Nonconvex Graph Learning: Sparsity, Heavy-tails,
and Clustering

José Vinicius de M. Cardoso, Jiaxi Ying, and Daniel P. Palomar

January 31, 2022

Abstract

Graph learning has been an active research area that finds appli-
cations across a number of fields including finance, health care, social
sciences, and so on. In this chapter, we present an overview of recent
advancements in the area of learning graphs from data, in particular
undirected, weighted graphs. We focus on actual practical requirements
needed from such models, e.g., imposing sparsity and handling data
with outliers or heavy-tails, as well as showcasing the applicability of
these models on tasks such as clustering. We illustrate the performance
of state-of-the-art graph learning frameworks on both synthetic and
real-world datasets including financial time-series data and handwritten
digits image data.

Keywords: graph learning, sparsity, heavy-tail, nonconvex, algorithms

1 Introduction

The current big data era has been enriched with seamless connectivity
experienced by devices that generate unprecedented amounts of data at an
ever-increasing pace. This interconnected scenario clearly demands robust
models that can accurately estimate, detect, and predict relationships among
entities that are part of this network.

One way to model such interconnections is via graphical models (Lau-
ritzen, 1996). A particular class of graphical models, undirected Gaussian
graphical models, has found extreme success across a number of practical
fields, including biology, finance, etc. Such success is related to its ¢;-norm
penalized convex formulation and the development of the Graphical Lasso
algorithm via iterative block coordinate descent methods (Banerjee et al.,
2008; Friedman et al., 2008; Wright, 2015). Graphical Lasso is a sparse
estimator for the unconstrained precision (inverse covariance) matrix of a

multivariate Gaussian distribution. Mathematically, it can be expressed as
the following conver program:

miniamize tr (®S) —logdet (©) + \||O]|1,
subject to ©® > 0,

(1)

where S is the sample covariance matrix and || - ||; denotes the ¢;-norm.

Efficient optimization formulations along with scalable optimization algo-
rithms have been key for performing inference in graphical models. More
recently, there has been a growing interest in constraining graphical models
into a particular family or structure for a variety of practical reasons, in-
cluding: (7) introducing prior information available from the task at hand
or (i) testing assumptions on the data generating process. Most notably,
constraints on the spectral decomposition of the adjacency and Laplacian
matrices of a graph have been applied to learn bipartite and k-component
graphs for data clustering (Kumar et al., 2020, 2019b; Nie et al., 2016) and
sign constraints on the elements of the precision matrix of a Gaussian Markov
random field (GMRF') have been employed to learn total positivity models
for stock markets (Agrawal et al., 2020; Slawski and Hein, 2015; Wang et al.,
2020). From an optimization standpoint, however, such spectral constraints
are typically nonconvex, which demands the usage of powerful yet scalable
optimization algorithms.

While learning the structure of general graphical models is an NP-hard
task (Anandkumar et al., 2012), its importance is critical towards understand-
ing and leveraging the information contained in such structures. Learning
graphs from data is a fundamental problem in the statistical graph learning
and signal processing fields (Dong et al., 2019; Egilmez et al., 2017; Friedman
et al., 2008; Lake and Tenenbaum, 2010; Pavez et al., 2018; Witten et al.,
2011; Zhao et al., 2019), having a direct impact on applications such as
clustering (Hao et al., 2018; Hsieh et al., 2012; Kumar et al., 2020, 2019b;
Nie et al., 2016; Sun et al., 2014; Tan et al., 2015), finance (de Prado, 2016;
Mantegna, 1999; Marti et al., 2017), network topology inference (Coutino
et al., 2019; Mateos et al., 2019; Segarra et al., 2017), graph neural nets (Wu
et al., 2019), geometric deep learning (Bronstein et al., 2017), and graph
variational autoencoders (Kipf and Welling, 2016; Liu et al., 2018).

In this manuscript, we discuss recent advancements in graph learning
estimation methods that were only possible via nonconvex formulations
and the subsequent application of optimization frameworks that can handle
such nonconvexities. In addition, the algorithms discussed in this chapter
are implemented in the R programming language and they are available in

the open-source packages: https://github.com/mirca/sparseGraph and
https://github.com/dppalomar/spectralGraphTopology.

1.1 Learning Undirected Graphs

An undirected, weighted graph is denoted as a triple G = (V, &, W), where
V ={1,2,...,p} is the node set, & C {{u,v} : u,v € V,u # v} is the edge
set, that is, a subset of the set of all possible unordered pairs of nodes such
that {u,v} € & iff there exists a link between nodes u and v. W € RE*P
is the symmetric weighted adjacency matrix that satisfies W;; = 0, W;; >
0 iff {i,7} € € and Wj; = 0, otherwise. The combinatorial, unnormalized
graph Laplacian matrix L is defined, as L = D — W, where D £ Diag(W1)
is the degree matrix. A graph is said to be connected if and only if D;; > 0 Vi,
otherwise the graph is called disconnected.

The basic idea behind learning a graph is to answer the following question:
given a data matrix whose columns represent signals (observations) measured
at the graph nodes, how can one design a graph that “best” fits such data
matrix without possibly any (or with at most partial) knowledge of the
underlying graph structure? By “graph structure”, it is often understood
the Laplacian, adjacency, or incidence matrices of the graph, or even a more
general graph shift operator (Marques et al., 2016). In addition, the observed
signals need not to live in regular, ordered spaces and can take arbitrary
values, such as categorical and numerical, hence the probability distribution
of the data can be highly unknown. Figure 1 illustrates such setting.

A p-dimensional, real-valued, Gaussian random vector x, with mean
vector E[z] £ p and rank-deficient precision matrix L, is said to form a
Laplacian-constrained Gaussian Markov random field (LGMRF) (Kumar
et al., 2019b; Ying et al., 2020a,b, 2021) of rank p — k, k > 1, with respect
to a graph G, when its probability density function is given as

p(z) oc /det* (L) exp {—§<w W) L - m} , @)

where det* (L) is the pseudo-determinant of L, i.e., the product of its positive
eigenvalues (Knill, 2014).

Assume we are given n observations of x, i.e., X = [x1,T2,...,x,
X € R™P, x; € RP*!, The goal of graph learning algorithms is to learn a
Laplacian matrix, or equivalently an adjacency matrix, given only the data
matrix X, i.e., often without any knowledge of the edge set &.

To that end, the penalized maximum likelihood estimator (MLE) of the
Laplacian-constrained precision matrix, on the basis of the observed data X,

]T

Y

https://github.com/mirca/sparseGraph
https://github.com/dppalomar/spectralGraphTopology

(a) A graph signal. (b) A graph to be estimated on the
basis of its graph signals.

