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Efficient and Scalable Parametric High-Order
Portfolios Design via the Skew-t Distribution
Xiwen Wang , Rui Zhou , Member, IEEE, Jiaxi Ying , and Daniel P. Palomar , Fellow, IEEE

Abstract—Since Markowitz’s mean-variance framework, opti-
mizing a portfolio that strikes a trade-off between maximizing
profit and minimizing risk has been ubiquitous in the finan-
cial industry. Initially, profit and risk were measured by the
first two moments of the portfolio’s return, a.k.a. the mean
and variance, which are sufficient to characterize a Gaussian
distribution. However, it is broadly believed that the first two
moments are not enough to capture the characteristics of the
returns’ behavior, which have been recognized to be asymmetric
and heavy-tailed. Although portfolio designs involving the third
and fourth moments, i.e., skewness and kurtosis, have been
demonstrated to outperform the conventional mean-variance
framework, they present non-trivial challenges. Specifically, in
the classical framework, the memory and computational cost
of computing the skewness and kurtosis grow sharply with the
number of assets. To alleviate the difficulty in high-dimensional
problems, we consider an alternative expression for high-order
moments based on parametric representations via a generalized
hyperbolic skew-t distribution. Then, we reformulate the high-
order portfolio optimization problem as a fixed-point problem
and propose a robust fixed-point acceleration algorithm that
solves the problem in an efficient and scalable manner. Empirical
experiments also attest to the efficiency of our proposed high-
order portfolio optimization framework, which presents low
complexity and significantly outperforms the state-of-the-art
methods by 2∼ 4 orders of magnitude.

Index Terms—High-order portfolios, generalized hyperbolic
skew-t distribution, fixed point acceleration.
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I. INTRODUCTION

MODERN portfolio theory (MPT), pioneered by Harry
Markowitz [1], strives to reaching a trade-off between

minimizing the risk of the portfolio and maximizing its profit.
For the convenience of modeling the profit and risk, the as-
sets’ returns are conventionally assumed to follow a Gaussian
distribution. The Gaussian distribution was embraced in early
research for a number of reasons [2]. First of all, it is straightfor-
ward to describe the data using the Gaussian distribution. The
mean vector μ and covariance matrix Σ, which are the parame-
ters of the Gaussian distribution, can be obtained via numerous
estimation methods. Moreover, the mathematical expression
of profit and risk are henceforth simple enough such that the
resultant portfolio designs are convenient from the perspective
of optimization. However, the mean and variance, a.k.a. the
first- and second-order moments, are usually not sufficient to
capture the characteristics of the assets’ returns [3], [4]. It is
widely acknowledged that empirical observations of stock data
exhibit asymmetry and fat tails that can be barely described by
a Gaussian distribution [5], [6]. In light of these deficiencies,
a number of empirical evidence advocates the incorporation of
the high-order moments into portfolio design [7], [8].

The concerns of skewness and kurtosis, a.k.a. third- and
fourth-order moments, have been raised for decades [9]. Typi-
cally, higher skewness is preferred as it reduces extreme values
on the side of losses and increases them on the side of gains.
Whereas the kurtosis measures dispersion which is something
undesirable that increases the uncertainty of returns [10], [11],
[12]. A detailed discussion can be found in [11]. Therefore,
portfolio designs should also aspire to achieve high skewness
and low kurtosis. This trade-off was then naturally formu-
lated as a mean-variance-skewness-kurtosis (MVSK) frame-
work [13].

Although there are many compelling advantages of involving
skewness and kurtosis [14], [15], solving high-order portfolio
optimization problems is non-trivial. Given a problem formu-
lation to specify the trade-off, a typical high-order portfolio de-
sign consists of a model to characterize the high-order moments
and optimization algorithms to solve the problem. Each of these
modules can be a limiting factor in the overall practicability of
the framework. In this paper, we start from the classical MVSK
problem formulation. Then, the first fundamental problem is
how to model the skewness and kurtosis of the portfolio return.
The conventional approach models the skewness and kurtosis
via the vanilla co-skewness matrix Φ ∈ R

N×N2

and co-kurtosis
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matrix Ψ ∈ R
N×N3

. However, this non-parametric modeling
suffers a lot from the dimensionality problem [16], which might
not be critical on variance but is severely exacerbated on esti-
mating skewness and kurtosis. For example, to obtain Φ and
Ψ when N = 100, we need to estimate more than 170 thou-
sand and 4 million parameters, respectively. As the number of
parameters is significantly larger than the number of samples,
the estimation error is inevitably large [17]. In addition, the
storage burden is also exceptionally heavy. Any mathematical
manipulations involving Φ and Ψ would demand prohibitive
computational resources and are thus not applicable to high-
dimensional problems.

