(1, γ̂Ell1*)) (29)

as our final estimator (and similarly for Ell2-estimator). The
related shrinkage parameter can then computed as

β = βapp
o (γ̂Ell1, ψ̂1),

and again similarly for Ell2-estimator.

IV. IMPORTANT SPECIAL CASES

A. Regularized SCM (RSCM) Estimator

If one uses Gaussian weight function uG(t) ≡ 1, then a neces-
sary assumption is that the underlying elliptical distribution pos-
sesses finite 4th-order moments. As discussed earlier, one may
then assume w.l.o.g. that the scatter matrix parameter equals the
covariance matrix, i.e., Σ = cov(x). When uG(t) ≡ 1, one has
that Σ̂ = S and Cβ = Sβ and hence βo = βapp

o , meaning that
the approximate MMSE solution is exact in this case. Finally,
we may relate ψ1 with an elliptical kurtosis [36] parameter κ:

ψ1 = 1 + κ =

⎧⎪⎪⎨
⎪⎪⎩

E[r4]

p(p+ 2)
, real case

E[r4]

p(p+ 1)
, complex case

(30)

where the expectation is over the distribution of the random
variable r = ‖Σ−1/2x‖. The elliptical kurtosis parameter is
defined as a generalization of the kurtosis parameter to the
vector case, and as such it vanishes (so κ = 0) when x has
MVN distribution (denoted x ∼ Np(0,Σ)). Since S exists for
any n ≥ 1, we can drop the assumption that n > p in this case.

Corollary 1: Let x1, . . . ,xn denote an i.i.d. random sample
from an (real or complex) elliptical distribution Ep(0,Σ, g)with
finite 4th order moments and covariance matrix Σ = cov(x).
Then for the shrinkage SCM estimator Sβ in (1) one has that

βo = argmin
β

E
[∥∥Sβ −Σ‖2F

]
=

n(γ − 1)

n(γ − 1) + p+ a
, (31)

where

a =

{
κ(2γ(1− 1/p) + p− 1) + γ(1− 2/p), real case

κ(γ(1− 1/p) + p− 1)− γ/p, complex case

Proof: The result follows from Theorem 2 and Theorem 4
since Cβ = Sβ and the M-functional for Gaussian loss is Σ0 =
cov(x) = Σ and σ = 1. Since for Gaussian loss, ψ(t) = t, we
notice from (19) and (25) hat

ψ1 = 1 + κ. (32)

Plugging ψ1 = 1 + κ into βapp
o in Theorem 2 and Theorem 4

yields the stated expressions, respectively. �
The elliptical kurtosis parameter κ can be easily estimated

using the following relationship to kurtosis even in the cases
when p > n. First, recall that kurtosis of a random variable x in
the real and complex case is defined as

kurt(x) =
E[x4]

(E[x2])2
− 3 and kurt(x) =

E[|x|4]
(E[|x|2])2 − 2,

(33)
respectively. Kurtosis vanishes when the random variable has
real or complex Gaussian distribution with varianceE[|x|2]. The
following result establishes the relationship of elliptical kurtosis
parameter with marginal kurtosis.

Lemma 3: Assume thatx is a random vector from real or com-
plex elliptically symmetric distribution with covariance matrix
Σ = cov(x) possessing finite 4th order moments. Then

κ =

{
1
3kurt(xj), real case
1
2kurt(xj), complex case

(34)

where xj is any jth component of x (j ∈ {1, . . . , p}).
Proof: The proof is given in Appendix D. �
Since all marginal variables possess the same kurtosis, an

estimate κ̂ can be formed simply as the mean of marginal sample
kurtosis statistics. This is the same estimate of the elliptical
kurtosis proposed in [2]. Note that [2] only considered the
real-valued case, and thus Corollary 1 allows us to extend the
RSCM estimator in [2] to complex-valued case.

In the sequel, we use acronym RSCM-Ell1 to refer to estima-
tor Sβ withβ computed asβ = βo(κ̂, γ̂

Ell1)withβo given by (31)
and γ̂Ell1 being the estimate of sphericity defined in (29) and κ̂ an
estimate of elliptical kurtosis described above. An RSCM-Ell2
estimator is defined similarly but now using Ell2-estimator of
sphericity.

A natural competitor for RSCM-Ell1 or RSCM-Ell2 estima-
tors (at least in the real-valued case) is the estimator proposed by
Ledoit and Wolf [1], referred to as LWE. We note that LWE also
uses RSCM Sβ , but the parameter β is computed in a different
manner. An extra benefit of our approach is that an estimator of
the optimal shrinkage parameter can be computed for real- or
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complex-valued observations while LWE assumes real-valued
observations.

