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Covariance Matrix Estimation Under Low-Rank
Factor Model With Nonnegative Correlations
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Abstract—Inferring the covariance matrix of multivariate data
is of great interest in statistics, finance, and data science. It is
often carried out via the maximum likelihood estimation (MLE)
principle, which seeks a covariance matrix estimator maximizing
the observed data likelihood. However, such estimator is usually
poor when number of samples is not sufficiently larger than the
number of variables. With the assumption that a covariance ma-
trix can be decomposed into a low-rank matrix and a diagonal
matrix, factor analysis (FA) model is a popular dimensionality
reduction technique in improving the estimation performance. Re-
cently, more and more evidence shows that the covariance matrix of
real-valued data may admit the nonnegative correlation structure,
which has attracted a lot of interest in some areas like finance
and psychometrics. There does not exist any work estimating the
covariance matrix simultaneously satisfying both structures. In this
paper, we propose an MLE problem formulation for covariance
matrix considering jointly the low-rank FA model and nonnegative
correlation structures. Since the proposed problem formulation
is an intractable non-convex problem, a block coordinate descent
algorithm is further proposed to solve a relaxed version of our
proposed formulation. The superior performance of our proposed
formulation and the algorithm are verified through numerical
simulations on both synthetic data and real market data.

Index Terms—Low-rank FA, nonnegative correlations,
covariance matrix, block coordinate descent.

I. INTRODUCTION

E STIMATING the covariance matrix of the multivariate data
is of common interest in various fields such as cognitive

radio [1], radar detection [2], statistics [3], and finance [4]. Col-
lecting random vector xi ∈ R

p, i = 1, . . . , n as the i-th sample
of p variables and assuming its mean to be zero (i.e., E[x] = 0),
the commonly used covariance matrix estimator is the sample
covariance matrix (SCM), S = 1

n

∑n
i=1 xix

T
i . Under the as-

sumption that the data samples are independent and identically

Manuscript received 20 July 2021; revised 12 January 2022, 18 April 2022,
and 16 June 2022; accepted 17 July 2022. Date of publication 22 July 2022;
date of current version 16 August 2022. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Evrim Acar.
This work was supported by the Hong Kong GRF 16207820 research grant.
(Corresponding author: Jiaxi Ying.)

Rui Zhou is with the Shenzhen Research Institute of Big Data, Shenzhen,
China (e-mail: rui.zhou@sribd.cn).

Jiaxi Ying is with the Department of Mathematics, Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (e-mail:
jx.ying@connect.ust.hk).

Daniel P. Palomar is with the Department of Electronic and Computer Engi-
neering and Department of Industrial Engineering and Decision Analytics, Hong
Kong University of Science and Technology, Kowloon, Hong Kong (e-mail:
palomar@ust.hk).

Digital Object Identifier 10.1109/TSP.2022.3193232

distributed (i.i.d.) under a multivariate normal distribution, the
sample covariance matrix is the optimal solution to its maximum
likelihood estimation (MLE) problem, i.e.,

minimize
Σ�0

log det (Σ) + tr
(
Σ−1S

)
, (1)

where Σ denotes the covariance matrix to be estimated. How-
ever, the sample covariance matrix usually suffers a large estima-
tion error especially whenn (number of samples) is only compa-
rable with p [4]. For example, there may exist hundreds of assets
in a financial market while only 252 historical daily prices can be
recorded per year. Then the sample covariance matrix is regarded
as an unreliable estimator and is rarely adopted in real-world
applications. One approach to improve the covariance matrix
estimation performance is incorporating prior information into
the estimation procedure, typically introduced by imposing extra
constraints on the parameter or via a regularization term.

Among numerous choices, the low-rank factor analysis (FA)
model is one of the most popular structures [5], where the
observed data are assumed to be linearly driven by a limited
number of common factors (usually significantly less than the
number of variables) [6], [7], i.e., x = μ+Bf + ε, where
μ ∈ R

p is a constant vector, B ∈ R
p×r (r � p) is the factor

loading matrix, f ∈ R
r is a vector of low-dimensional common

factors, and ε ∈ R
p denotes uncorrelated noise. For example, in

a financial market, x can be the return of stocks, and f can be
macroeconomic factors like growth rate of the GDP, inflation
rate, unemployment rate, etc. The classical FA model assumes
that both f and ε are uncorrelated and zero-mean, and the
covariance matrix off is the identity matrix. Then the covariance
matrix of x can be written as Σ = BBT +Ψ, where Ψ is a
diagonal matrix containing the variance of noise on its diagonal.