Apart from the high computational cost due to the matrices
Φ and Ψ, the third moment of the portfolio return is non-
convex, making it difficult to optimize. The existing methods
in the literature can be roughly classified into three major
categories: zeroth-order, first-order, and second-order methods.
The zeroth-order methods [18] usually iteratively improve the
objective values via repetitive function evaluations. For in-
stance, the differential evolution [19] and genetic algorithms
[20] iteratively improve solutions via searching in the feasible
region. Usually, zeroth-order searching algorithms are often
criticized for their mediocre performance on the computational
cost. The first-order methods make use of the first-order deriva-
tive of the objective function. Some classical examples include
the difference-of-convex (DC) algorithms [21], [22] and some
Majorization-Minimization algorithms [23]. However, the first-
order methods may need quite a large number of iterations
to converge. In contrast, the second-order methods improve
the description of the descent direction by incorporating the
second-order derivative of the objective function. For exam-
ple, the Q-MVSK algorithm [23] presents a significantly faster
convergence rate than the first-order methods. However, the
per-iteration cost of second-order methods is prohibitive as
computing the Hessian has dramatically high complexity.

In summary, due to the computationally expensive model-
ing of high-order moments and the absence of practical opti-
mization algorithms, the current MVSK framework can only
produce high-order portfolios in low-dimensional problems. To
address these limitations, in this paper, we present a novel
high-order portfolio design framework that is both efficient and
scalable. Our contributions are mainly twofold:

1) We adopt a parametric model to significantly reduce the
memory and computational cost of obtaining the high-
order moments of the portfolio return. The proposed
method accommodates the high-dimensional scenarios
by fitting the data via a generalized hyperbolic skew-t
distribution.

2) We propose a practical algorithm based on a robust fixed
point acceleration strategy to solve the high-order port-
folios. The numerical experiments demonstrate that the
proposed algorithms are significantly more efficient and
scalable than the state-of-the-art solvers.

The structure of this paper is as follows. In Section II, we first
introduce the high-order portfolio optimization problems and
illustrate the current difficulties. In Section III, we present an
efficient approach to compute the skewness and kurtosis using a

generalized hyperbolic skew-t distribution. The parametric dis-
tribution allows a faster way of computing high-order moments
of the portfolio. In Section IV, we propose efficient algorithms
to solve the MVSK portfolios based on fixed point acceleration
strategy. Additionally, in Section V, we show that the proposed
algorithm can be easily generalized into the MVSK-Tilting
portfolio. Then, we elaborate the performance of proposed
high-order portfolio design framework in Section VI. Finally,
we summarize the conclusions in Section VII.

II. PROBLEM FORMULATIONS

A. MVSK Portfolios

Let r ∈ R
N denote the log-returns of N assets and w ∈ R

N

denote the portfolio weights. The classical mean-variance port-
folio optimization problem is formulated as

minimize
w

−φ1 (w) + λφ2 (w)

subject to w ∈W,
(1)

where φ1 (w) refers to the first central moment, a.k.a. the mean
of the portfolio return, i.e.,

φ1 (w) = E
[
wT r

]
, (2)

φ2 (w) is the second central moment, which is the variance of
the portfolio return, i.e.,

φ2 (w) = E

[(
wT r− E

[
wT r

])2]
, (3)

λ > 0 is a risk-aversion coefficient, and W represents the fea-
sible set of the portfolio weights. In the paper, we consider no-
shorting. Therefore, W is a unit simplex denoted as

W =
{
w
∣
∣1Tw = 1,w ≥ 0

}
. (4)

Now, we incorporate the third and fourth central moments of
the portfolio return, i.e.,

φ3 (w) = E

[(
wT r− E

[
wT r

])3]
,

φ4 (w) = E

[(
wT r− E

[
wT r

])4]
, (5)

into the portfolio selection. This directly extends the mean-
variance portfolio into a mean-variance-skewness-kurtosis
(MVSK) portfolio, formulated as follows

minimize
w

f (w) =−λ1φ1 (w) + λ2φ2 (w)

−λ3φ3 (w) + λ4φ4 (w)
subject to w ∈W,

(6)

where λ1, λ2, λ3, λ4 are the non-negative parameters control-
ling the relative importance of individual moments.