B. Regularized Huber’s M-Estimator (RHub)

Next consider the Huber’s weight function uH(t; c) in (4).
Note that b > 0 is a scaling constant; if Σ̂ is Huber M-estimator
of scatter when b = 1, then the Huber M-estimator of scatter
when b = bo is simply boΣ̂. The scaling constant b is usually
chosen so that the resulting scatter estimator is Fisher consistent
for the covariance matrix at MVN distribution, i.e, σ = 1 when
x ∼ Np(0,Σ). In the real case, this holds when

b = Fχ2
p+2

(c2) + c2(1− Fχ2
p
(c2))/p,

where Fχ2
p
(·) denotes the cumulative distribution function

(c.d.f.) of chi-squared distribution with p d.o.f. Since r2 =
‖Σ−1/2x‖2 has a χ2

p-distribution when x ∼ Np(0,Σ), the tun-
ing constant c2 is chosen as qth upper quantile ofχ2

p-distribution:

q = Pr(r2 ≤ c2)⇔ F−1χ2
p
(q) = c2 (35)

for some q ∈ (0, 1]. Tuning constant c and scaling factor b can
be determined similarly in the complex-valued case; see [33],
[35] for details.

Let us define a winsorized observation w based on x ∼
Ep(0,Σ, g) as

w = wins(x;Σ, c) =
1√
b

⎧⎨
⎩
x, ‖Σ−1/2x‖2 � c2

c
x

‖Σ−1/2x‖ , ‖Σ
−1/2x‖2 > c2

where c is the threshold c of Huber’s weight function and b
is the respective scaling factor. The winsorized r.v. w also has
an elliptically symmetric distribution since the contours remain
elliptical in shape (so the p.d.f. is still defined by (16) but for a
truncated density generator g) and thus it shares the properties
of elliptical random vectors.

If we take σ = 1 (which holds at least when x has MVN
distribution), then the constant ψ1 can be written as

ψ1 =
E[ψ2

H(‖Σ−1/2x‖2; c)]
p(p+ 2)

=
E

[
‖Σ−1/2w‖4

]
p(p+ 2)

= 1 + κw

where κw is the elliptical kurtosis parameter (cf. Lemma 3) of
an elliptical random vector w. An estimate ψ̂1 of ψ1 can be then
calculated similarly as ψ1 for RSCM-Ell1 or RSCM-Ell2 esti-
mators defined earlier (recall relation (32)). The only difference
is that κ is now computed for winsorized data {wi}ni=1, where
wi = wins(xi; Σ̂, c) and Σ̂ denotes the Huber’s M-estimator.

In the sequel, we use acronym RHub-Ell1 or RHub-Ell2
to refer to shrinkage M-estimator Σ̂β that uses Huber’s weight
u(·) = uH(·; c) with threshold c2 determined from (35) for user
specified q and shrinkage parameter β = βapp

o (γ̂Ell1, ψ̂1) or β =

βapp
o (γ̂Ell2, ψ̂1), respectively.

C. Regularized Tyler’s M-Estimator (RTyl)

Let V denote a shape matrix (normalized scatter matrix),
defined as

V = pΣ/tr(Σ),

where Σ denotes the scatter matrix parameter of the ES distri-
bution. Note that tr(V) = p. If one uses Tyler’s weight function
in (6), then (17) holds with σ = p/tr(Σ), i.e., Σ0 = V, that
is, Tyler’s M-estimator is an estimate of the shape matrix. The
following result hence follows at once from Theorem 2 and
Theorem 4.

Corollary 2: Let x1, . . . ,xn denote an i.i.d. random sample
from a (real or complex) elliptical distribution Ep(0,Σ, g).
When using Tyler’s weight (6), it holds that

βapp
o = argmin

β
E
[∥∥Cβ −V‖2F

]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n(γ − 1)

n(γ − 1)(1− 1
n ) +

p−1
p+2 (2γ + p)

, real case

n(γ − 1)

n(γ − 1)(1− 1
n ) +

p−1
p+1 (γ + p)

, complex case

Proof: The real-valued case follows by noting that ψ1 in
(19) is equal to ψ1 = p/(p+ 2) for all random vectors x ∼
Ep(0,Σ, g) regardless of g (i.e., the functional form of the
density generator) and that Σ0 = V. Plugging ψ1 = p/(p+ 2)
into (20) yields the stated expression. The complex-valued case
follows similarly. �

Since Tyler’s M-estimator verifies tr(Σ̂) = p, the shrinkage
estimator in (3) simplifies to