Figure 1: Tllustration of a hypothetical signal observed in a graph (Figure 1a).
The circles represent the graph nodes, the thin black lines denote the graph
edges, indicating the relationships among nodes, whereas the vertical red
bars denote the signal intensities measured at each node. Graph learning
techniques seek to estimate the underlying graph structure (edge weights
W;; in Figure 1b) through the graph signal measurements.

may be formulated as the following optimization program:

minimize tr (LS) — logdet™ (L) + h(L),

subject to L1 =0, Lij = Lji <0, (3)
where S is a similarity matrix, e.g., the sample covariance (or correlation)
matrix S o« X' X, and h is a regularization function to promote certain
properties on L such as sparsity or low-rankness. We note that we can express
the Laplacian matrix via its linear operator, i.e., L = Lw (Kumar et al.,
2019b), where w € RP(P—1)/2 ig the vectorized form of the upper triangular
part of the adjacency matrix, also known as the vector of graph weights.
In addition, for connected graphs, it follows that det*(Lw) = det(Lw + J),
J = %ll—r (Egilmez et al., 2017).

Problem (3) is fundamental in the graph signal processing and statistical
machine learning fields that has served as a cornerstone for many extensions,
primarily those involving the inference of structure onto the Laplacian matrix
L (Egilmez et al., 2017; Kumar et al., 2019b; Pavez et al., 2018). Even
though Problem (3) is convex, provided we assume a convex choice for h, it
is not adequate to be solved by disciplined convex programming languages,

such as cvxpy (Diamond and Boyd, 2016), particularly due to scalability
issues related to the computation of the term logdet™(L) (Egilmez et al.,
2017; Zhao et al., 2019). Indeed, recently, considerable efforts have been
directed towards the design of scalable, iterative algorithms based on block
coordinate descent (Wright, 2015), majorization-minimization (MM) (Sun
et al., 2017), and alternating direction method of multipliers (Boyd et al.,
2011) to solve Problem (3) in an efficient fashion, e.g., (Egilmez et al., 2017)
and (Zhao et al., 2019).

Estimators based on Gaussian assumptions have been proposed for con-
nected graphs (Dong et al., 2016; Egilmez et al., 2017; Kalofolias, 2016; Lake
and Tenenbaum, 2010; Zhao et al., 2019). Some of their properties, such as
sparsity, are yet being investigated (Ying et al., 2020b, 2021). The authors in
(Kumar et al., 2019b) and (Nie et al., 2016) proposed optimization programs
for learning the class of k-component graphs, as such class is an appealing
model for clustering tasks due to the spectral properties of the Laplacian
matrix. However, a major shortcoming in their formulations is the lack of
constraints on the degrees of the nodes, which allows for trivial solutions,
i.e., graphs with isolated nodes.

In the following sections, we discuss optimization formulations for con-
nected sparse graphs, heavy-tailed graphs, and k-component graphs. The
latter is particular appealing for machine learning applications such as clus-
tering. Before diving into the specific formulations, we briefly discuss the
optimization frameworks leveraged for the design of optimization algorithms.

1.2 Majorization-minimization: a brief visit

Majorization-minimization (MM) is one of the primary tools to tackle opti-
mization problems, in particular nonconvex ones, due to its flexible framework.
In this short section, we briefly revisit the MM recipe.

The MM framework seeks to solve the following general optimization
problem:

mlr.uwmlze f(x) 0
subject to x € X,
where we consider f a continuously differentiable, possibly non-convex func-
tion, and X is an nonempty closed set.

The general idea behind MM is to find a sequence of feasible points
{mz}l N by minimizing a sequence of carefully constructed global upper-
bounds of f. The popular expectation-maximization (EM) algorithm is a
special case of MM (Wu and Lange, 2010).

At point =’, we design a continuous global upper-bound function g (~, a:l) :
X — R such that

g(z,z") > f(z), Va € X. (5)
Then, in the minimization step we update x as
' € arg min g(zx, x?). (6)
xreX

The global upper-bound function g(-, £*) must satisfy the following con-
ditions in order to guarantee theoretical convergence:

1. g(z,2°) > f(zx) Vx € X,

2. g (', 2%) = f (=),

3. Vg (z',2') = Vf (z),

4. g(z,x") is continuous on both x and z'.

A thorough discussion about MM, along with a significant number of its
extensions, with practical examples, and comparisons to other optimization
frameworks, can be found in (Sun et al., 2017).

1.3 Alternating direction method of multipliers: a brief visit

The alternating direction method of multipliers (ADMM) is a primal-dual
framework designed to solve the following class of optimization problems:

minimize f(x) + g(z

imize f(2) + g(2) .

subject to Ax + Bz =c,

where £ € R"™ and z € R™ are the optimization variables; A € RP*™,

B € RPX™ and, ¢ € RP are parameters; and f and g are convex, proper,
closed, possibly non-differentiable functions.

The central object in the ADMM framework is the augmented Lagrangian
function, which is given as

Ly(®,2,y) = f(®) + 9(z) +y' (Az + Bz —¢) + g lAz + Bz —clj3, (8)

where p is a penalty parameter.

The basic workflow of the ADMM algorithm is summarized in Algo-
rithm 1.

The convergence of ADMM algorithms is attained provided that the
following conditions are met:

Algorithm 1: ADMM framework
Data: 20, 4%, A, B, ¢, p>0
Result: =*, z*, y*

1+0

[uny

2 while not converged do

3 z!1 « argmin L, (z, 2!, y')
xeX

4 2!« argmin L, (=11, z,y')
zEZ

6 l+1+1

7 end

1. epi(f) = {(z,t) e R" x R: f(x) <t} and epi(g) = {(z,s) ER™ xR :
g(z) < s} are both closed nonempty convex sets;

2. The unaugmented Lagrangian function L has a saddle point.

We refer readers to (Boyd et al., 2011) where elaborate convergence results
are discussed.

2 Sparse Graphs

Estimating sparse graph structures are of great applicability in practical
scenarios because more often than not real-world graphs are sparse. One
alternative to generate sparse graphs is to conduct postprocessing pruning of
edges whose weights are below a specified threshold. However, this task may
not be adequate because such threshold may not be known a prior: and it
may also lead to disconnected graphs, which may be undesirable. Therefore,
it is paramount to include sparsity-promoting regularizers directly into the
objective function or constraints of the optimization formulation. The most
common sparse-inducing function is the #;-norm, which has been a key part
of Graphical Lasso (Friedman et al., 2008; Witten et al., 2011).
However, the ¢1-norm may not always promote sparsity. To see that,
consider optimization of a loss function f that attains its minimum at a*
mlarc.léggze f(x), (©)
subjectto x'1=1,z > 0.
It is straightforward to see that changing the objective function to f(x)+
Al|x||1, A > 0, does not change the solution of the optimization problem. This

toy problem is to illustrate that careful design choices must be considered
before utilizing regularizations in optimization formulations.

Figure 2 illustrates the effect of the ¢;-norm on the estimated graphs.
We generate n = 300 data samples from a tree graph with p = 50 nodes, as
shown in Figure 2a, as in X ~ N(0, L"), where the edge weights in L are
uniformly sampled from U[2,5]. We use the data matrix X to recover the
graph L by solving Problem 3 with h(-) set as the ¢1-norm with regularization
hyperparameter \. It can be observed that, in this scenario, the estimator
defined as in Problem (3) yields denser graphs as a the hyperparameter A
increases. More details can be found in (Ying et al., 2020a,b).