The FA model implies that the covariance matrix consists of
a positive semidefinite low-rank matrix plus a positive definite
diagonal matrix. Note that, with the low-rank structure, the
number of parameters of the covariance matrix is greatly reduced
from p(p+ 1)/2 to p(r + 1). A large amount of literature has
focused on estimating the covariance matrix with this low-rank
structure. One popular choice is decomposing or approximating
the observed covariance matrix, typically SCM, with a sum of
low-rank matrix and diagonal matrix [8]. It can be regarded as
a two-stage method, which first estimates the covariance matrix
without extra structure and then performs the decomposition.
Another choice is through directly introducing the low-rank FA
structure into the corresponding MLE problem [9]–[12], which
results in a challenging non-convex optimization problem.
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A fast and scalable algorithm has recently been proposed to
solve this problem [12] and later extended to heavy tails [13].

Apart from the FA model, we are also interested in the
nonnegative correlation structure of real-valued data, which
means the variables are positively correlated, i.e., Σ ≥ 0 (with
≥ being elementwise). This structure is related to another special
structure called multivariate totally positive of order 2 (MTP2),
which becomes of great interest in statistics in recent years [3],
[14]. Under the MTP2 structure, the precision matrix Θ (i.e.,
Θ = Σ−1) of the data is assumed to satisfyΘij ≤ 0 for all i �= j,
which impliesΣ ≥ 0 but not vice versa. Interestingly, the MTP2

structure is actually implied if data follow both Σ ≥ 0 and the
single factor model [15]. We propose the nonnegative correlation
structure based on strong evidence in some real-world applica-
tions such as financial engineering. The empirical evidence will
be provided and more details will be discussed in Section II.

In this paper, we consider the estimation of the covariance
matrix with a simultaneously low-rank FA and nonnegative
correlation structure. To this end, we propose a Gaussian MLE
problem formulation including the low-rank FA and nonnega-
tive correlation constraints. The resulting problem formulation
becomes too difficult to solve since it is a rank constrained non-
convex optimization problem. Therefore, we resort to replacing
the intractable problem with a relaxed formulation, and propose
an efficient algorithm based on block coordinate descent (BCD)
to solve the relaxed problem. Extensive numerical experiments
are performed to corroborate our claims.

This paper is organized as follows. We first provide empirical
evidence of our considered low-rank FA and nonnegative cor-
relation structure for financial data in Section II. In Section III,
we pose the original problem formulation. In Section IV, we
first show how to turn the original problem into a relaxed prob-
lem formulation and then present our proposed algorithm. The
complexity analysis is also included. In Section V, we discuss
the feasibility of our proposed algorithm on some extensions
of Gaussian MLE problem formulation. Numerical experiments
are given in Section VI. Finally, conclusions of this paper are
summarized in Section VII.

II. EMPIRICAL EVIDENCE OF NONNEGATIVE CORRELATIONS

In financial markets, it is usually assumed that assets’ returns
follow common trends, which implies that these variables should
be positively correlated, i.e., the entries in the covariance matrix
should be nonnegative. In this section, we provide empirical evi-
dence for the considered nonnegative correlation structure from
two perspectives, i.e., significant influence of the market and
empirical correlations. The proposed approaches of identifying
such nonnegative correlations can be employed on data from
other fields like psychometrics [3].

A. Significant Influence of Market

Factor model is a widely used tool to model high-dimensional
data with respect to low-dimensional variables, which are also
known as factors [5], [6], [16]. A well-known example in finance
is the capital asset pricing model (CAPM) for modeling stocks’

Fig. 1. Histogram of empirical eigenvalues obtained from S&P 500 stocks’
data.

Fig. 2. Histogram of empirical eigenvalues obtained from 82 cryptocurren-
cies’ data.

return:

ri = rf + βi (rm − rf ) + ui, (2)

where ri is the return of i-th stock, rf is the risk-free return, βi
is its exposure to the market, rm is the market return, and ui
is the noise term. Since βi is typically positive for most stocks,
the correlations between these stocks are usually positive [15].
We notice that the CAPM assumes a single factor, while a
factor model with several factors could be more realistic. The
dominating impact of the market factor can still be observed from
the empirical data. We conduct an empirical check on stocks’
daily returns and cryptocurrencies’ hourly returns.

In Fig. 1, we show the histogram of empirical eigenvalues of
the sample covariance matrix from S&P 500 stocks’ daily returns
during a period of 1000 trading days. There exist 5 eigenvalues
deviating from the bulk, indicating the significant factors in the
market. We also notice that the largest eigenvalue is impressively
much larger than others, while the elements of the corresponding
eigenvector (principal component) share the same sign, implying
that positive correlation can describe the data well.

In Fig. 2, we show the histogram of empirical eigenvalues of
the sample covariance matrix from 82 cryptocurrencies’ hourly
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Fig. 3. Positive rate of stocks’ daily return versus lookback window length in
days.

data during a period of 5 months in year 2021. There exists
an eigenvalue deviating from the bulk, showing a significant
influence of the market. Elements of corresponding eigenvector
also share the same sign.

B. Empirical Correlation

Apart from validating the nonnegative correlation from the
perspective of the factor model, a more intuitive way is checking
directly the empirical correlation of real financial data. Simi-
larly, we perform the check using data from both stocks and
cryptocurrencies.