Σ̂β = βΣ̂+ (1− β)I, (36)

where Σ̂ is Tyler’s M-estimator, i.e., an M-estimator based on
weight (6). By RTyl-Ell1 we refer to (36), where the shrinkage
parameter is computed as β = βapp

o (γ̂Ell1) with βapp
o given by

Corollary 2 and γ̂Ell1 by (29).
A related regularized Tyler’s estimator was proposed by [7]

as the limit of the algorithm

Σk+1 ← β
p

n

n∑
i=1

xix
�
i

x�i V
−1
k xi

+ (1− β)I

Vk+1 ← pΣk+1/tr(Σk+1), (37)

where β ∈ (0, 1) is a fixed shrinkage parameter. This algorithm
represents a diagonally loaded version of the fixed-point algo-
rithm given for Tyler’s M-estimator. Uniqueness and conver-
gence of the recursive algorithm has been later derived in [12],
[29]. By CWH estimator we now refer to estimator obtained by
iterating (37) using same valueβ = βapp

o (γ̂Ell1) as for RTyl-Ell1.
An interesting question then is how different is RTyl-Ell1 in
its performance from CWH. We explore this by simulation
studies later. This is interesting as the former is simply shrinking
the eigenvalues of Tyler’s M-estimator towards its grand mean
where as the latter does not have an explicit connection to Tyler’s
M-estimator Σ̂ for any β ∈ (0, 1).
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D. Regularized M-Estimator for MVT Distribution (RMVT)

We assume that the data is arising from a MVT distribution
tν(0,Σ) but the d.o.f. parameter ν is unknown and is adaptively
estimated from the data using Algorithm 1 explained below.
Once ν̂ is found, we use function u(·) = uT(·; ν̂) to compute the
underlying M-estimator Σ̂ for the postulated MVT distribution.

Yet, we need to address the question of how the constantψ1 is
computed. Due to data adaptive estimation of ν, we can assume
that σ ≈ 1 since the scaling factor σ equals unity for an MLE
of the scatter matrix parameter. We use the fact that for MVT
distribution (i.e., when x ∼ tν(0,Σ)), the ψ1 parameter is:1

ψ1 =

⎧⎪⎨
⎪⎩

p+ ν

2 + p+ ν
, real case

2p+ ν

2 + 2p+ ν
, complex case

.

Hence, a natural estimate is ψ̂1 = (p+ ν̂)/(2 + p+ ν̂) in the
real case. An estimate of ψ̂1 is constructed similarly in the
complex case. We use acronym RMVT-Ell1 to refer to shrinkage
M-estimator Σ̂β that uses u(·; ν̂) with shrinkage parameter
calculated by β = βapp

o (γ̂Ell1, ψ̂1). RMVT-Ell2 is constructed
similarly, but now Ell2-estimator of sphericity γ̂Ell2 is used.

Next we discuss our approach for estimating ν from the data.
Assume x ∼ tν(0,Σ, g) and denote η = tr(Σ)/p. Then,

R = cov(x) = (ν/(ν − 2))Σ

and hence tr(R)/p = (ν/(ν − 2))tr(Σ)/p. This means that

ν

ν − 2
=

tr(R)

tr(Σ)
= ηratio

from which we obtain the relation

ν =
2ηratio

ηratio − 1
. (38)

The above relation holds true in both real and complex cases.
Then given an estimate Σ̂ of Σ, we may compute an estimate
η̂ratio = tr(S)/tr(Σ̂) which in turn provides an estimate ν̂ via
(38). This gives rise to an iterative algorithm to estimate ν
detailed in Algorithm 1. In the simulations, the algorithm con-
verged, but already 2 iterations are sufficient to yield accuracy to
first decimal; see Fig. 1 for an illustration. The initial estimate is
νo = 2/(max(0, κ̂) + δ) + 4, where κ̂ is an estimate of marginal
kurtosis explained in Subsection IV-A (see also [2] for more
details) and δ > 0 is a small number. The initial start νo is based
on the following relationship with elliptical kurtosis parameter,
κ = 2/(ν − 4), i.e., ν = 2/κ+ 4 which holds true both in real
and complex cases. Again the estimate ν̂ in the complex-valued
case is constructed similarly. Note that also other estimators of
ν are proposed in the literature, for example in [34].

V. SIMULATION STUDIES

In the simulation study, we generate samples from real ES
distributions with a scatter matrix Σ following an AR(1) struc-
ture, (Σ)ij = τ|i−j|, where  ∈ (0, 1) and scale parameter

1Note that the t-weight in the complex case is [33] uT(t; ν) =
2p+ν
ν+2t .

Fig. 1. Average ν̂ by running the Algorithm 1 with different choices of
Tmax. Also shown is the initial estimate ν0. The samples are generated from
a p-variate t-distribution with ν = 5 d.o.f., where Σ follows the same AR(1)
covariance matrix structure explained in the simulation set-up of Section V;
� = 0.6 and p = 40, As can be noted, ν̂ converge to ν = 5 as n increases,
albeit the convergence is a bit slow.