B. Current Difficulties

Among many difficulties regarding high-order portfolio de-
signs, the most fundamental bottleneck is the prohibitive cost
of computing high-order central moments using the non-
parametric representation. Namely, the conventional way ap-
plies the following formulas to characterize the co-skewness
and co-kurtosis matrices,

Φ= E [(r− μ) (r− μ)⊗ (r− μ)] ,
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TABLE I
CONVENTIONAL NON-PARAMETRIC REPRESENTATIONS

OF HIGH-ORDER MOMENTS

Number of Parameters Memory
to Estimate Complexity

Co-skewness Φ 1
6
N (N + 1) (N + 2) O

(
N3

)

Co-kurtosis Ψ 1
24

N (N + 1) (N + 2) (N + 3) O
(
N4

)

TABLE II
FORMULATIONS AND COMPUTATIONAL COMPLEXITY OF

COMPUTING HIGH-ORDER MOMENTS IN NON-PARAMETRIC WAY

Formulation Complexity
3rd φ3 (w) wTΦ (w ⊗w) O

(
N3

)

central ∇φ3 (w) 3Φ (w ⊗w) O
(
N3

)

moment ∇2φ3 (w) 6Φ (I⊗w) O
(
N4

)

4th φ4 (w) wTΨ (w ⊗w ⊗w) O
(
N4

)

central ∇φ4 (w) 4Ψ (w ⊗w ⊗w) O
(
N4

)

moment ∇2φ4 (w) 12Ψ (I⊗w ⊗w) O
(
N5

)

Ψ= E [(r− μ) (r− μ)⊗ (r− μ)⊗ (r− μ)] , (7)

where μ= E [r]. As shown in Table I, the costs for storing Φ
and Ψ have a high complexity. This means that we may not
be able to set up these matrices when the problem dimension
is large.

In addition, the non-parametric approach also poses tremen-
dous challenges in computing the objectives values, gradients,
and the Hessian of the third and fourth central moments for a
given portfolio [23]. Here, we exhibit the corresponding com-
plexities in Table II. As a result, existing first-order methods
could not be efficient as they often require many iterations to
converge while per-iteration cost is very high. On the other
hand, existing second-order methods are not scalable because
the complexity of computing ∇2φ4 (w) is O

(
N5

)
.

Therefore, in the next section, we would present a parametric
approach to model the skewness and kurtosis such that the
concerns discussed above can be significantly eliminated.

III. MODELING HIGH-ORDER MOMENTS USING GENERALIZED

HYPERBOLIC MULTIVARIATE SKEW-t DISTRIBUTION

In this section, we illustrate how to apply a parametric dis-
tribution to model the data and derive the high-order moments
from the parametric model. To be more specific, this approach
assumes that the assets’ returns follow a multivariate gener-
alized hyperbolic skew-t distribution. Then, high-order mo-
ments can be represented using the parameters of the fitted
distribution. To proceed, we will first present some preliminary
knowledge of the generalized hyperbolic skew-t distribution,
followed by the derivation of efficient methods for computing
high-order moments based on this distribution.

A. ghMST Distribution

The generalized hyperbolic multivariate skew-t (ghMST)
distribution [24], [25], is a sub-class of the generalized hy-
perbolic distribution [26], which is often used in economics
to model the data with skewness and heavy tails [27], [28],
[29], [30].

γ ν

γ ν

γ ν

Fig. 1. Illustrations for the univariate generalized hyperbolic skew-t
distribution (μ= 0, Σ= 1).

Suppose that a N -dimensional random vector x follows the
ghMST distribution, i.e., x∼ ghMST (μ,Σ,γ, ν). It has the
probability density function (pdf)

fghMST (x |μ,Σ,γ, ν ) = e(x−μ)T Σ−1γ

(2π)
N
2 |Σ|

1
2

· 2
(
ν
2

) ν
2 · 1

Γ( ν
2 )
·

(
χ+Q(x)
γTΣ−1γ

)− ν+N
4 ·K− ν+N

2

(√
(ν +Q (x))

(
γTΣ−1γ

)
)
,

(8)

where ν ∈ R++ is the degree of freedom, μ ∈ R
N is the lo-

cation vector, γ ∈ R
N is the skewness vector, Σ ∈ R

N×N

is the scatter matrix, Γ is the gamma function, Q (x) =
(x− μ)

T
Σ−1 (x− μ), and Kλ is the modified Bessel func-

tion of the second kind with index λ [31].
Remark 1: In the following contexts, μ and Σ refer to the

parameters of ghMST distribution, that is, to the location vector
and scatter matrix and not to the mean vector and covari-
ance matrix.