For stocks’ daily returns, the check is conducted at the end date
of every month. We calculate the sample correlation of every pair
of stocks using the historical price data within a certain lookback
window length. Fig. 3 shows the positive rate of these stocks’
correlations (fraction of positive correlation pairs) from year
2014 to 2020 for different lengths of lookback window in days.
Even when the lookback window length is small, the positive rate
is always larger than 75%. Some of these negative correlations
may be explained as noisy estimation, competitive companies,
or stocks’ different reactions to external stimuli. For example,
when interest rates increase, financial stocks such as insurance
companies tend to get a boost [17] but the real estate companies
will get hit [18]. But these external stimuli are usually temporary
thus their influences on market are insignificant in the long term.

For cryptocurrencies’ hourly returns, we perform a similar
empirical check at the end time of every week. Fig. 4 shows the
positive rate of these cryptocurrencies’ correlations. It reveals
that the nonnegative correlation structure is even stronger for
cryptocurrency data. To sum up, it is reasonable to assume a
nonnegative correlation structure in financial data.

III. PROBLEM FORMULATION

In this section, we first present several existing models for
covariance matrix estimation, then introduce our proposed for-
mulation with the low-rank FA and nonnegative correlation
constrains.

Suppose the data follow a multivariate Gaussian distribution
under the factor model, the corresponding MLE problem for

Fig. 4. Positive rate (in year 2021) of cryptocurrencies’ hourly return versus
lookback window length in hours.

estimating the covariance matrix can be formulated as

minimize
Σ

log det (Σ) + tr
(
Σ−1S

)
subject to Σ ∈ SFA, (3)

whereS is the sample covariance matrix, andSFA is the feasible
set imposing the low-rank FA structure,

SFA = {Σ = M +Ψ, rank (M) ≤ r, M � 0,

Ψ = Diag (ψ1, . . . , ψp) � εI} . (4)

Problem (3) has been well studied in [12], where an efficient
algorithm has been proposed. It first concentrates the problem
(3) in Ψ (by finding the optimal M for fixed Ψ) and then solves
it via the majorization-minimization (MM) algorithm [19]. A
more efficient algorithm was proposed in [20] to solve a similar
MLE problem but under a more restricted low-rank FA structure.

If the data follow a multivariate Gaussian distribution under
merely the nonnegative correlation structure, the corresponding
MLE problem may be technically formulated as

minimize
Σ

log det (Σ) + tr
(
Σ−1S

)
subject to Σ � 0, Σ ≥ 0. (5)

One simple approach to incorporate the nonnegative correla-
tion structure is via projection, i.e., approximating the sample
covariance matrix with a satisfactory one [8]:

minimize
Σ

‖Σ− S‖2F
subject to Σ � 0, Σ ≥ 0, (6)

which can be easily solved by alternating projecting S onto the
convex sets {Σ|Σ � 0} and {Σ|Σ ≥ 0} [21].

As mentioned in Section I, we are interested in estimating the
covariance matrix under a low-rank FA structure and nonnega-
tive correlation (FANC) structure, and propose the formulation
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as follows:

minimize
M ,Ψ

log det (M +Ψ) + tr
(
(M +Ψ)−1 S

)
subject to rank (M) ≤ r, M � 0, M ≥ 0,

Ψ = Diag (ψ1, . . . , ψp) � εI. (7)

Due to the nonnegative correlation constraint M ≥ 0, the pro-
posed algorithm in [12] is not applicable any more. Therefore, it
is necessary to develop a new framework to solve problem (7).

It should be noted that directly solving problem (7) is rather
difficult due to its non-convex objective function and rank
constraint. We resort to a relaxed formulation and propose an
efficient algorithm based on block coordinate descent to solve
this problem in next section.

IV. SOLVING THE FANC PROBLEM

In this section, we discuss how to solve the problem (7).
Since it is challenging to directly solve it, we propose a relaxed
formulation. A block coordinate descent based algorithm is
further proposed to solve the relaxed problem. We will show
that each sub-problem either admits a closed-from solution or
can be easy to solve via our proposed projected gradient descent
methods.

A. Reformulation

We define a new variableM̃ asM̃ = Ψ− 1
2MΨ− 1

2 (similarly
to [1, Algorithm 1]). Then we can rewrite the problem (7) as the
problem (8). The constraints on M̃ remain the same as those on
M due to the constraint Ψ = Diag(ψ1, . . . , ψp) � εI .

Then, in problem (8) shown at the bottom of this page,
we replace the low-rank constraint rank(M̃) ≤ r and positive
semidefinite constraint M̃ � 0 with M̃ = UΛUT , by intro-
ducing the new dummy variables U ∈ R

p×r satisfyingUTU =
Ir and Λ = Diag(λ1, . . . , λr) with λ = [λ1, . . . , λr]

T ≥ 0.
Thus the problem (8) is rewritten into problem (9).

