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= We propose estimators for (k-component) bipartite graphs under the as-
sumption of heavy-tailed data

= Code avallable at https://mirca.github.io

Background

= We associate a real-valued random variable x; to each node i of a graph,
such that realizations of x = (x,,...,x,) ' represent graph signals
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Fig. 1: A bipartite graph with two-components illustrating the modeling of dependencies between a

collection of objects and their classes.

= Assuming we are given n data samples ofx, X € R™*?, and thatx ~ N(0, L"),
then the MLE of the Laplacian matrix L Is given as:

mlnLlnglze tr (LS) — log det* (L), ()
1
subjectto L1 =0, Lj; =L <0,
= where S is a similarity matrix, e.g., sample covariance matrix S o X' X and
det*(L) 1s the product of the positive eigenvalues of L

= For a bipartite graph, we have:

Diag (B1,) -B ()
—B'" Diag(B'1,)|"

where B € R\ contains the edge weights between the nodes of objects

and the nodes of classes

L =

Heavy Tails

= Returns of financial instruments, such as equities and cryptos, are often
heavy-tailed

= SOTA methods may not perform well when the data is not Gaussian dis-
tributed
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Fig. 2: Histograms of the S&P500 log-returns during different time periods ranging from 2004 to 2020. Solid

lines represent Gaussian pdf fits.

State-of-the-art Methods

Bipartite Structure (Nie et al, 2017) proposed the following optimization
problem to learn a k-component bipartite graph from a given bipartite graph
weights A € R™4:

minimize |B — Al +ntr (V'LV), subjectto B
B,V cRpxk

where L depends on B through (2),n1 > ois a hyperparameter that promotes
the rank of L to be p — k, and A can be constructed from the correlation
between nodes of objects and classes

Spectral Regularization Properties associated with the spectral de-
composition of graph matrices have demonstrated advantages that enable
learning graphs with specific structures, such as bipartite and k-component
graphs. By leveraging those spectral properties, (Kumar et al, 2020) intro-
duced the following formulation:

minimize tr(LwS) — log det” (Lw

minimize +1|\Aw— UDiag(p)U" ||’

subject to U U=1,U-c RPXP Y e Cw, V'V =1V R, X e Ch.

where £ and A are the Laplacian and adjacency operators and w Is the vec-
tor of graph weights

Proposed Formulations

Gaussian Bipartite Graphs
-Diag(B]. ) JTT _B qu |
minimize —logdet | | "p7 [y Diag(B'1,) + Juq )
+tr (B (1481, + smpﬂ —251)).

= Algorithm: projected gradient descent with backtracking line search

Student-t Bipartite Graphs

: e —(v+p)/2
0.¢ \/dEt (@) (1 | v ) !
gygqlg? —logdet (Diag(B'1,) + Jqq — (B — Jiq) ' (I + J1v) (B — Jiq))
+V—n h; + tr (BG};)
| Pn Zi—1log(1 | N )

= Algorithm: Majorization-Minimization and projected gradient descent
with backtracking line search

Multiple Components Student-t Bipartite Graphs

| hi + tr (BGj)
| V

minimize =Yy log (1

L>-0,B n
IT' _B

—B' Diag (B'1,)

) logdet™ (L),

, rank(L)

subjectto L = =p—k, B>0,Bl;=1.

= Algorithm: Alternating Direction Method of Multipliers + Majorization-
Minimization.

>0, Bl;=1, V'V =1,
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Experimental Results
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Fig. 3: Performance of the estimators for connected bipartite graphs of S&P500 stocks.
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Fig. 4 Performance of the estimators for 8-component bipartite graphs of S&P500 stocks.
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Fig. 5: From left to right: Proposed method (acc = 0.97, mod = 0.82), (Nie et al 2017) (acc = 0.75, mod = 0.61)
(Kumar et al 2020) (acc = 0.77, mod = 0.56)
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Fig. 6: Convergence trend of the proposed algorithms for different initial points
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