Interestingly, the ghMST distribution can be represented in
a hierarchical structure as

x|τ i.i.d∼ N
(
μ+

1

τ
γ,

1

τ
Σ

)
,

τ
i.i.d∼ Gamma

(ν
2
,
ν

2

)
, (9)

where N
(
μ̃, Σ̃

)
denotes the multivariate Gaussian distribution

with mean vector μ̃ and covariance matrix Σ̃, and Gamma (a, b)
represents the gamma distribution of shape a and rate b.

Fig. 1 illustrates the skewness and fat-tailness under the
ghMST distribution. When γ is fixed, the higher the value
of ν, the thinner the tails. When ν is fixed, the larger the
value of γ, the heavier the skewness. Henceforth, the third- and
fourth-moments are naturally embedded into the parameters of
the distribution.

In the literature, some restricted multivariate skew-t (rMST)
distributions1 [37] are also capable of modeling asymmetry
and fat-tailness. In this paper, we choose to use the ghMST
distribution for two reasons. Foremost, the ghMST distribu-
tion is the only skew-t distribution that we can fit within a

1Variants of rMST distribution include Gupta’s skew-t [32], Pyne’s skew-t
[33], Branco’s skew-t [34], and Azzalini’s skew-t [35]. It can be shown that
these variants have similar forms and can characterize the same distribution
after some parametrization [36].
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Fig. 2. Out-of-sample log-likelihood for the restricted skew-t (rMST) and
generalized hyperbolic skew-t (ghMST) distributions.

reasonable amount of time under high-dimensional settings
[36], [38]. The details of fitting time are discussed in Section A
of the Appendix. In short, existing implementations2 may take a
number of minutes to fit the rMST distribution when N ≥ 30. In
contrast, existing EM algorithms can efficiently fit the ghMST
distribution3 with thousands of assets in few seconds [24], [41],
[42]. When N = 20, fitting a ghMST distribution is over four
orders of magnitude faster than fitting an rMST distribution.

On the other hand, rMST distributions do not provide better
out-of-sample fitting performance. To show this, we conduct a
simple experiment as follows. In each realization, we randomly
select N assets from SP500 stock list. Then, we randomly pick
the data from 15N continuous trading days to form the data set
D. Without shuffle, D is split into training set Dtrain and test set
Dtest by assigning the 2/3 data to the former and the remaining
1/3 to the latter. For each distribution, the optimal parameters
are obtained via the training set

Θ� = argmaxΘ L (Dtrain;Θ) . (10)

Then we compute the out-of-sample normalized log-likelihood
on the test set as 1

5N2Ltest (Dtest;Θ
�) . We repeat the exper-

iments 50 times for each problem dimension. Fig. 2 shows
that the ghMST distribution gives a higher average likelihood
values when N goes large. As it is difficult to differentiate their
obtained likelihoods, the ghMST distribution appears to be the
best choice for characterizing high-order moments due to its
significantly more efficient estimation.

B. Computing High-Order Moments Under ghMST
Distribution

Incorporating the ghMST distribution into the design of high-
order portfolios also makes it convenient to manipulate the
high-order moments, i.e., skewness and kurtosis. In this sub-
section, we highlight two advantages of using the parametric
ghMST distribution. Firstly, it allows for low-memory repre-
sentation of the co-moments of the asset return. Secondly, it
provides more efficient computation of the skewness and kur-
tosis to the portfolio returns.

2For fitting rMST distribution, we apply the EM algorithm [39] imple-
mented in R packageEMMIXskew [40].

3The ghMST distribution fitting process is carried out using the ’fit_mvst’
function from the R packagefitHeavyTail.

In the conventional framework, before we compute the high-
order moments of portfolio returns, we need to store large
matrices, including Φ and Ψ. Now, we suppose that a ran-
dom vector r follows a ghMST distribution. Then, according
to Lemma 2, the high-order moments can be easily computed
from the parameter set Θ= {μ,Σ,γ, ν}, which is significantly
smaller than Φ and Ψ. As a result, the memory complexity is
reduced from O

(
N4

)
to O

(
N2

)
.