B. Relaxation

To solve problem (9) shown at the bottom of this page, we
relax the hard constraint M̃ = UΛUT into the regularization
term ρ

2‖M̃ −UΛUT ‖2F in the objective, obtaining the formu-
lation (10) shown at the bottom of this page. Note that such
relaxation can be made tight by choosing sufficiently large or
iteratively increasing ρ. Such technique has been successfully
adopted in various applications, cf. [22]–[24].

In what follows, we consider solving the problem (10) to
obtain the covariance matrix estimate. Although it is still a
non-convex problem, we can develop an efficient algorithm
based on the block coordinate descent method [25]. The details
of our proposed algorithm are provided in the next subsection.

C. Proposed Algorithm

Collecting the variables in four blocks as (M̃ ,Ψ,U ,λ), we
solve the problem (10) by cyclically updating each block while
keeping the other blocks fixed. At iteration k, the update of each
block is discussed in the following.

1) Update of M̃ : Fixing the other three blocks in problem
(10), the sub-problem with respect to M̃ can be written as

minimize
M̃

tr

((
M̃ + I

)−1

S̃

)
+
ρ

2
‖M̃ −UΛUT ‖2F

subject to M̃ ≥ 0, M̃ + I � 0, (11)

where S̃ = Ψ− 1
2SΨ− 1

2 . Note that the additional constraint
M̃ + I � 0 is added into sub-problem (11) to guarantee the
covariance matrix, i.e., (Ψ)

1
2 (M̃ + I)(Ψ)

1
2 , to be positive def-

inite. Throughout the paper, we assume the number of variables
is not larger than the number of samples, and thus both S and S̃
are positive definite. Obviously it is a convex problem and thus
can be solved by several toolboxes, e.g., CVX [26], [27]. For the
sake of computational reasons, we propose a practical algorithm
to solve sub-problem (11). The feasible set of sub-problem
(11) is the intersection of M̃ ≥ 0 and M̃ + I � 0. The set
M̃ ≥ 0 is closed and can be handled efficiently by projection,
while the set M̃ + I � 0 is not closed, and we guarantee this
constraint through a line search procedure, which is inspired

minimize
M̃ ,Ψ

log det (Ψ) + log det
(
M̃ + I

)
+ tr

(
Ψ− 1

2

(
M̃ + I

)−1

Ψ− 1
2S

)

subject to rank
(
M̃

)
≤ r, M̃ � 0, M̃ ≥ 0,Ψ = Diag (ψ1, . . . , ψp) � εI (8)

minimize
M̃ ,Ψ,U ,λ

log det (Ψ) +

r∑
i=1

log (λi + 1) + tr

(
Ψ− 1

2

(
M̃ + I

)−1

Ψ− 1
2S

)

subject to M̃ = UΛUT , M̃ ≥ 0, UTU = Ir, λ ≥ 0, Ψ = Diag (ψ1, . . . , ψp) � εI (9)

minimize
M̃ ,Ψ,U ,λ

log det (Ψ) +

r∑
i=1

log (λi + 1) + tr

(
Ψ− 1

2

(
M̃ + I

)−1

Ψ− 1
2S

)
+
ρ

2
‖M̃ −UΛUT ‖2F

subject to M̃ ≥ 0, UTU = Ir, λ ≥ 0, Ψ = Diag (ψ1, . . . , ψp) � εI (10)
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Algorithm 1: Practical Algorithm for Solving Sub-Problem
(11).

1: Initialize M̃
k

0 ∈ SAB and choose η > 0, 0 < c < 1.
2: for t = 0, 1, 2, . . . do
3: M̃

k

t+1 = [M̃
k

t − η�f(M̃k

t )]+;

4: if f(M̃
k

t+1) > f(M̃
k

t ) + 〈∇f(M̃k

t ), M̃
k

t+1 −
M̃

k

t 〉+ 1
2η‖M̃

k

t+1 − M̃
k

t ‖2F or M̃
k

t+1  −I then
5: η = cη;
6: Back to step 3;
7: end if
8: Terminate if converges or exceeds iteration limit;
9: end for

by [28, Algorithm 1] and [29, Algorithm 1]. The details are

given in Algorithm 1, where �f(M̃k

t ) = ρ(M̃
k

t −UΛUT )−
(M̃

k

t + I)−1S̃(M̃
k

t + I)−1 is the gradient of the objective of

the sub-problem (11) at M̃
k

t and [x]+ = max(x,0).
2) Update of Ψ: Fixing the other three blocks in problem

(10), the sub-problem with respect to Ψ can be written as

minimize
Ψ

log det (Ψ) + tr
(
Ψ− 1

2 (M̃ + I)−1Ψ− 1
2S

)
subject to Ψ = Diag (ψ1, . . . , ψp) � εI,

(12)
which appears to be a non-convex problem. But it can be con-
verted into a convex problem by concentrating into the newly
defined variable α = diag(Ψ− 1

2 ), i.e.,

minimize
α

αTΓα−
p∑

i=1

logα2
i

subject to 0 ≤ α ≤ ε−
1
21, (13)

whereΓ = S � (M̃ + I)−1 is guaranteed to be positive definite
thanks to M̃ + I � 0 and Schur product theorem [30]. This
problem can be solved by state-of-the-art convex optimization
tools, e.g., CVX [27]. Given concerns on the computational cost,
we propose to solve it using the PGD algorithm. The details
are given in Algorithm 2, where �f(αk

t ) = 2Γαk
t − 2/αk

t is
the gradient of the objective of the sub-problem (13) at αk and
[x]u = min(x,1u). After obtaining the optimal solution α� via
Algorithm 2, we can update Ψk+1 = (α�)−2.