τ = tr(Σ)/p = 10. When  ↓ 0, then Σ is close to an identity
matrix scaled by τ , and when  ↑ 1, Σ tends to a singular matrix
of rank 1. The results are reported for the proposed shrinkage M-
estimators using shrinkage parameter estimates based on Ell1-
estimator of sphericity. However, for notational convenience,
we drop the suffix -Ell1 from the proposed estimators. Thus the
proposed estimators, described in Section IV are referred to as
RSCM, RMVT, RHub, and RTyl. Furthermore, acronyms LW,
CWH and RBLW are used to refer to estimators proposed in [1]
(see also Subsection IV-A), [29] (see also Subsection IV-C and
(37)) and [8], respectively. RBLW is the Rao-Blackwellized
LW estimator, but unlike LW estimator, it assumes that the data
distribution is Gaussian.

We also compare to RSCM estimator Sβ in (1), but now
the shrinkage parameter β is chosen via k-fold cross-validation
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Fig. 2. NMSE as a function of n when samples are drawn from a MVN
distribution Np(0,Σ) with an AR(1) structure; � = 0.6 and p = 40.

(CV), where as cross-validation fit we use ‖Sβ,tr − Sval‖F, where
Sval is the SCM based on the validation set (data fold that was left
out) and Sβ,tr is the RSCM computed on the training set (data
based on remaining folds) for a given β. As a grid for β for the
CV method we use a uniform grid in [0,1] with 0.05 increments
and 5-fold cross-validation. We call this method as RSCM-CV
or simply CV. All simulation results in this section are averaged
over 2000 Monte-Carlo trials. Since n > p is assumed for all
estimators expect for RSCM, we do not consider the low sample
regime, n ≤ p, in our simulation studies. Furthermore, we adopt
the MSE (squared Frobenius norm) as our performance metric
as it is used in deriving the optimal shrinkage parameters in
this paper. It is important to keep in mind, however, that in the
low sample regime and for different performance metrics, the
performance differences between estimators can often be no-
ticeable and even quite different than in the n > p regime that is
considered here; See e.g., [2], [4], [8] for numerical illustrations
and [37], [38] for different distances between covariances that
could be used instead of the MSE metric.

A. Gaussian Data

The data is generated from MVN distribution Np(0,Σ),
whereΣ has an AR(1) covariance matrix structure with  = 0.6.
The dimension is p = 40 and n varies from 60 to 280. Value
q = 0.7 determining the threshold c is used in (35) for Huber’s
weight. Since Huber’s M-estimator is scaled to be consistent
to the covariance matrix for Gaussian samples, the underlying
population parameter Σ0 coincides with the covariance matrix
Σ in this case. We also scaled the MVT-weight uT(t; ν) so
that it is consistent to Σ for Gaussian data. Fig. 2 compares
the normalized MSE (NMSE) ‖Σ̂β −Σ‖2F/‖Σ‖2F of different
estimators w.r.t. increasing sample length n. It can be noted
that all estimators provide essentially equally good estimator
of the covariance matrix Σ for Gaussian data; RSCM and
RMVT are performing equally well, largely due to the effect of
data-adaptive estimation of d.o.f. parameter ν. It should be noted
that their performance difference to LW or RHub estimators are
still marginal and differences can be spotted only by zooming in
as in the sub-plot of Fig. 2. As expected, RBLW estimator has a
slight advantage over the other estimators in this case. The left

Fig. 3. Shrinkage parameter β as a function of n when samples are drawn
from a MVN distribution (left panel) and a t-distribution with ν = 5 d.o.f.
(right panel), where Σ has an AR(1) structure; � = 0.6 and p = 40.

Fig. 4. NMSE as a function of n when samples are drawn from a p-variate
t-distribution with ν = 5 (left panel) and ν = 3 (right panel) d.o.f. The scatter
matrix follows an AR(1) structure; � = 0.6 and p = 40.

panel of Fig. 3 shows the (average) shrinkage parameter β as a
function of n. As can be noted, the average shrinkage parameter
of the proposed RSCM estimator can be seen to be roughly an
average of CV and LW shrinkage parameters.

B. Heavy-Tailed Data

Next we computed the NMSE curves when the data is gener-
ated from a heavy-tailed t-distribution with ν = 5 and ν = 3
d.o.f. Note that NMSE of each estimator is now compared
against the underlying population parameter Σ0 of each M-
estimator. Fig. 4 displays the results. RBLW had a very poor
performance which is due to its strict assumption of Gaussianity.
It can be noted that CV method performs similarly, but slightly
worse, than RSCM or LW. This can be partially attested to poor
robustness properties of cross-validation. In the case of ν = 3
d.o.f., also the non-robust RSCM and LW provided large NMSE
and thus all non-robust estimators are not visible in the right
panel of Fig. 4. This was expected since t-distribution with
ν = 3 d.o.f. is very heavy-tailed with non-finite kurtosis. As
can be noted, the proposed robust RHub and RMVT estimators
provide significantly improved performance. We can also notice
that RMVT estimator that adaptively estimates the d.o.f. ν from
the data is able to outperform the regularized Huber’s estimator
(RHub).