Lemma 2: Assuming a random vector r∼ ghMST
(
μ,

Σ,γ, ν
)
, then the mean and covariance of r are given as

E [r] = μ+ a1γ,

Cov [r] = a21Σ+ a22γγ
T , (11)

where a1 =
ν

ν−2 , a21 = ν
ν−2 , and a22 =

2ν2

(ν−2)2(ν−4)
are scalar

coefficients decided by ν. The third moment co-skewness ma-
trix Φ is expressed as

Φi,(j−1)×N+k = a31γiγjγk +
a32
3

(
γiΣjk

+ γjΣik + γkΣij

)
. (12)

The fourth moment co-kurtosis matrix Ψ is expressed as

Ψi,(j−1)N2+(k−1)N+l

= a41γiγjγkγl +
a42
6

(Σijγkγl + · · ·+Σklγiγj)︸ ︷︷ ︸
6 items

+
a43
3

(ΣijΣkl +ΣikΣjl +ΣilΣjk) . (13)

Here a31 =
16ν3

(ν−2)3(ν−4)(ν−6)
, a32 =

6ν2

(ν−2)2(ν−4)
, a41 =

(12ν+120)ν4

(ν−2)4(ν−4)(ν−6)(ν−8) , a42 =
6(2ν+4)ν3

(ν−2)3(ν−4)(ν−6) and a43 =
3ν2

(ν−2)(ν−4) are coefficients determined by ν.
Proof: See Section B of the Appendix.
Another advantage of using the ghMST model comes at com-

puting the high-order central moments of the portfolio return in
a fast way. Specifically, though recovering the complete forms
of Φ and Ψ using Lemma 2 can be computationally expensive,
the skewness and kurtosis of wT r can be efficiently derived.

Lemma 3: Assuming r∼ ghMST (μ,Σ,γ, ν), then the first-
to-fourth central moments of wT r, denoted as φi (w) , i=
1, . . . , 4, are given as follows

φ1 (w) =wTμ+ a1w
Tγ,

φ2 (w) = a21w
TΣw + a22

(
wTγ

)2
,

φ3 (w) = a31
(
wTγ

)3
+ a32

(
wTγ

) (
wTΣw

)
,

φ4 (w) = a41
(
wTγ

)4
+ a42

(
wTγ

)2 (
wTΣw

)

+ a43
(
wTΣw

)2
. (14)

Proof: See Section C of the Appendix.
Under the ghMST distribution, we can significantly speed

up the computation of the objective value, gradient, and
Hessian of high-order moments. Their exact expressions are
listed in Section D of the Appendix, and their correspond-
ing computational complexities are summarized in Table III.
Note that the per-iteration complexity for first-order ap-
proaches has been reduced to O

(
N2

)
. In response to this,

in Section IV, we present an algorithm that mainly utilizes
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TABLE III
COMPUTATIONAL COMPLEXITY OF COMPUTING

HIGH-ORDER MOMENTS USING ghMST DISTRIBUTION

Objective Gradient Hessian
3-rd moment O

(
N2

)
O

(
N2

)
O

(
N3

)

4-th moment O
(
N2

)
O

(
N2

)
O

(
N3

)

gradient information. As a result, the proposed algorithm can
exhibit superior scalability over state-of-the-art methods.

IV. PROPOSED METHODS FOR SOLVING MVSK PORTFOLIOS

In this section, we explore new practical algorithms for solv-
ing Problem (6) under the ghMST distribution. The proposed
method iteratively minimizes the objective values via searching
a fixed point of a projected gradient mapping. The section is
organized as follows. We first recast the optimization prob-
lem (6) as a fixed-point problem. After that, we introduce a
fixed-point acceleration scheme to solve the fixed point more
efficiently. To overcome the convergence issues caused by the
acceleration scheme, we further enhance the robustness of the
fixed-point acceleration method and accomplish our algorithm.
Finally, we provide an analysis of the complexity and conver-
gence of our proposed methods.

A. Constructing the Fixed-Point Problem

Considering a continuous vector-to-vector mapping G:
R

N → R
N , a point w is a fixed point of function G when it

satisfies w =G (w). In optimization, many iterative methods
aim at generating a sequence

{
w1,w2, . . .

}
that is expected

to converge to a stationary point via a designed update rule
wk+1 =G

(
wk

)
. As a result, when those algorithms converge,

the obtained w� is also the fixed point of G. In this subsection,
we will introduce the exact expression of G of interest and how
solving Problem (6) can be transformed into finding a fixed
point of function G.