3) Update of λ: Fixing the other three blocks in problem
(10), the sub-problem with respect to λ is

minimize
λ≥0

r∑
i=1

log (λi + 1) +
ρ

2
‖M̃ −UΛUT ‖2F (14)

Note that, given UTU = Ir, it is easy to check that ‖M̃ −
UΛUT ‖2F = ‖UTM̃U −Λ‖2F + ‖M̃‖2F − ‖UTM̃U‖2F .
Therefore, the sub-problem (14) can be rewritten as

minimize
λ≥0

r∑
i=1

log (λi + 1) +
ρ

2
‖UTM̃U −Λ‖2F ,

(15)

Algorithm 2: PGD Algorithm for Solving Sub-Problem
(13).

1: Initialize αk
0 and choose η > 0, 0 < c < 1.

2: for t = 0, 1, 2, . . . do

3: αk
t+1 = [αk

t − η�f(αk
t )]

ε−
1
2 ;

4: if f(αk
t+1) > f(αk

t ) or ∃i, αk
t+1,i ≤ 0 then

5: η = cη;
6: Back to step 3;
7: end if
8: Terminate if converges;
9: end for

where the elements of λ are decoupled with each other. Then,
the sub-problem (15) can be further simplified as r sub-problems
with each of them being

minimize
λi≥0

log (λi + 1) +
ρ

2
(bi − λi)

2 , (16)

where bi = [UTM̃U ]ii = UT
i M̃U i with U i being the i-th

column of U . We present the closed-form solution of the sub-
problem (16) in the following lemma.

Lemma 1: The optimal solution of the sub-problem (16) is

λ�i =

⎧⎪⎪⎨
⎪⎪⎩
argmin
x∈{0,δ1}

f(x) if � > 0, δ1 > 0, δ2 > 0,

δ1 if � > 0, δ1 > 0, δ2 ≤ 0,

0 otherwise,

(17)

where f is the objective function in (16), � = (bi + 1)2 − 4
ρ ,

δ1 = bi−1+
√�

2 , and δ2 = bi−1−√�
2 .

Proof: See Appendix A. �
4) Update of U : Fixing the other three blocks in problem

(10), the sub-problem on U is

minimize
U

ρ

2
‖M̃ −UΛUT ‖2F

subject to UTU = Ir, (18)

which can be rewritten as

maximize
U

tr
(
UTM̃UΛ

)
subject to UTU = Ir (19)

Problem (19) is an optimization problem on the orthogonal
Stiefel manifold. Following from [31], [32], the closed-from
solution of (19) is given in Lemma 2.

Lemma 2: The optimal solution of problem (19) is r principle
eigenvectors of M̃ with the corresponding eigenvalues follow-
ing the same order of Λ.

The overall FANC algorithm is summarized in Algorithm 3.

D. Complexity Analysis

In this section, we present a detailed discussion on the com-
putational complexity of our proposed FANC algorithm. Since
it is a BCD based algorithm with four blocks, we analyze the
computational complexity of updating each block individually.
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Algorithm 3: FANC Algorithm for Solving Problem (7).

1: Initialize M̃
0
, Ψ0, U0, λ0.

2: for k = 0, 1, 2, . . . do
3: Update M̃

k+1
via Algorithm 1;

4: Update Ψk+1 via Algorithm 2;
5: Update Uk+1 as in Lemma 1;
6: Update λk+1 as in Lemma 2;
7: Terminate if converges or exceeds iteration limit;
8: end for
9: Return Σ = (Ψk+1)

1
2 (M̃

k+1
+ I)(Ψk+1)

1
2 .

� For the update of M̃ , i.e., Algorithm 1, the computational
cost per iteration is mainly on the gradient computation. Its
computational cost is dominated by the matrix inversion
of a p× p matrix and the matrix multiplication of two
p× p matrices, whose computational complexities can be
O(p2.373) [33].

� For the update of Ψ, i.e., Algorithm 2, the computational
per iteration is still mainly on the gradient computation as
O(p2).

� For the update of λ, the computational complexity is
O(rp2) on computing bi, i = 1, . . . , r andO(r) on solving
problem (15), where r (r � p) is the number of factors.
Then the total cost is O(rp2).