Recently, theoretical and empirical studies on sparse formulations for
undirected, weighted graphs have been conducted in (Ying et al., 2020a,b,
2021; Zhang et al., 2020). The main conclusion of these works is that
the ¢1-norm is unable to learn sparse structures in the settings of Prob-
lem (3). Therefore, they rely on concave regularizers such as the minimax
concave penalty (MCP) (Zhang, 2010), smoothly clipped absolute deviation
(SCAD) (Fan and Li, 2001), or the reweighted ¢;-norm (Candes et al., 2008).

The primary shortcoming of these regularizers is that they make the opti-
mization formulation nonconvex. However, efficient optimization framework,
such as majorization-minimization (MM) (Sun et al., 2017), can be used
to generate a sequence of easy-to-solve convex problems with convergence
guarantees. For instance, Ying et al. (2020b, 2021) directly used MM on
the optimization formulations with MCP, SCAD, and the logarithm ap-
proximation to the fy-norm, to design an estimator that turns out to be
a sequence of constrained quadratic programs. Zhang et al. (2020) used a
difference-of-convex algorithm, which can be interpreted as an instance of
MM (Sun et al., 2017), to design an estimator for connected graphs. These
formulations are identical to that of Problem (3), expect that the function
h(-) is either MCP, SCAD, or the logarithm approximation to the £yp-norm.

As a practical example, we illustrate the design an MM-based estimator
that solves a sequence of majorized convexr problems to obtain a sparse
graph. The algorithm presented here is analogous to that of Ying et al.
(2020b). Recall that the general formulation for graph learning is stated in
Problem (3). Assuming that the graph is connected, we have the following
formulation

minimize tr (LwS) — logdet (Lw + J) + h(w),
L>0 (10)
subject to w >0,
where h(-) is a concave regularizer such as MCP, SCAD (Ying et al., 2020b),
or approximations to the fg-norm (Kumar et al., 2020).

<

e 20 WY%
e s W
[7 'I/".

Figure 2: Estimating Laplacian matrices via #;-norm regularization for
different values of the regularization hyperparameter: (a) ground-truth
graph, (b) A =0, (¢) A = 0.1, and (d) A = 10. We notice that increasing
the regularization intensity actually makes the estimate graph more dense.
The number of nonzero edges in (b), (c) and (d) are 135, 286 and 1225,
respectively. The true graph in (a) has 49 edges and the graph in (d) is fully
connected. The relative errors of the learned graphs in (b), (c) and (d) are
0.14, 0.64 and 0.99, respectively.

As briefly revisited in Section 1.2, the MM recipe consists of two steps: (1)
the majorization step, and the (2) minimization step. For the majorization
step, a simple but often effective rule of thumb to construct a majorizer
of an objective function is to a take the first-order Taylor approximation
of its concave components (Sun et al., 2017). Hence, for the setting of
Problem (10), we are required to find the first-order Taylor expansion of h(:),
as the other terms are convex. Denoting by g(w,w?) the majorizer of the
objective function in Problem (10) at a point w?, that means constructing g

as follows

g(w,w’) = tr (LwS) —logdet (Lw + J) + h(w") + (w — w', Vyyh(w?)) .

First-order Taylor expansion of h(-)

(11)

The next step now is to find a minimizer of g(-, w'), i.e.

w'™ € arg min tr (LwS) — logdet (Lw + J) + (w, Vyh(w?)). (12)

w>0

Note that Problem (12) is convex, therefore it can be solved by several
optimization algorithms such as block coordinate descent, projected gradient
descent (Ying et al., 2020b), and so on. We can also rely on computational
convex frameworks, e.g. cvxpy (Diamond and Boyd, 2016) for low-dimensional
cases. Algorithm 2 summarizes the implementation of an MM algorithm for
sparse graph learning similar to that of (Ying et al., 2020Db).

In addition, note that Algorithm 2 only depends on the regularizer h
through is gradient Vh. For reference, we list below the gradients of MCP
and SCAD:

)‘_E IL‘G[O,’}/)\],

hcp (%) = v (13)
0 x € [y, 0],
A x € [0,)],
eao(@) =4 21 e (14)
0 x € [yA, 00],

where v and A are positive hyperparameters.

Now, we illustrate the advantages of Algorithm 2 for sparse graph learning
in a practical experiment involving financial time series data. More precisely,
we perform an experiment with data from returns of stocks belonging to
the S&P500 in order to showcase the importance of appropriate sparsity-
promoting regularizations while learning graphs. To that end, We collect
price data of p = 85 stocks belonging to three sectors, namely, Communication
Services (red), Utilities (blue), and Real Estate (green) from Apr. 22nd 2019
to Dec. 30th 2020, resulting in n = 429 observations.

Figure 3 shows the estimated graphs by Problem (3) using the ¢;-norm
and MCP, which we respectively denote as “Gaussian MLE” and “Gaussian
MLE with MCP”. We observe that the modularity value of the MCP-based
graph is twice as much as the one based on the ¢;-norm. In addition, the

10

Algorithm 2: Sparse Graph Learning
Data: Similarity matrix S € RP*P initial estimate of the graph
weights w.
Result: Graph Laplacian estimation: Lw™*.
1140
2 while convergence criteria not met do
3 > update

w't € arg min tr (LwS) — logdet (Lw + J) + (w, V,h(w?)).

w>0

4 1+1+1
5 end

learned graph by MCP is more sparse, which can aid interpretability of the
financial network. However, improved results can be obtained if we take

into account that the data is actually heavy-tail distributed, which we will
discuss in the next section.

WEC WEC
SBAC
EsAwK] AWPED(;(E'- fere)
GEOED s s A,QT EQIX TTV@TVI
r AER. AEé Al R
Ve S Oaee s ZQFLX
EQI;BAC L2 q\lEE ATO 50 P 005“ EE ek
can d
o 0 Sren DUk SHUK Qe vy QHAR
o GOOG
K. Exmsﬁ\ o'?I ETR gwgm o e A . @BocL
ATV ET%TWO VigE 60 9] ETR £Xc AREo TWTR ©
= %L e B OE&RE ol aftss
o IXPPLMAA
e JM - CHTR OS%E g0 B © PECOIRM @{RG DISH
7B IMUS iz NP 1) DIE O QT fgudhVsA
T GOIRM A e G S £ PEAKO ”Q;O FOX
NR
006 "1 ESA e Wy SQ\K Ry o) CBngC @ FOXA
N - DA 5 ol AV 9l DBl
= . o QLB N VO
NWSA CBR i R WEl
o ol | PGo - ng)vEu_;)LG D et
Ra M 3 REG EQR SHEST
NW O o BXP L
SFO% Qv OF@T S o 3850
® G
HST, Pg Kil
DISC © g
Bisck REGO
_y o
(a) Gaussian MLE, modularity = 0.23. (b) Gaussian MLE with MCP,

modularity = 0.46.

Figure 3: Learned graphs of S&P500 stocks during the COVID-19 pandemic.

11

3 Heavy-tail Graphs

Heavy-tail events and outliers are prevalent in contemporaneous datasets.
The appropriate modelling of such events is critical to design performant
graph estimators in practical scenarios (Resnick, 2007).