The right panel of Fig. 3 depicts the (average) shrinkage
parameter β as a function of n in the case that samples are
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Fig. 5. NMSE of different shrinkage estimators of shape matrix V when
samples are drawn a p = 40 variate t-distribution with ν = 5 d.o.f. having an
AR(1) structure: (a) � = 0.6 and sample length n varies; (b) and (c) illustrate
the case when � varies while the sample length n is fixed.

drawn from a t-distribution with ν = 5 d.o.f. As can be noted
the robust shrinkage estimators (RHub and RMVT) use larger
shrinkage parameter value β than the non-robust RSCM and
LW estimators. Compared to RSCM and LW, the RBLW (resp.
CV) is seen to overestimate (resp. underestimate) the shrinkage
parameter as it obtains much larger (resp. smaller) values.

Next we investigate how the estimators are able to estimate
the shape matrix, i.e., the covariance matrix up to a scale. Fig. 5
displays the NMSE, ‖V̂ −V‖2F/‖V‖2F, of different shrinkage
shape matrix estimators, defined as V̂ = pΣ̂β/tr(Σ̂β) when
samples are generated from a t-distribution with ν = 5 d.o.f.
Note that such normalization is not necessary for CWH or RTyl
since they verify tr(Σ̂) = p in the first place. Fig. 5 illustrate
both the case when correlation parameter  of the AR(1) scatter
matrix parameter Σ is fixed while n varies and the case that n
is fixed while  varies. As can be seen from the top panel of
Fig. 5, all robust shape estimators are performing well and very
similarly. In fact, performance of RMVT and CWH is essentially
the same. We can also observe that the two different approaches
for shrinking Tyler’s M-estimator, so CWH and the proposed
RTyl are very similar. We can note from the bottom panels of
Fig. 5 that when  ≈ 0 (so Σ is close to a scaled identity matrix)
all estimators perform similarly. This is because all estimators
are shrunk heavily towards the scaled identity matrix (namely,

Fig. 6. Log-prices of the S&P 500 index.

Fig. 7. Log-returns of the S&P 500 index.

β ≈ 0 for all estimators). Similarly, when  ≈ 1 (so Σ is close
to a singular matrix of rank 1), all estimators have a rather
similar performance. This is because the true scatter matrix Σ is
poorly conditioned (cond(Σ) ≈ 7000) and all estimators share
similar difficulties of capturing the subspace structure due to
limited training data and no a priori information about such
structure. Indeed biggest differences between estimators are
observed when Σ has no particular structure, i.e.,  in the range
[0.4, 0.7].

C. Complex-Valued Data

Finally, we note that an important property of our shrinkage
method is that it can be used for complex-valued data as well.
Some other methods in the previous study, such as RBLW or
LW assume real-valued data. In the supplementary material,
we provide the results of a simulation study in the same set-
up, but now the data being generated from circular complex
Gaussian and heavy-tailed t-distribution, respectively. These are
distributions in the class of CES distributions. In our study
we also include empirical Bayes diagonal loading estimator
(EBDL) [4] which was developed for complex circular Gaussian
data. Results obtained for complex-valued data attest the validity
of the findings in the real-valued case.

VI. APPLICATION TO FINANCIAL DATA AND

PORTFOLIO DESIGN

A. Financial Data

We use the S&P 500 stock market index (see Fig. 6), which
measures the stock performance of 500 large companies listed on
stock exchanges in the United States, and its constituent stocks
during the period 2016-01-01 to 2020-01-31.

We can easily observe from the returns shown in Fig. 7
the effect of volatility clustering over time that is responsible
for heavy tails. More concretely, if we assume that the data
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Fig. 8. Degrees of freedom ν of the S&P 500 index.

Fig. 9. Histogram of empirical eigenvalues obtained from the market data
(p = 50) showing a strong market factor.

follows an MVT distribution, then we can compute the degrees
of freedom ν on a rolling-window basis and verify that indeed
the data has heavy tails with ν ≈ 5 (from mid-2017, ν varies
between 4.5 and 6) as shown in Fig. 8.

Factor model: Let xi denote the returns of the p stocks at time
i. It turns out that the stock returns are largely driven by very
few k � p financial factors fi as

xi = Bfi + εi, (39)

where B ∈ R
p×k is the factor loading matrix (which is very tall

since k � p) and εi is the residual idiosyncratic component. As
a consequence, the covariance matrix of these data has the form
(assuming normalized factors):

Σ = BB� +Ψ (40)

where Ψ is the (diagonal) covariance matrix of the residuals.
Typically, the term BB� is much stronger than Ψ and this leads
to the commonly used spike model in RMT (Random Matrix
Theory) [39] which contains a few large eigenvalues and the
rest small eigenvalues form the so-called bulk. Fig. 9 shows the
histogram of the empirical eigenvalues of the covariance matrix
estimated from p = 50 stocks from the S&P 500 market data,
where a very strong eigenvalue can be observed corresponding
to the market factor.