� For the update of U , the total computational complexity
is O(rp2) due to the eigen-decomposition of r largest
eigenvalues.

V. EXTENSIONS

Assuming data to follow the Gaussian distribution may make
the covariance matrix estimation fragile to potential outliers [7].
Hence, for modeling real-world phenomena and tackling the
spurious effect of outliers, one may turn to heavy-tailed assump-
tions like the Student’s t distribution [34].

Technically, assuming xi, i = 1, . . . , n, follows a zero-mean
Student’s t distribution with a given degree of freedom ν and
unknown scatter matrix Σ, the corresponding MLE problem
under the low-rank FA and nonnegative correlation constraints
can be formulated as

minimize
Σ

log det (Σ) +
p+ ν

n

n∑
i=1

log

(
1 +

xT
i Σ

−1xi

ν

)

subject to Σ ∈ SFA, Σ ≥ 0
(20)

Using the same approach proposed in Sections IV-A and IV-B,
we can obtain a relaxed problem formulation with its objective

being (21) shown at the bottom of this page. This problem can
be solved by incorporating the MM algorithm. To be specific,
at each iteration, we first majorize its third item by linearizing

the logarithm function at M̃
k

and Ψk as done in [19, Section
III, Example 1]. The majorized objective function is given in
(22) shown at the bottom of this page, with Ŝ =

∑n
i=1 a

k
i xix

T
i ,

where aki is a constant scale as

aki =
1

ν + xT
i

(
Ψk

)− 1
2

(
M̃

k
+ I

)−1 (
Ψk

)− 1
2 xi

(23)

Since the majorized problem follows the same form as problem
(10), we can simply solve it via our proposed Algorithm 3. In
fact, we may also choose to run Algorithm 3 for one iteration.
This method is known as block majorization-minimization al-
gorithm [19].

Our proposed problem formulation may be extended to other
cases, and our proposed algorithm framework can be easily
adopted to cope with the specific cases. We discuss some ex-
amples in the Appendix B.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to illustrate
the performance of our proposed formulation and algorithm.
Using synthetic data, we first show the efficiency of our proposed
algorithm and compare our proposed formulation with bench-
marks. Then we use the proposed covariance matrix estimator
to design the portfolio and perform a backtest with real market
data.

A. Synthetic Data Experiments

Here the experiments are conducted on synthetic data. We
first present the procedures for generating data. Then we show
the empirical convergence of our proposed algorithm, and the
performance of our proposed formulation via comparing with
other methods.

Data generation process is similar to that in [12] but modified
to follow our FANC model. Setting p = 200 and r = 20, we
generate a p× r factor loading matrix by first generating an
all-zero matrix B. Then, for each row of B, we randomly select
5 entries and replace the numbers in these positions by draw-
ing from a uniform distribution of the interval [0.5, 1.5]. The
diagonal elements of the true Ψ are first drawn from a normal
distribution N (μ̂, 0.1) and then set to be their absolute values,
where μ̂ is the average of diag(BBT). Then we compute the
true covariance matrix by Σ� = BBT +Ψ. Given the number
of samples n, we generate xi ∼ N (0,Σ), i = 1, . . . , n, and
collect X = [x1,x2, . . . ,xn]

T . The sample covariance matrix

log det (Ψ) +

r∑
i=1

log (λi + 1) +
p+ ν

n

n∑
i=1

log

(
1 + xT

i Ψ
− 1

2

(
M̃ + I

)−1

Ψ− 1
2xi/ν

)
+
ρ

2
‖M̃ −UΛUT ‖2F (21)

log det (Ψ) +

r∑
i=1

log (λi + 1) +
p+ ν

n
tr

(
Ψ− 1

2

(
M̃ + I

)−1

Ψ− 1
2 Ŝ

)
+
ρ

2
‖M̃ −UΛUT‖2F (22)
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Fig. 5. Convergence of our proposed algorithm under different ratiosn/pwith
ρ = 100. The algorithm terminates when the relative change of each variable is
less than 10−6.

Fig. 6. Relative value of penalty term at convergence versus ρ under different
ratio n/p.

is calculated by S = 1
nX

TX . By default, we set the number of
factors r = 0.1p and the convergence tolerance ε = 10−6 in all
algorithms.

1) Algorithm Performance: Here we illustrate the per-
formance of our proposed algorithm in solving problem

(10). The initial point of our algorithm is set as M̃
0
=

[Ψ̂
− 1

2

F B̂F B̂
T

F Ψ̂
− 1

2

F ]+,Ψ0 = Ψ̂F ,λ0 = [δ1, . . . δr]
T
+, andU0 =

[V 1, . . . ,V r], where (B̂F , Ψ̂F ) is the solution of problem (3),

and V Diag(δ)V T is the eigen-decomposition of M̃
0
.

In Fig. 5, we compare the convergence of our proposed algo-
rithm when S is generated with different numbers of samples.
Therefore, the fed initial points and achieved final objectives
are also different. Our proposed algorithm can converge in all
cases within a few number of iterations. Besides, large ratio n/p
benefits our proposed algorithm in the convergence speed.