Enforcing sparsity is one possible way to remove spurious conditional
correlations between nodes in the presence of data with outliers. However, as-
suming a principled, heavy-tailed statistical distribution directly brings more
benefits, rather than simply imposing arbitrary, non-convex regularizations,
because they are often cumbersome to deal with from a theoretical perspective
and, in practice, they bring the additional task of tunning hyperparameters,
which is often repetitive.

Data from financial instruments, e.g., returns of equities, currencies,
and cryptocurrencies can be extremely heavy-tailed. We illustrate that
phenomena empirically using returns data from the S&P500 index from
different time periods. Figure 4 shows histograms of the log-returns of the
S&P500 index in different periods along with a fit of a Gaussian probability
density function. As it can be observed, there exists a significant discrepancy
between the fitted density and its empirical counterpart especially around
the tails of the distribution.

In order to address the inherently heavy-tailed nature of such datasets, the
authors in (Cardoso et al., 2021) considered the Student-¢ distribution under
the improper Markov Random field assumption (Rue and Held, 2005) with
Laplacian structural constraints, that is, they assume the data generating
process to be modeled a multivariate zero-mean Student-t distribution, whose
probability density function can be written as

o
p(x) x y/det™(O) (1 + ©) , V> 2, (15)

v

where © is a positive-semidefinite inverse scatter matrix modeled as a
combinatorial graph Laplacian matrix. This results in a robustified version
of the MLE for connected graph learning, i.e.,

inimize p+”§n:1 L det (© + J)
minimiz O — — 10 €
w>0,050 n = & v & ’

(16)
subject to O = Lw, dw =d,

where 9 : RP(—1)/2 _, RP is the degree operator defined as dw £ diag (Lw).
The constraint 0w = d enables the learning of additional graph structures

12

100- =
75- ™
50-

25-

0_ sy
-0.02 -0.01 0.00 0.01 0.02
Log-returns

(a) Jan. 5th 2004 — Dec. 30th 2006.

40-
30-
20-
10-

0_
-0.10 -0.05 0.00 0.05 0.10
Log-returns

(¢) Jan. 3rd 2008 — Dec. 31st 2009.

100-

75-

50-

25-

0_
-0.04 -0.02 0.00 0.02 0.04
Log-returns

(b) Jan. 2nd 2013 — Jun. 29th 2018.

75-
50-
25-

0-

~0.10 -0.05 0.00 0.05 0.1
Log-returns

(d) Jan. 5th 2016 — Jul. 20th 2020.

Figure 4: Histograms of the S&P500 log-returns during the aforementioned
time periods, where the solid curve represents a Gaussian fit. It can be
noticed that the tails of the Gaussian decay much faster than the tails of the
empirical histograms, indicating the presence of heavy-tails or outliers.

such as regular graphs and it is crucial for k-component graphs to avoid
isolated nodes.

From a theoretical perspective, the Student-t model naturally yields
sparse graphs. Comparing the objective function in Problem (16) to that
of Problem (3), we note that the Student-¢ contains a log(-) term in place
of a linear term of the graph weights. The usage of a log function to
promote sparsity is closely related to the iteratively reweighted £1-norm as an
approximation for the ¢yp-norm problem (Candes et al., 2008). Problem (16)
is, in general, nonconvex due to the summation of log terms and hence it is
challenging to be handled directly. Therefore, the authors in (Cardoso et al.,
2021) relied on optimization frameworks such as the alternating direction
method of multipliers as well as the majorization-minimization to come up
with a convergent algorithm for this problem.

13

In what follows, we illustrate how to design an ADMM algorithm for
Problem (16). Since Problem (16) is nonconvex, elaborate convergence
results are required, however, for the sake of simplicity we refer interested
readers to check the supplementary material of (Cardoso et al., 2021).

We start by following the ADMM exposition in Section 1.3, then the
partial augmented Lagrangian function of Problem (16) can be written as

x!] Lwz;,
L,(®,w,Y,y) = p—|— Zl (% —logdet (©@ + J) + (y,o0w — d)

+ 2 ow—d3+ (V.0 - Lw) + L@ - Lwl}. (7)
The subproblem for ® can be written as

O = arg min —logdet (@ + J) + (®,Y") +2 HG‘) Lw H (18)
00

Now, making the simple affine transformation Q! = @*1 + J, we have

Q-0

which can be expressed as a proximal operator (Parikh and Boyd, 2014),

I+1 !
Q + = prOXp,l(ilog det()+(Yl,)) (ﬁw + J) 5 (20)
whose closed-form solution is given by Lemma 1.

Lemma 1. The global minimizer of problem (20) is (Danaher et al., 2014;
Witten and Tibshirani, 2009)

Qi+ = 21pU (r + T2+ 4pI> U’ (21)

where UTU " is the eigenvalue decomposition of p (le +J) -Y!
Hence the closed-form solution for (18) is
et =qtt g (22)

The subproblem for w can be written as

e B T /% * o * 1 I+1Y) % I
minimize 5 w O+ LL)w <w,[, (Y + p©) 0 (y pd) >
ac Lwx
p+ E log <1+) (23)

14

where £* and 0* are the adjoint operators of the Laplacian and degree
operators, respectively (Cardoso et al., 2021).

We employ the MM framework to formulate an efficient iterative algorithm
to obtain a stationary point of Problem (23). We proceed by constructing a
global upper bound of Problem (23). Using the fact that the logarithm is
globally upper-bounded by its first-order Taylor expansion, we have

t a t—a
_) < — - > >
log(l—l—b)_log(l—i—b>+a+b,Va_O,t_0,b>O, (24)

which results in the following upper bound:

(w, L*x; *ib;r*> (w, Lx; *azj,j
1 1 L < L
og (+ > <

j T
uﬂ’ £*$i7*$i7*> +v

+c (25)

where c; =log | 1 + is a constant.

v

('wj,ﬁ*a:i,*aziTQ <wj,£*:ci7*as;r*>
(wi, Lo]) + v
By upper-bounding the objective function of Problem (23), at point
wl = w', with (25), the vector of graph weights w can then be updated
by solving the following nonnegative, quadratic-constrained, strictly convex
problem:

w/T = arg min ng O+ LL)w — <’w,£* (Yl + p('-)l'H) -0 (yl - pd> >

w>0

n * T
b +v <’UJ, L 1131'7*.’.13Z-7*>
D

= (wl, Lrm]) + v

= arg min ng O+ LL)w + <w, L* (S’J N p@lﬂ) +0" (yl - pd) >,

w>0
(26)
~ 1 « (p+v)
where S7 £ - > w L’*(]; 2T T VCBM.’B:* is a weighted sample covari-
i=1 ’ b*T %

ance matrix.

Problem (26) is convex quadratic program, and hence can be solved
efficiently.

The dual variables Y and y are updated as

Yyt =yl 4, <@z+1 _ le“) (27)

and
Yyt =gyl 4 (alerl _ d) . (28)

15

Algorithm 3 summarizes the implementation of an ADMM algorithm to
solve Problem (16).