The function G we consider is selected as

G
(
wk; η

) Δ
= PW

(
wk − η∇f

(
wk

))
, (15)

where η > 0 is the step size and the operator PW is defined as
a projection onto a unit simplex [43]

PW
(
wk

)
= arg min

w∈W

∥
∥w −wk

∥
∥2
2
, (16)

which is a continuous vector-valued function defined
on w ∈ R

N .
Remark 4: In fact, the choice of G is not unique, but (15)

is preferred because it is simple to manipulate. Instead of call-
ing a quadratic programming solver, we can design a water-
filling algorithm [44] to solve G

(
wk; η

)
efficiently. Details are

elaborated in Section E of the Appendix. The simplicity of
solving G plays an important role in promoting the efficiency
and scalability of the proposed algorithm.

Given any η > 0, the fixed point of G is the stationary point
of Problem (6). This is shown in Lemma 5.

Lemma 5: The set of fixed point of G (·; η), i.e., w =
G (w; η), coincides with that of the stationary points of
Problem (6).

Proof: Let w� ∈W be the fixed point of G (·; η), i.e., w� =
G (w�; η). Hence, w� is the optimal solution to the following
convex optimization problem:

minimize
w

1
2 ‖w − (w� − η∇f (w�))‖22

subject to w ∈W.
(17)

Therefore, for any y ∈W , we have

(y −w�)
T
(w� − (w� − η∇f (w�)))

= η (y −w�)
T ∇f (w�)≥ 0, (18)

which already indicates that w� is the stationary point of
Problem (6).

Using Lemma 5, we can recast Problem (6) into the following
optimization problem

find w ∈W, subject to w =G (w; η) . (19)

This well-known fixed-point problem can be solved by
the fixed-point iteration method [45], which iterates the
following update

wk+1 =G
(
wk; η

)
, (20)

in which the function G should be Lipschitz continuous with
Lipschitz constant L < 1. In practice, this conventional ap-
proach is often criticized for slow convergence. Hence, in the
rest part of this section, we will introduce an acceleration
scheme that significantly improves its convergence.

B. Fixed-Point Acceleration

We first reformulate the fixed-point problem as finding a root
of a residual function R : RN → R

N

R (w; η) =G (w; η)−w. (21)

If the problem is unconstrained, the non-smooth version of
Newton-Raphson method [46] solves the fixed-point problem
via iterating the following update formula

wk+1 =wk −M−1
(
wk; η

)
R
(
wk; η

)
, (22)

where M
(
wk; η

)
∈ R

N×N ∈ ∂R
(
wk; η

)
and ∂R

(
wk; η

)
is

the Clarke’s generalized Jacobian of R evaluated at w =wk

[47]. However, (22) is not applicable in our case. On one hand,
the acceleration may render iterates infeasible, i.e., wk+1 /∈W .
To make up for it, a heuristic alternative to (22) is

wk+1 = PW
(
wk −M−1

(
wk; η

)
R
(
wk; η

))
. (23)

On the other hand, M
(
wk; η

)
is generally intractable to obtain.

But we notice that the classical directional derivative evaluated
at w =wk still exists and is given as

DdR
(
wk; η

)
= lim

h→0

R
(
wk + hd; η

)
−R

(
wk; η

)

h
. (24)

Then, according to [46, Lemma 2.2], for any direction d, there
exists a matrix M

(
wk; η

)
∈ ∂R

(
wk; η

)
such that

DdR
(
wk; η

)
=M

(
wk; η

)
d, (25)
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Hence, by assigning h= 1 and d=G
(
wk; η

)
−wk to (24),

we can construct the secant equation at w =wk as

M
(
wk; η

)
R
(
wk; η

)
≈ V

(
wk; η

)
, (26)

where the function V : RN → R
N is defined as

V
(
wk; η

) Δ
=R

(
G
(
wk; η

)
; η
)
−R

(
wk; η

)

=G
(
G
(
wk; η

)
; η
)
− 2G

(
wk; η

)
+wk. (27)

Here, we replace the matrix M
(
wk; η

)
by the scaled identity

matrix
(
αk
)−1

I such that the inverse of it can be easily derived.
The value of αk is therefore determined by approximating the
following equation