In Fig. 6, we compare the relative value of the penalty term

in problem (10), i.e., ‖ ˆ̃M − ÛΛ̂Û
T ‖F /‖M̃‖F , where M̃ =

Ψ− 1
2BBTΨ− 1

2 . Clearly, the difference between estimated M̃

Fig. 7. RMSE of estimated covariance matrix versus ratio n/p (r = 0.1p).

and UΛUT is monotonically decreasing with the increase of ρ.
When ρ ≥ 100, the relative difference between M̃ and UΛUT

at convergence has already been very small (≤0.5%), which
implies M̃ is close to a low-rank positive semidefinite matrix.
Therefore, we set ρ = 100 in all the following experiments.

2) Formulation Property: Here we assess the estimation per-
formance of our proposed formulation (7). For comparison, we
also estimate the covariance matrix via the following benchmark
methods:

1) SCM: the sample covariance matrix;
2) SCM projected: the solution of problem (6), which uses

the nonnegative correlation structure in matrix approxi-
mation fashion;

3) FA: the solution of problem (3), which only uses the low-
rank FA structure;

4) NC: it is implemented via our proposed algorithm but r
is set to be sufficiently large, and thus the information of
the low-rank FA is approximately removed.

In Fig. 7, we compare the relative root mean square error
(RMSE) of the estimated covariance matrix versus ratio n/p.
The results are averaged over 100 Monte Carlo realizations.
We can see that all methods obtain more accurate results with
a larger ratio n/p, and our proposed formulation is able to
consistently outperform the other methods. Then we test the per-
formance of our proposed formulation with data generated from
a mismatched covariance matrix, which is generated by adding
noise values drawn from N (−0.5, 0.1) to off-diagonal entries
in Σ�. Now the mismatched covariance matrix has around 20%
negative off-diagonal entries. In Fig. 8, we repeat experiments
as conducted in Fig. 7 but with the mismatched covariance
matrix. Note that the final RMSE is reported by comparing
with the correct Σ�. It is reasonable that all the methods are
getting worse estimation performance in the mismatched setting.
The SCM estimator shows the worst performance, while our
proposed formulation maintains its superior performance among
all the methods. It is because our proposed method makes use
of the prior information from both low-rank FA model and
nonnegative correlations. Besides, the SCM projected and NC
methods become better than the FA method.
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Fig. 8. RMSE of estimated covariance matrix versus ratio n/p with a mis-
matched Σ� (r = 0.1p).

Fig. 9. RMSE of estimated covariance matrix versus ratio n/p (r = 0.2p).

Fig. 10. RMSE of estimated covariance matrix versus ratio n/p with a
mismatched Σ� (r = 0.2p).

Then, we repeat the above experiments but increase the num-
ber of factors to r = 0.2p. The numerical results are shown in
Fig. 9 and Fig. 10. Clearly, the performance of the FA method
gets worse, while our proposed FANC method still maintains its
superiority. This may be explained that the correct power from

Fig. 11. Boxplot of annual volatility obtained by GMVP according to different
estimators for the covariance matrix.

the low-rank FA model becomes weaker with larger number of
factors.

B. Real Financial Data Experiments

Here the experiments are conducted with the real financial
data. A commonly used technique in evaluating the quality of
the estimated covariance matrix Σ̂with real data is through back-
testing the global minimum variance portfolio (GMVP) [15]:

minimize
w∈Rp

wT Σ̂w

subject to 1Tw = 1, (24)

whose closed-form solution is w� = Σ̂
−1
1/(1T Σ̂

−1
1). The Σ̂

is said to have higher quality if the volatility of portfolio return
is lower.

We first download the 10-year (from 2010-01-01 to 2019-12-
31) historical daily price1 data of stocks listed in the S&P 500
Index components.2 To make sure that our results are realistic,
we randomly select 100 datasets from the downloaded data with
each of them containing historical daily price of 50 stocks over
500 continuous trading days. Then we perform the backtest
on each selected dataset and compare the annual volatility of
portfolio return. The data downloading and backtesting are
both implemented via the R package portfolioBacktest [35].
The benchmark MTP2 [15] is introduced in this subsection for
comparison.3

In Fig. 11, we show the boxplot with the annual volatility
obtained from backtest with a lookback window length of 150
for estimating the covariance matrix and computing the GMVP,
and a window length of 20 for verifying the performance of the
portfolio. When required, we pass r = 5 and ε = 10−6 to all
algorithms. We can observe that the estimator by our proposed
formulation outperforms other estimators. The SCM projected
method gets a worse result than the naive SCM method. The

1Historical daily prices of stocks are available at https://finance.yahoo.com/.
2Symbols of S&P 500 Index components are available at https://en.wikipedia.

org/wiki/List_of_S%26P_500_companies.
3We acknowledge the author of [15] for sharing their code, which is publicly

accessible at https://github.com/uhlerlab/MTP2-finance.
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Fig. 12. Median value of annual volatility obtained by GMVP versus lookback
window length according to different estimators for the covariance matrix.

reason is that such covariance matrix estimator might be singular
in some cases, while the GMVP solution involves its inversion.
In Fig. 12, we change the lookback window length and compare
the median value of annual volatility across all datasets for each
estimator. Significantly the estimator by our proposed formula-
tion can defeat the MTP2 and FA methods, and is consistently
the best among all the estimators.