Algorithm 3: Connected Student-¢ graph learning

Data: Data matrix X € R™*P, initial estimate of the graph weights
w?, desired degree vector d, penalty parameter p > 0, degrees
of freedom v, tolerance € > 0

Result: Laplacian estimation: Lw*

1 initialize Y =0,y =0

21+0

3 while max (|r!|) > € or max (|s!|) > € do

4 | o update ®F! via (22)

5 > update w't! by iterating the solution of (26)

6 | > update YH! asin (27)

7 | > update y'! as in (28)

8 > compute residual r't! = @1 — Lot

9 > compute residual st = dw!t! —d

10 l—1+1

11 end

To illustrate the benefits of the robustified MLE, we consider learning
a financial stock market networks comprised of S&P500 stocks belonging
to three sectors, namely, Communication Services (red), Utilities (blue), and
Real Estate (green), totalling p = 82 stocks, during the time horizon from
Jan. 3rd 2014 to Dec. 29th 2017, resulting in n = 1006 observations. In
order to obtain descriptive insights on this dataset, we measure its degree
of heavy-tailedness and annualized volatility'. The former is obtained by
fitting the degrees of freedom of a Student-t distribution to the matrix of
log-returns, whereby we obtain v &~ 5.5 and ¢ =~ 21%. This scenario can be
considered as having a moderate amount of heavy-tailedness.

Figure 5 depicts the learned connected graphs on the aforementioned time
periods. It can be readily noticed that the graph learned with the Student-¢
distribution (Figure 5¢) is sparser than those learned with the Gaussian
assumption (Figure 5a and 5b), which results from the fact that the Gaussian
distribution is more sensitive to outliers. Moreover, the Student-¢ graph
presents a higher degree of interpretability as measured by its modularity

!The annualized volatility is computed as o = —V?Q P, 0i, where o; is the daily

sample standard deviation of the i-th stock.

16

value. In addition, a larger number of inter-sector connections, as indicated
by gray-colored edges, which are often spurious from a practical perspective,
are present in the graphs learned using the Gaussian MLE and Gaussian
MLE with MCP regularization. Sparsity regularization provides a means to
remove edges between nodes in the presence of data with outliers and possibly
increasing the modularity of the resulting graph. However, they bring the
additional task of tunning hyperparameters, which is often repetitive and
impractical for real-time applications. A cleaner graph, without the need for
postprocessing or additional regularization, is obtained directly by using the
Student-t assumption. More details can be found in (Cardoso et al., 2021).

ED SO
Bk it R,
90 Gt Pore R s . w
o
i SESERT 5562 o A‘T{)(}ETRNEE oQé Uec e %gEsé‘Jx E;ésgu (Eiig
uoR %AW W %EAK WR Evsé” PPL m EéEE og?‘,ﬁ(g\éw Oocﬁp » SUGL
EQREssOPGOMAﬁb RE
PS
E\),(Zo ongXRO A o v 3((! N A
e |Ry\8MT ay I @r? sz cal OPEMWELLRT i L
- X‘M & Ca,
o SBACO e DREAS RM FEREG
Jer o EQI);BiCéWG DIS%\SCK Cnch]/lféc’s e Pm%ﬁg&mv D@§,§K s SB‘Qm slcVN%'SE KN
iy g ST, OEQ'X o DRvE cmgw 18H & o RO BR
i DATVh—r JEGw! Ashe’ SL&‘,/NOOEXP '5?@ g die0 meo s P§(BAAQW
st “onic gg"“ TMl;SD b s M?LXPB A OMSG Brix ggﬁs
oA O D@H NFLxDGOOGL NW Am’l(?vn
ngsmsqg‘ o cot‘?c e o
G G
o
(a) Gaussian MLE, (b) Gaussian MLE with (¢) Student-t MLE,
modularity = 0.31. MCP, modularity = 0.49. modularity = 0.54.

Figure 5: Learned graphs of S&P500 stocks.

4 Clustering

Recently, Kumar et al. (2020, 2019b); Nie et al. (2016) proposed optimization
programs for learning the class of k-component graphs, as such class is
an appealing model for clustering tasks due to the spectral properties of
the Laplacian matrix. Clustering may be accomplished through graphs by
directly taking advantage of the fact that a graph that has k disconnected
components must satisfy rank(L) = p — k (Chung, 1997).

More precisely, Nie et al. (2016) proposed the constrained Laplacian-rank
(CLR) algorithm, which works in two-stages. On the first stage it estimates
a connected graph and then on the second stage it heuristically projects the
graph onto the set of Laplacian matrices of dimension p with rank p— k&, where
k is the given number of graph components. This approach is summarized
in the following two stages:

17

1. Obtain an initial affinity matrix A* as the optimal solution of:

minimize lr(AZ)+ 1| AR,

29
subject to diag (A) =0, A1 =1, A;; >0 Vi,j. 29

Note that Problem (29) is a convex quadratic program, hence it can
be readily solved computationally.

2. Find a projection of A* such that L* = Diag(B*T;B*) — BITAB" puq

2
rank p — k:
minimize ||B — A*|2,
B,L-0
subject to B1 =1, rank(L) = p — k, (30)

. T T
L = Diag(E8) - B tB

i

where k is the desired number of graph components.

Note that Problem (30) is nonconvex due to the rank constraint. How-
ever, a suitable approximation can be made, which leads to the design
of an alternate optimization scheme. We point interested readers to
(Nie et al., 2016) for the derivation.

Spectral constraints on the Laplacian matrix are an intuitive way to
recover k-component graphs as the multiplicity of its zero eigenvalue, i.e.,
the nullity of L, dictates the number of components of a graph. The first
framework to impose structures on the estimated Laplacian matrix under a
multivariate Gaussian setting was proposed by Kumar et al. (2020, 2019b),
through the use of spectral constraints, as follows:

p—k
. n] T2
t —) log (A *H — UDiag(A H ,
Tvg(')r}}zf r(LwS) ZZ1 og (i) + 5 Lw — UDiag(A\)U . o
subjectto U'U =1, U € Rp* (p—k),

AERF <A <o < Mg < e

where the term 7 HL — UDiag(/\)UT| i, often called spectral regularization,
is added as a penalty term to indirectly promote L to have the same rank
as UDiag(A\)U", i.e., p — k, k is the number of components of the graph
to be chosen a priori, and n > 0 is a hyperparameter that controls the
penalization on the spectral factorization of L, and ¢; and cy are positive,
real-valued constants employed to promote bounds on the eigenvalues of
L. While Problem (31) is nonconvex, the authors in (Kumar et al., 2019b)

18

employed the block MM framework (Sun et al., 2017) to obtain a stationary
point. Note that the block MM framework is a natural extension of the
MM principle for multiple blocks of variables in a coordinate descent fashion,
i.e., the variables are partitioned into blocks and MM is applied to one
block while keeping the value of the other blocks fixed. This framework
provides a clear flexibility benefit when designing majorization functions.
The convergence for the algorithm proposed in (Kumar et al., 2019b) is
quite involved, therefore we refer interested readers to their supplementary
material. We denote the estimator in Problem (31) as SGL.