(
αk
)−1

R
(
wk; η

)
≈ V

(
wk; η

)
, (28)

whose details will be elaborated later. As a result, we have the
formulation for the first-level fixed-point acceleration, i.e.,

yk
1

Δ
=wk − αkR

(
wk; η

)
. (29)

Intuitively, as a replacement to (23), the projection of the new
point PW

(
yk
1

)
is expected to provide smaller residual values

compared to wk.
Inspired by the ‘squared extrapolation method’ [48], we

introduce the second-level acceleration by defining

yk
2

Δ
= yk

1 − αkR
(
yk
1 ; η

)
. (30)

This strategy, inspired by [49], can be seen as taking two
successive first-level acceleration using the same step length.
Interestingly, the value of R

(
yk
1 ; η

)
can be approximated by

manipulating the secant equations. To be more specific, we
assign different values of d to construct the secant equations.
In (26), d is set to d1 =G

(
wk; η

)
−wk. Now, we set

d2 =−αk
[
G
(
wk; η

)
−wk

]
=−αkd1. (31)

This indicates that the approximation of R
(
yk
1 ; η

)
−R

(
wk; η

)

can be obtained by multiplying a scaling factor −αk to
V
(
wk; η

)
, i.e.,

R
(
yk
1 ; η

)
−R

(
wk; η

)
≈−αkV

(
wk; η

)
. (32)

Therefore, we obtain the closed-form approximation for yk
2 as

yk
2

Δ
=wk − αkR

(
wk; η

)
− αk

[
R
(
wk; η

)
− αkV

(
wk; η

)]

=wk − 2αkR
(
wk; η

)
+
(
αk
)2

V
(
wk; η

)
. (33)

Eventually, the update for w is finalized as

wk+1 = PW
(
wk − 2αkR

(
wk; η

)

+
(
αk
)2

V
(
wk; η

) )
. (34)

Now we introduce how to compute the value of αk. In the
literature, αk is usually estimated by minimizing a discrepancy
measure based on the secant equation (28). From [50], we select∥
∥R

(
wk; η

)
− αV

(
wk; η

)∥∥2 / |α| as our discrepancy measure.
In addition, because the term R

(
wk; η

)
in (29) can be seen

as a direction to achieve small objective values, it is naturally
to impose the constraint αk ≤ 0 such that the acceleration is
performed along with descent direction.

Meanwhile, we require another constraint
〈
yk
1 −wk,yk

2 − yk
1

〉
≥ 0. (35)

We hope that the direction of first-level acceleration should
be similar to the direction of second-level acceleration. The
inequality (35), which is equivalent to

〈
R
(
wk; η

)
, R

(
wk; η

)
− αkV

(
wk; η

)〉
≥ 0, (36)

provides another constraint for the value of αk, i.e., αk ≥
b
(
wk

)
, where the function b : RN → R is denoted as

b
(
wk

)

=

⎧
⎨

⎩

‖R(wk;η)‖2

2

〈R(wk;η),V (wk;η)〉 if
〈
R
(
wk; η

)
, V

(
wk; η

)〉
< 0,

−∞ otherwise.
(37)

Therefore, the value of αk is computed as the solution to the
following constrained least square problem

minimize
α

∥
∥R

(
wk; η

)
− αV

(
wk; η

)∥∥2 / |α|
subject to b

(
wk

)
≤ α < 0,

(38)

whose solution can be easily obtained as

αk =max
(
−
∥
∥R

(
wk; η

)∥∥ /
∥
∥V

(
wk; η

)∥∥ , b
(
wk

))
. (39)

In principle, we can also simulate yk
i+1

Δ
= yk

i − αkR
(
yk
i ; η

)

for i > 2, but the formulations are typically more complicated
to derive and more levels of approximation is more likely to
produce invalid acceleration.

Compared to the conventional update (20), the proposed
method only includes some small extra computational costs
at each iteration, while significantly improve the efficiency in
practice. However, like many other fixed point acceleration
methods, directly iterating (34) may not yield robust results. In
other words, we may obtain a sequence that does not converge.
Hence, we will provide our solutions to further improve the
robustness of the proposed fixed-point acceleration.