B. Results in Terms of MSE

Since our shrinkage estimators are derived to minimize the
MSE in the estimation of the covariance matrix, we start by
showing the obtained MSE in the context of financial data. We
consider seven methods in our comparison:
� LWE is the Ledoit-Wolf estimator [1];

Fig. 10. Normalized MSE of covariance matrix vs number of observations for
Gaussian data (with p = 50).

Fig. 11. Normalized MSE of precision matrix vs number of observations for
Gaussian data (with p = 50).

� RMVT-Ell1 described in Subsection IV-D;
� MVT: equals RMVT-Ell1 with no shrinkage (β = 1);
� RSCM-Ell1 estimator described in Subsection IV-A;
� SCM: equals RSCM-Ell1 with no shrinkage (β = 1);
� RHub-Ell1 described in Subsection IV-B; and
� RSCM-Ell2, RMVT-Ell2, and RHub-Ell2 are as RSCM-

Ell1, RMVT-Ell1, and RHub-Ell1, respectively, but using
γ̂Ell2 estimator of sphericity γ (cf. Subsection III-B).

To make sure that the robust estimators do not underperform
the benchmarks when the data is not heavy-tailed, we start
by generating synthetic MVN data following the empirical
covariance matrix previously obtained from market data (see
Fig. 9). Fig. 10 displays the normalized MSE of the covariance
matrix E[‖Σ̂−Σ‖2F] via 200 Monte-Carlo simulations. We
do not observe any significant difference among the methods.
Fig. 11 shows the normalized MSE of the precision matrix

E[‖Σ̂−1 −Σ−1‖2F] via 200 Monte-Carlo simulations. The main
observation is that the two methods without shrinkage signifi-
cantly underperform.

We now generate heavy-tailed synthetic data from a t-
distribution following the empirical covariance matrix previ-
ously obtained from market data (see Fig. 9) and with d.o.f.
ν = 5. Fig. 12 shows the normalized MSE of the covariance
matrix. We can clearly observe a striking difference showing the
superiority of robust estimators (i.e., MVT, RMVT, RHub) over
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Fig. 12. Normalized MSE of covariance matrix vs number of observations for
t-distributed data (with p = 50, ν = 5).

Fig. 13. Normalized MSE of precision matrix vs number of observations for
t-distributed data (with p = 50, ν = 5).

non-robust estimators. Among the robust estimators, the pro-
posed shrinkage methods clearly outperform the non-shrinkage
MVT in the low-sample regime, as expected. Fig. 13 displays
the normalized MSE of the precision matrix, with similar obser-
vations.

C. Results in Terms of Portfolio Sharpe Ratio

After having shown the superiority of our proposed estima-
tors, RMVT and RHub in terms of MSE in the estimation of
the covariance matrix under heavy-tailed data, we now turn
to assess the effects in terms of portfolio design. Note that an
improvement of MSE in the covariance matrix may or may not
translate into a significant improvement in terms of portfolio
design; this depends on exactly what portfolio design is used
and how it employs the estimated covariance matrix.

For simplicity, we consider the most basic Markowitz portfo-
lio design [40]:

minimize
w

w�Σw

subject to w�μ ≥ α
1�w = 1,

where μ is the expected return of the returns and α is the
minimum return desired for the portfolio.

We perform our backtest during the market period 2016-01-01
to 2020-01-31 on a rolling-window basis with a window length
of 378 days (1.5 years). To make sure that our results are realistic,

Fig. 14. Boxplot of Sharpe ratio obtained by the mean-variance portfolio
according to different estimators for the covariance matrix.

rather than performing a single backtest, we use the R package
portfolioBacktest [41] to randomly select a large number of 200
datasets from the market data in the following way: each dataset
chooses randomly p = 200 stocks from the universe of 500,
as well as a random period of 504 days (2 years) among the
available period from 2016-01-01 to 2020-01-31.

Fig. 14 shows a boxplot with the Sharpe ratio2 obtained
mean-variance portfolio according to different estimators for
the covariance matrix (along with two benchmarks: the index
and the 1/N or uniform portfolio). We can observe that the two
methods without shrinkage underperform the shrinkage methods
(in particular the SCM). Among the shrinkage methods, we can
see that our robust estimators slightly outperform the others,
although the improvement is not extremely significative.

D. Supplementary Studies

Supplementary material to this paper also contain comparison
of the proposed methods in the set-up described in [2], where
the global mean variance portfolio (GMVP) is used as portfolio
optimization strategy and the net returns correspond to p = 50
stocks that are currently included in the Hang Seng Index (HSI).
Compared methods include GMVP weight vector based on LW
estimator and an estimator proposed in [42] that uses robust
regularized Tyler’s M-estimator with a tuning parameter selec-
tion optimized for GMVP strategy. We observed that GMVP
based on the proposed RHub and RSCM are the best performing
methods in terms of realized risk. We note that method of [42]
was excluded in the study in Subsection VI-C due to its high
computational cost in the high-dimensional setting.