We now elaborate on the algorithm proposed by Kumar et al. (2019b).
The subproblem for w can be written as

mlmgg)lze tr (LwS) + ¥ || Lw — UDiag()UTHIQN (32)

which is a convex QP without closed-form, nonetheless it can be solved via
standard QP solvers or projected gradient descent methods.
The subproblem for U can be written as

minimize || Cw — UDiag(A)U |5,

(33)
subjectto U'U =1, U e RP*(—k),
which can be further simplified as
maximize tr (U LwUDiag(\)),
dr (g(N)) (34)

subject to U'U = I, U e Rp*P—k),

Problem (34) is an optimization on the orthogonal Stiefel manifold
St(p,p — k) = {U € RP*P=F . UTU = I}. From (Absil et al., 2007)
the optimizer of (34) is the p — k eigenvectors of Lw associated with the
p — k largest eigenvalues of Lw.

The subproblem for A is given as

2
m|n|m|ze Zlog g Hﬁ'w — UDiag(A)UTHF, (35)
subject to AERﬁ s el <A< < Mg < o2,
which can be simplified as
m|n|m|ze Zlog g Ju — A3, (36)

subject to /\E Rﬂ << < Ap—k < C2,

19

where u = diag(U " LwU).

Problem (36) is a convex optimization problem with isotonic constraints.
While it can be solved via general purpose convex solvers, dedicated algo-
rithms are needed for high dimensional cases (Wang et al., 2022).

Algorithm 4 summarizes the scheme of Kumar et al. (2019b) for k-
component graph learning.

Algorithm 4: k-component Graph Learning (SGL)

Data: Similarity matrix S € RP*P | initial estimate of the graph
weights w?, integer number of graph components k.
Result: Graph Laplacian estimation: Lw?*.
140
while convergence criteria not met do
> update w't! via (32)
> update Ut via (34)
> update X! via (36)
141+ 1
end

N o ok W N =

Note that Problem (31) learns a k-component graph without the need
for a two-stage algorithm. However, a clear caveat of this formulation is that
it does not control the degrees of the nodes in the graph, which may result
in a trivial solution that contains isolated nodes, turning out not to be useful
for clustering tasks especially when applied to noisy data sets or to data sets
that are not significantly Gaussian distributed. In addition, choosing values
for hyperparameters 7, c1, and ca, is often an intricate task.

To showcase the capabilities of the estimators CLR and SGL, we perform
experiments with both synthetic and real data sets. Figure 6 illustrates the
results of clustering synthetic structures via SGL using the spatial coordinates
of the nodes as features, with 100 nodes per cluster, i.e., the data matrix is
X € R199X7 where n is the number of spatial dimensions and each row of
X is associated with a node’s coordinates. More precisely, we have n = 2 in
Figures 6a — 6e and n = 3 in Figure 6f. We observe that SGL succeeds in
correctly clustering the nodes according to their cluster membership.

As for a real-world dataset, we consider foreign exchange data from the
34 most traded currencies between the period from Jan. 2nd 2019 to Dec.
31st 2020, totalling n = 522 observations. The data matrix is composed by
the log-returns of the currencies prices with respect to the United States
Dollar. Unlike in the experiment involving S&P500 stocks, there is no

20

(e) Spirals. (f) 3D Helix.

Figure 6: The estimator defined in Problem (31) is able to perfectly cluster
the data points according to their cluster membership for synthetic structures.

21

classification standard for currencies, hence we use a community detection
algorithm (Clauset et al., 2004) in order to create classes within the learned
graph. In particular, the algorithm in Clauset et al. (2004) takes as input the
learned Laplacian matrix of the graph and outputs a membership assignment
that maximizes the modularity of the graph.

(a) SGL, modularity = 0.62. (b) CLR, modularity = 0.79.

Figure 7: Learned 9-component graphs of currencies.

Figure 7 depicts the learned 9-component graphs of currencies during the
time window from Jan. 2nd 2019 to Dec. 31st 2020, where we can readily
observe a few meaningful connections between currencies of countries that
are geographically close to each other. We can observe that SGL and CLR
allow the existence of isolated nodes in the learned graphs, which may not
be ideal if we would like to cluster a particular node. More details can be
found in (Cardoso et al., 2021).

4.1 Soft-clustering via bipartite graphs

Bipartite graphs are graphs whose node set can be partitioned in two dis-
joint groups (Chung, 1997). More formally, an undirected, weighted, bi-
partite graph can be defined as a 4-tuple G = {V,.,V,,&, W}, where V, £
{1,2,...,r} and V, £ {r + 1,7 +2,...,7 + ¢} are the node sets associated
with a group of objects and classes, respectively; £ C {{u, v} :u € V,,v € V,;}
is the edge set, that is, a subset of the set of all possible unordered pairs of
4 ¢ nodes such that {u,v} € & iff nodes u and v are connected. W € RE*P
is the symmetric weighted adjacency matrix that satisfies W;; = 0, W;; >
0iff {i,7} € £ and W;; = 0, otherwise. Figure 8 displays an instance of such
model.

22

Object # 3

Class C
Object # 2

Class B
Object # 1

Class A
Object # 0

Figure 8: A bipartite graph illustrating the modeling of dependencies between
a collection of objects and their classes. The edges of the graph correspond
to nonzero elements in its adjacency matrix W.

Properties associated with the spectral decomposition of graph matrices
have demonstrated prolific advantages that enable learning graphs with
specific structures, such as bipartite and k-component, and bipartite k-
component graphs (Kumar et al., 2020, 2019a,b; Nie et al., 2017, 2014, 2016).
Let W = VDiag(y)V'T be the spectral decomposition of the adjacency
matrix. Then, the adjacency matrix of a bipartite graph satisfies the following
spectral properties (Godsil and Royle, 2001):

(P1) 4 contains exactly r — ¢q zero elements.

(P2) 1 is anti-symmetric, i.e., 1 € Cy, where

Cyp ={Y €RP 19, = —Pogi1 4, c1 21 2> P2 > -+ > Py > ca,
7;:1727"'5(]}, (37)

where ¢; and co are positive constants.
Leveraging (P1) and (P2), Kumar et al. (2020, 2019a) proposed the
following nonconvexr program to learn a bipartite graph:

mini&nqipze tr (CwS) — logdet (Lw + J) + § || Aw — VDiag(w)VT“i :

subject to w € Ri(pfl)p, Vv = I,V € RP*24 4 ¢ Cy,

(38)
where £ and A (Kumar et al., 2020) are the Laplacian and adjacency operators
and w is the vector of graph weights. While the estimator proposed in Kumar
et al. (2020) does not directly assume knowledge of the partition of the node
set, it does require the availability of the number of nodes in each group. We
denote the estimator defined by Problem (38) as SGA. The development of

23

a block MM optimization algorithm to solve Problem (38) is substantially
similar to that of Problem (31), hence we omit the mathematical derivations.

Assuming a connected bipartite graph, Nie et al. (2017) proposed a
heuristic approach that relies on the availability of a graph similarity matrix
B ¢ R"™*4 and used the fact that the adjacency matrix of a bipartite graph
can be written as W = [0 B; B' 0]. More precisely, their estimator is
obtained as the solution of the following optimization problem:

minimize HB — BoHi,
BeR" X1 (39)
subjectto B >0, Bl,=1,.