VII. CONCLUSION

In this paper, we have considered the covariance matrix esti-
mation problem for factor modeled and nonnegatively correlated
data. We have formulated the MLE problem under the low-rank
FA and nonnegative correlation constraints. A block coordinate
descent based algorithm has been proposed to solve a relaxed
problem of our proposed formulation. Numerical experiments
have shown the efficiency of our algorithm and the superiority
of our formulation.

APPENDIX

A. Proof for Lemma 1

Set the gradient of the sub-problem (16) objective to zero, i.e.,

1/(λi + 1) + ρ(λi − bi)

=
(
ρx2 + ρ(1− bi)x+ 1− ρbi

)
/(λi + 1)

∝ ρx2 + ρ(1− bi)x+ 1− ρbi = 0, (25)

whose real number solutions are written as xi,1 and xi,2. Since
its objective goes infinity when λi → ∞, the optimal solution
of the sub-problem (16) will obviously appear either at lower

bound, i.e., 0, or points where gradient is zero, i.e., xi,1 and xi,2.
Then conditions of each case can be easily obtained thus omitted
here.

B. Extensions to Other Cases

1) Sparsity: To reduce effective number of parameters and
produce a sparse estimation, a regularization term may be
inserted into the objective of problem (7), i.e.,

minimize
Σ

log det (Σ) + tr
(
Σ−1S

)
+ β

∑
i �=j

ψ (Σij)

subject to Σ ∈ SFA, Σ ≥ 0, (26)

where ψ(·) is the penalty function encouraging the sparsity of
off-diagonal entries ofΣ. It is easy to employ the similar sparsity
penalty on the variable M̃ , i.e., add an item β

∑
i�=j ψ(M̃ij) to

the objective of problem (10). The sparsity property is preserved
in the recovered covariance matrix estimation. Then we may
use the same approach proposed in Section IV-A and IV-B to
obtain a relaxed problem formulation with its objective being
(29), shown at the bottom of this page.

If ψ(·) is convex, e.g., ψ(M̃ij) = |M̃ij | as in [36], then
Algorithm 3 is still applicable for solving this problem with a
slight change in the gradient computation in the corresponding
M̃ sub-problem.

If ψ(·) is non-convex, e.g., some folded concave penalties
such as smoothly clipped absolute deviation (SCAD) or mini-
max concave penalty (MCP) to avoid introducing extra bias for
estimating nonzero entries with large absolute values [37]. Then
at each iteration, we can first majorize such concave penalty
by its linearization. For example, if ψ(·) is the MCP function
(α, γ > 0)

ψ(x) =

{
αx− x2

2γ if 0 ≤ x ≤ γα,
1
2γα

2 otherwise,
(27)

it can be majorized at xk by ψ(xk) + ak(x− xk) with

ak =

{
α− x/γ if 0 ≤ x ≤ γα,

0 otherwise.
(28)

We can simply employ the above majorization approach to (29)
to obtain the majorized objective function as in (30) shown at
the bottom of this page. Then this problem can be solved by our
proposed Algorithm 3.

2) Shrinkage: To make the estimation more robust, the regu-
larization item may be introduced to shrink the covariance matrix

log det (Ψ) +

r∑
i=1

log (λi + 1) + tr

(
Ψ− 1

2

(
M̃ + I

)−1

Ψ− 1
2S

)
+ β

∑
i �=j

ψ
(
M̃ij

)
+
ρ

2
‖M̃ −UΛUT‖2F (29)

log det (Ψ) +

r∑
i=1

log (λi + 1) + tr

(
Ψ− 1

2

(
M̃ + I

)−1

Ψ− 1
2S

)
+ β

∑
i �=j

akij|M̃ij|+ ρ

2
‖M̃ −UΛUT‖2F (30)
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to a priori target, i.e.,

minimize
Σ

log det (Σ) + tr
(
Σ−1S

)
+ hT (Σ)

subject to Σ ∈ SFA, Σ ≥ 0, (31)

where hT (Σ) is a regularized function admitting the form of

hT (Σ) = α
(
p log

(
tr
(
Σ−1T

))
+ log det (Σ)

)
, (32)

and achieves its minimal value at sT with s > 0 [38]. Similarly,
the same approach in Section IV-A and IV-B can he employed
here to relax the problem, and the logarithm item can be ma-
jorized by its linearization. Then we may execute the complete
Algorithm 3 to solve it or run for only one iteration to update
variables.
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