VII. CONCLUSIONS AND PERSPECTIVES

This work proposed an original and fully automatic approach
to compute an optimal shrinkage parameter in the context of
heavy-tailed distributions and/or in presence of outliers. It has
been shown that the performance of the method is similar to
optimal one when the data is Gaussian while it outperforms

2The Sharpe ratio is defined as the expected return normalized with the

volatility or standard deviation: SR =
w�µ−rf√

w�Σw
, where rf is the return of the

risk-free asset.
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shrinkage Gaussian-based methods when the data distribution
turns out to be non-Gaussian. One of the benefits of the proposed
adaptive shrinkage parameter selection is that it permits using
real-valued or complex-valued data. Furthermore, a MATLAB
toolbox called ShrinkM is freely available at http://users.spa.
aalto.fi/esollila/shrinkM/ that includes functions to compute all
of the proposed estimators (RHub, RTyl, RSCM, RMVT, and
CV) as well as a script of one the simulation studies presented in
the paper to reproduce the results. Furthermore, this paper opens
several ways, notably considering the challenging cases where
p > n which is left for future work. Supplementary materials
also provide additional examples illustrating the benefits of the
proposed estimators.

APPENDIX

A. Proof of Theorem 1

WriteL(β) = MSE(Cβ) = E[‖Cβ −Σ0‖2F]. Then note that

L(β) = E

[∥∥βC+ (1− β)p−1tr(C)I−Σ0

∥∥2
F

]
= E

[∥∥β(C−Σ0) + (1− β) (p−1tr(C)I−Σ0

) ∥∥2
F

]
= β2a1 + (1− β)2a2 + 2β(1− β)a3 (41)

where a1 = E[
∥∥C−Σ0

∥∥2
F
] = E[tr(C2)]− tr(Σ2

0), and

a2 = E

[∥∥p−1tr(C)I−Σ0

∥∥2
F

]
= a3 + tr(Σ2

0)− pη2o = a3 + p(γ − 1)η2o

a3 = p−1E [tr(C)tr(C−Σ0)] = p−1E
[
tr(C)2

]− η2op
and ηo = tr(Σ0)/p. Note that L(β) is a convex quadratic func-
tion in β with a unique minimum given by

βapp
o =

a2 − a3
(a1 − a3) + (a2 − a3) . (42)

Substituting the expressions for constants a1, a2 and a3 into
βapp
o yields the stated result.
The expression for MSE of Cβapp

o
then follows by substi-

tuting βapp
o into expression for L(β) in (41) and using the

relation, (1− βapp
o )(a2 − a3) = βapp

o (a1 − a3), which follows
from (42). This yields the MSE expression

L(βapp
o ) = a2 − βapp

o (a2 − a3) = a3 + (1− βapp
o )(a2 − a3).

This gives the stated MSE expression after noting thata2 − a3 =
‖Σ0 − η0I‖2F.

B. Proof of Lemma 1

First recall that Σ0 = σΣ, and hence

C =
1

n

n∑
i=1

u(x�i Σ
−1
0 xi)xix

�
i

= Σ
1/2
0

{
1

n

n∑
i=1

u

(
r2i
σ

)
r2i
σ
viv

�
i

}
Σ

1/2
0 , (43)

where vi = Σ−1/2xi/‖Σ−1/2xi‖ and r2i = ‖Σ−1/2xi‖2. Re-
call that stochastic representation theorem of elliptical random

vectors states that ri is independent of vi and vi-s are i.i.d. on a
uniform distribution on the unit sphereSp−1 = {v : v�v = 1}.
Then note that

E
[
tr
(
C2
)]

=
1

n2
E

[
tr

{
Σ

1/2
0

n∑
i=1

u

(
r2i
σ

)
r2i
σ
viv

�
i Σ

1/2
0

·Σ1/2
0

n∑
j=1

u

(
r2j
σ

)
r2j
σ
vjv

�
j Σ

1/2
0

}]

=
1

n2

n∑
i=1

n∑
j=1

E

[
u

(
r2i
σ

)
r2i
σ
u

(
r2j
σ

)
r2j
σ

]

× E

[
tr

{
viv

�
i Σ0vjv

�
j Σ0

}
︸ ︷︷ ︸

=(v�i Σ0vj)2

]

=
1

n2

n∑
i=1

E

[
u

(
r2i
σ

)2
r4i
σ2

]
E
[
(v�i Σ0vi)

2
]

+
1

n2

∑
i�=j

E

[
u

(
r2i
σ

)
r2i
σ

]
E

[
u

(
r2j
σ

)
r2j
σ

]
E
[
(v�i Σ0vj)

2
]

=
1

n
E

[
u

(
r21
σ

)2
r41
σ2

]
E
[
(v�1Σ0v1)

2
]

+

(
1− 1

n

)(
E

[
u

(
r21
σ

)
r21
σ

])2

E
[
(v�1Σ0v2)

2
]
. (44)

In the second identity, we used the fact that ri is independent of
vi and tr(AB) = tr(BA). In the 3rd identity we used that ri is
independent of rj and in the 4th identity, we used that vi-s and
ri-s are i.i.d.