Problem (39) is an Euclidean projection of the rows of B onto the probability
simplex. While it can be solved efficiently via standard quadratic program-
ming solvers, this approach lacks statistical support and its performance in
practical applications heavily depends on the quality of the initial graph
similarity matrix. We denote the estimator defined by Problem (39) as
SOBG.

We illustrate the performance of the state-of-the-art algorithms in terms
of quantitative measures such as node label accuracy and modularity. The
accuracy is computed as the ratio between the number of correctly predicted
labels and the number of nodes in the object set, whereas the modularity
of a graph is defined as in (Newman, 2006). The modularity measures the
strength of division of a graph into groups. A high modularity value means
that the nodes from the same group are more likely to be connected.

We conduct a soft-clustering experiment using the MNIST image data (Le-
Cun et al., 2010). While this dataset has been widely investigated in super-
vised machine (deep) learning settings, which achieved human-like accuracy,
we instead use it as a proof of concept for unsupervised soft-clustering via
graphical models. MNIST provides a collection of 28 x 28 grey-scaled images
of handwritten digits from 0 to 9. The nodes in the classes set are defined
such that every node corresponds to a unique digit, i.e., V, = {0,1,...,9}.
We assign 500 nodes for the object set, each of which representing an image
randomly selected from the testing set. We randomly select the images in
a stratified way, such that every label (digit) appears 50 times. The signal
for a node v; € Vg, associated with digit 4, is constructed by averaging 1000
randomly selected images from the training set whose label corresponds to
i. We construct the data matrix X by vectorizing and stacking the images
column-wise. The quantitative measures are then computed as an average of
50 realizations of this randomized experiment.

24

Table 1: Performance of the algorithms in soft-clustering hand-written digits.

Algorithm Accuracy Modularity
SOBG 0.76 +/- 0.01 0.29 +/- 0.01
SGA 0.62 +/- 0.02 0.35 +/- 0.05

We then proceed to learn graphs by the SOBG and SGA. The fi-
nal label assigned to the ¢-th image in the objects set corresponds to
argmax;c; o Bij — 1. Figure 9 shows the estimated graphs, while Ta-
ble 1 provides quantitative results, where we observe that SGA outputs a
sparser graph that turns out to have a higher modularity value than that of
SOBG, on the other hand SOBG yields a graph that is more accurate.

(a) SOBG. (b) SGA.

Figure 9: Learned bipartite graphs of hand-written digital images in the
MNIST dataset. Each color represents a digit. Grey-colored edges represent
connections between images of distinct digits.

5 Conclusion

In this chapter, we reviewed state-of-the-art formulations and numerical opti-
mization algorithms for graph learning under different practical requirements,
e.g., sparsity and heavy-tails, and different structures such as k-components
and bipartite. We illustrated the power of modern graph learning estimators
via experiments that included practical real-world datasets such as returns

25

from financial equities and currencies as well as images of handwritten digits.

6 Acknowledgements

This work was supported by the Hong Kong GRF 16207019 research grant.

References

Absil, P-A.; R. Mahony, and R. Sepulchre (2007). Optimization Algorithms
on Matrixz Manifolds. Princeton, NJ: Princeton University Press.

Agrawal, R., U. Roy, and C. Uhler (2020, 09). Covariance matrix estima-
tion under total positivity for portfolio selection. Journal of Financial
Econometrics.

Anandkumar, A.,; V. Y. F. Tan, F. Huang, and A. S. Willsky (2012). High-
dimensional Gaussian graphical model selection: Walk summability and

local separation criterion. Journal of Machine Learning Research 13(1),
2293-2337.

Banerjee, O., L. E. Ghaoui, and A. d’Aspremont (2008). Model selection
through sparse maximum likelihood estimation for multivariate gaussian
or binary data. Journal of Machine Learning Research 9(15), 485-516.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning 3(1), 1-122.

Bronstein, M. M., J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst
(2017). Geometric deep learning: Going beyond euclidean data. IEEE
Signal Processing Magazine 34 (4), 18-42.

Candes, E. J., M. B. Wakin, and S. P. Boyd (2008). Enhancing sparsity
by reweighted ¢; minimization. Journal of Fourier Analysis and Applica-
tions 14(5), 877-905.

Cardoso, J. V. M., J. Ying, and D. P. Palomar (2021). Graphical models
in heavy-tailed markets. In Advances in Neural Information Processing
Systems (NeurIPS).

Chung, F. R. K. (1997). Spectral Graph Theory, Volume 92. CBMS Regional
Conference Series in Mathematics.

26

Clauset, A., M. E. J. Newman, and C. Moore (2004). Finding community
structure in very large networks. Physical Review E 70, 066111.

Coutino, M., E. Isufi, T. Machara, and G. Leus (2019). State-space network
topology identification from partial observations. In arXiv: 1906.10471.

Danaher, P., P. Wang, and D. M. Witten (2014). The joint graphical lasso
for inverse covariance estimation across multiple classes. Journal of the
Royal Statistical Society Series B 76(2), 373-397.

de Prado, M. L. (2016). Building diversified portfolios that outperform out
of sample. The Journal of Portfolio Management 42(4), 59-69.

Diamond, S. and S. Boyd (2016). CVXPY: A Python-embedded mod-
eling language for convex optimization. Journal of Machine Learning
Research 17(83), 1-5.

Dong, X., D. Thanou, P. Frossard, and P. Vandergheynst (2016). Learning
Laplacian matrix in smooth graph signal representations. IFEFE Transac-
tions on Signal Processing 64(23), 6160-6173.

Dong, X., D. Thanou, M. Rabbat, and P. Frossard (2019). Learning graphs
from data: A signal representation perspective. IEEE Signal Processing
Magazine 36(3), 44-63.

Egilmez, H. E., E. Pavez, and A. Ortega (2017). Graph learning from data
under Laplacian and structural constraints. IEEE Journal of Selected
Topics in Signal Processing 11(6), 825-841.

Fan, J. and R. Li (2001). Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American Statistical
Association 96(456), 1348-1360.

Friedman, J., T. Hastie, and R. Tibshirani (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics 9, 432—41.

Godsil, C. and G. Royle (2001). Algebraic Graph Theory. Graduate Texts in
Mathematics. Springer Science.

Hao, B., W. W. Sun, Y. Liu, and G. Cheng (2018). Simultaneous clustering
and estimation of heterogeneous graphical models. Journal of Machine
Learning Research 18(217), 1-58.

27

Hsieh, C., A. Banerjee, I. S. Dhillon, and P. K. Ravikumar (2012). A divide-
and-conquer method for sparse inverse covariance estimation. In Advances
in Neural Information Processing Systems (NeurIPS’12), pp. 2330-2338.

Kalofolias, V. (2016). How to learn a graph from smooth signals. In
Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, Volume 51, pp. 920-929.

Kipf, T. N. and M. Welling (2016). Variational graph auto-encoders. In
Bayesian Deep Learning Workshop, Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Knill, O. (2014). Cauchy-Binet for pseudo-determinants. Linear Algebra
and its Applications 459, 522 — 547.

Kumar, S., J. Ying, J. V. M. Cardoso, and D. P. Palomar (2020). A unified
framework for structured graph learning via spectral constraints. Journal
of Machine Learning Research 21, 1-60.

Kumar, S., J. Ying, J. V. de M. Cardoso, and D. P. Palomar (2019a).
Bipartite structured Gaussian graphical modeling via adjacency spectral
priors. In 53rd Annual Asilomar Conference on Signals, Systems, and
Computers.

Kumar, S., J. Ying, J. V. de M. Cardoso, and D. P. Palomar (2019b).
Structured graph learning via laplacian spectral constraints. In Advances
in Neural Information Processing Systems (NeurIPS).

Lake, B. M. and J. B. Tenenbaum (2010). Discovering structure by learn-
ing sparse graph. In Proceedings of the 33rd Annual Cognitive Science
Conference.

Lauritzen, S. L. (1996). Graphical models, Volume 17. Clarendon Press.

LeCun, Y., C. Cortes, and C. Burges (2010). MNIST handwritten digit
database. In ATT Labs [Online]. https://yann.lecun.com/exdb/mnist.

Liu, Q., M. Allamanis, M. Brockschmidt, and A. L. Gaunt (2018). Con-
strained graph variational autoencoders for molecule design. In Advances
in Neural Information Processing Systems (NeurIPS).

Mantegna, R. N. (1999). Hierarchical structure in financial markets. The
European Physical Journal B 11(1), 193-197.

28

https://yann.lecun.com/exdb/mnist

Marques, A. G., S. Segarra, G. Leus, and A. Ribeiro (2016). Sampling of
graph signals with successive local aggregations. IEEE Transactions on
Signal Processing 64 (7), 1832-1843.

Marti, G., F. Nielsen, M. Birikowski, and P. Donnat (2017). A review of two
decades of correlations, hierarchies, networks and clustering in financial
markets. In arXiv: 1703.00485.

Mateos, G., S. Segarra, A. G. Marques, and A. Ribeiro (2019). Connecting
the dots: Identifying network structure via graph signal processing. IEEE
Signal Processing Magazine 36(3), 16-43.

Newman, M. E. J. (2006). Modularity and community structure in networks.
Proceedings of the National Academy of Sciences of the United States of
America 103, 8577-8582.

Nie, F., X. Wang, C. Deng, and H. Huang (2017). Learning a structured
optimal bipartite graph for co-clustering. In Proceedings of the 31st Inter-

national Conference on Neural Information Processing Systems, Neurips’17,
pp. 4132-4141.

Nie, F., X. Wang, and H. Huang (2014). Clustering and projected cluster-
ing with adaptive neighbors. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD
"14.

Nie, F., X. Wang, M. 1. Jordan, and H. Huang (2016). The constrained
Laplacian rank algorithm for graph-based clustering. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, AAAT’'16, pp.
1969-1976.

Parikh, N. and S. Boyd (2014). Proximal algorithms. Foundations and
Trends in Optimization 1(3), 127-239.

Pavez, E., H. E. Egilmez, and A. Ortega (2018). Learning graphs with
monotone topology properties and multiple connected components. IEEE
Transactions on Signal Processing 66(9), 2399-2413.

Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical
Modeling. Springer-Verlag New York.

Rue, H. and L. Held (2005). Gaussian Markov Random Fields: Theory And
Applications. Chapman & Hall/CRC.

29

Segarra, S., A. G. Marques, G. Mateos, and A. Ribeiro (2017). Network
topology inference from spectral templates. IEEE Transactions on Signal
and Information Processing over Networks 3(3), 467-483.

Slawski, M. and M. Hein (2015). Estimation of positive definite m-matrices
and structure learning for attractive gaussian markov random fields. Linear
Algebra and its Applications 473, 145 — 179.

Sun, S., Y. Zhu, and J. Xu (2014). Adaptive variable clustering in Gaussian
graphical models. In Proceedings of the Seventeenth International Confer-
ence on Artificial Intelligence and Statistics, Volume 33, pp. 931-939.

Sun, Y., P. Babu, and D. P. Palomar (2017). Majorization-minimization
algorithms in signal processing, communications, and machine learning.
IEEE Transactions on Signal Processing 65(3), 794-816.

Tan, K. M., D. Witten, and A. Shojaie (2015). The cluster graphical Lasso
for improved estimation of Gaussian graphical models. Computational
Statistics €& Data Analysis 85, 23 — 36.

Wang, X., J. Ying, J. V. M. Cardoso, , and D. P. Palomar (2022). Efficient
algorithms for general isotone optimization. In The Thirty-Sizth AAAI
Conference on Artificial Intelligence (AAAI).

Wang, Y., U. Roy, and C. Uhler (2020). Learning high-dimensional gaussian
graphical models under total positivity without adjustment of tuning
parameters. In Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, Volume 108, pp. 2698-2708.

Witten, D. M., J. H. Friedman, and N. Simon (2011). New insights and
faster computations for the graphical lasso. Journal of Computational and
Graphical Statistics 20(4), 892-900.

Witten, D. M. and R. Tibshirani (2009). Covariance-regularized regression
and classification for high dimensional problems. Journal of the Royal
Statistical Society. Series B (Statistical Methodology) 71(3), 615—636.

Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Program-
ming 151, 3-34.

Wu, T. T. and K. Lange (2010). The MM alternative to EM. Statistical
Science 25(4), 492-505.

30

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu (2019). A com-
prehensive survey on graph neural networks. arXiv e-prints: 1901.00596.

Ying, J., J. V. M. Cardoso, and D. P. Palomar (2020a). Does the ¢;-norm
Learn a Sparse Graph under Laplacian Constrained Graphical Models?
arXiw e-prints: 2006.14925.

Ying, J., J. V. M. Cardoso, and D. P. Palomar (2020b). Nonconvex sparse
graph learning under Laplacian-structured graphical model. In Advances
in Neural Information Processing Systems (NeurIPS).

Ying, J., J. V. M. Cardoso, and D. P. Palomar (2021). Minimax estimation
of Laplacian constrained precision matrices. In Proceedings of The 24th

International Conference on Artificial Intelligence and Statistics, Volume
130 of Proceedings of Machine Learning Research, pp. 3736-3744. PMLR.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax
concave penalty. The Annals of Statistics 38(2), 894 — 942.

Zhang, Y., K.-C. Toh, and D. Sun (2020). Learning graph laplacian with
mcp.

Zhao, L., Y. Wang, S. Kumar, and D. P. Palomar (2019). Optimization
algorithms for graph laplacian estimation via ADMM and MM. I[EEE
Transactions on Signal Processing 67(16), 4231-4244.

31

	Introduction
	Learning Undirected Graphs
	Majorization-minimization: a brief visit
	Alternating direction method of multipliers: a brief visit

	Sparse Graphs
	Heavy-tail Graphs
	Clustering
	Soft-clustering via bipartite graphs

	Conclusion
	Acknowledgements