Note that E[u(r21/σ)(r
2
1/σ)] = p due to (18) and

E[u(r21/σ)
2(r41/σ

2)] = ψ1p(p+ 2). Using these facts and
the following results from [8]:

E
[
(v�1Σ0v1)

2
]
=

2tr(Σ2
0) + tr(Σ0)

2

p(p+ 2)
(45)

E
[
(v�1Σ0v2)

2
]
=

tr(Σ2
0)

p2
, (46)

we get

E
[
tr
(
C2
)]

=
ψ1

n

(
2tr(Σ2

0) + tr(Σ0)
2
)
+

(
1− 1

n

)
tr(Σ2

0)

=

(
1 +

2ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)

2.

Next note that

tr(C)2 =

{
1

n

n∑
i=1

u

(
r2i
σ

)
r2i
σ
v�i Σ0vi

}2

=
1

n2

n∑
i=1

n∑
j=1

u

(
r2i
σ

)
r2i
σ
u

(
r2j
σ

)
r2j
σ
v�i Σ0viv

�
j Σ0vj
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and hence

E[tr(C)2] =
1

n2

n∑
i=1

E

[
u

(
r2i
σ

)2
r4i
σ2

]
E
[
(v�i Σ0vi)

2
]

+
1

n2

∑
i �=j

E

[
u

(
r2i
σ

)
r2i
σ

]
E

[
u

(
r2j
σ

)
r2j
σ

]
tr(Σ0)

2

p2

=
ψ1p(p+ 2)

n
E
[
(v�i Σ0vi)

2
]
+

(
1− 1

n

)
tr(Σ0)

2.

In the first identity we used that

E[v�i Σ0vi] = tr{E[viv
�
i ]Σ0} = tr(Σ0)/p

as E[viv
�
i ] = (1/p)I and the fact that ri is independent of

vi. In the second identity we used that samples are i.i.d. and
E[u(r2i /σ)(r

2
i /σ)] = p due to (18) and E[u(r2i /σ)

2(r4i /σ
2)] =

ψ1p(p+ 2). The result then follows by substituting (45) into the
last equation.

C. Proof of Lemma 2

Using Σ0 = σΣ and (43) one obtains as in Lemma 1 the
following expression

E
[
tr
(
C2
)]

=
1

n
E

[
u

(
r21
σ

)2
r41
σ2

]
E
[
(vH

1Σ0v1)
2
]

+

(
1− 1

n

)(
E

[
u

(
r21
σ

)
r21
σ

])2

E
[|vH

1Σ0v2|2
]
. (47)

Using the facts that E[u(r21/σ)(r
2/σ)] = p due to (18)

and E[u(r2/σ)2(r4/σ2)] = ψ1p(p+ 1) along with the facts
that [29, cf. eq. (66), (67)]

E
[
(vHΣv)2

]
= [p(p+ 1)]−1(tr(Σ2) + tr(Σ)2), (48)

E
[
(vH

1Σv2)
2
]
= p−2tr(Σ2), (49)

we get

E
[
tr
(
C2
)]

=
ψ1

n

(
tr(Σ2

0) + tr(Σ0)
2
)
+

(
1− 1

n

)
tr(Σ2

0)

=

(
1 +

ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)

2.

Using similar proof as in proof of Lemma 1, we obtain

E[tr(C)2] =
ψ1p(p+ 1)

n
E
[
(vH

i Σ0vi)
2
]
+

(
1− 1

n

)
tr(Σ0)

2.

(50)

The result then follows by substituting the expression from (49)
into the last equation.

D. Proof of Lemma 3

We show the result in the real case only as the result follows
similarly for complex-valued case. Write z = Σ−1/2x and note

that z ∼ Ep(0, I, g). The result

κ =
E[‖z‖4]
p(p+ 2)

− 1 =
1

3

(
E[z41 ]− 3

)
(51)

follows by recalling the stochastic decomposition. Namely,z =d

rv, where r =d ‖z‖ is independent of v, and v possesses a
uniform distribution on the unit sphere Sp−1. Thus we have that

E[z4i ] = E[‖z‖4]E[v4i ] = 3ψ1

where we used that E[v4i ] = 3(p(p+ 2))−1 (see e.g. [43,
Lemma A.1.] and that ψ1 = E[‖z‖4]/p(p+ 2). Furthermore,
since E[z2i ] = 1, (51) states that κ = (1/3)kurt(zi). Then
since kurt(zi) = kurt(xi), we have the stated result that κ =
(1/3)kurt(xi).
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