C. A Robust Fixed Point Acceleration (RFPA) Algorithm

To establish a stable convergence, we require that the
sequence

{
f
(
wk

)}
should be monotone, i.e.,

∀k : f
(
wk+1

)
≤ f

(
wk

)
. (40)

The strategy is illustrated as follows. When the fixed-point
acceleration fails to improve the objective, i.e., f

(
wk+1

)
>

f
(
wk

)
, we first set wk+1 =G

(
wk; η

)
. Then, we keep de-

creasing it by η ← βη with a scaling factor β ∈ (0, 1) until the
following condition is met

f
(
wk+1

)
≤ f

(
wk

)
+∇f

(
wk

)T (
wk+1 −wk

)

+
1

2η

∥
∥wk −wk+1

∥
∥2
2
. (41)

Once the condition (41) holds, the sequence
{
f
(
wk

)}
is then

monotone with the details provided in Section F of the Ap-
pendix. Eventually, we summarize the proposed robust fixed
point acceleration (RFPA) algorithm in Algorithm 1.
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Algorithm 1 Robust Fixed Point Acceleration (RFPA) algo-
rithm for solving Problem (6).

1: Initialize w0 ∈W , η, η0, β
2: for k = 0, 1, 2, . . . do
3: Compute R

(
wk; η

)
, V

(
wk; η

)

4: αk =max
(
−
∥
∥R

(
wk; η

)∥∥ /
∥
∥V

(
wk; η

)∥∥ , b
(
wk

))
.

5: wk+1 =
PW

(
wk − 2αkR

(
wk; η

)
+
(
αk
)2

V
(
wk; η

))
.

6: if f
(
wk+1

)
> f

(
wk

)
then

7: η′ = η0.
8: Update wk+1 =G

(
wk; η′

)
.

9: while (41) not satisfied do
10: η′ ← βη′, go to step 8.
11: end while
12: end if
13: Terminate loop if converges.
14: end for

If no fixed point acceleration is applied, we only iterate
wk+1 =G

(
wk; η

)
that satisfies (41), the RFPA algorithm

would reduce to the projected gradient descent (PGD) method.
The main motivation of executing projected gradients is to

enlarge the difference between wk+1 and wk. Theoretically,
whether the fixed-point acceleration would significantly im-
prove the convergence is decided by the numerical properties
at wk. Therefore, if the difference of wk and wk+1 is not large
enough while the fixed-point acceleration at wk is not success-
ful, the algorithm tends to reject the fixed-point acceleration at
wk+1 due to their similar numerical properties.

D. Complexity Analysis and Convergence Analysis

The overall complexity of the proposed RFPA algorithm is
O
(
N2

)
. Specifically, the per-iteration cost of the proposed

RFPA algorithm comes from two parts: computing the gradi-
ent ∇f

(
wk

)
and solving a projection problem PW . With the

help of the parametric skew-t distribution, the computational
complexity of computing the gradient is reduced to O

(
N2

)
.

For solving the projection problems, the computational com-
plexity mainly depends on finding proper values of the dual
variables via bisection. According to Section E of the Appendix,
the primary cost of the water-filling algorithm is to sort an
array of numbers. Therefore, the corresponding complexity is
O (N logN). In conclusion, regardless of the number of outer
iterations, the overall complexity of the proposed RFPA algo-
rithm is O

(
N2

)
.

On the contrary, if we apply the non-parametric modeling
of the high-order moments, then the bottleneck of all the al-
gorithms would be the computation of the gradient or the
Hessian, which are O

(
N4

)
or O

(
N5

)
, respectively. After we

assume the returns follow a parametric skew-t distribution, the
complexity of the second-order methods, like Q-MVSK algo-
rithm and sequential quadratic programming method, becomes
O
(
N3

)
due to the complexity of evaluating ∇2φ4 (w).

The convergence of the RFPA algorithm for MVSK portfo-
lio optimization is given as Theorem 6. By solving the fixed

point of function G, we can obtain the stationary point of
Problem (6).

Theorem 6: If wk =wk+1, then wk is a stationary point of
Problem (6).

Proof: See Section G of the Appendix.
Theorem 6 indicates that the algorithm can obtain the

stationary point of Problem (6) if it terminates with wk =
wk+1, which always holds in empirical studies as shown in
Section VI-C.

V. EXTENSION: SOLVING MVSK-TILTING PORTFOLIOS WITH

GENERAL DETERIORATION MEASURE

Our proposed framework provides an efficient and scalable
discipline for handling high-order moments, therefore presents
great potential for more advanced and sophisticated applica-
tions, like multi-period portfolio optimization problems [51],
[52], [53], incorporating diversification into the high-order de-
signs [54], [55], and increasing the robustness of current MVSK
formulation [56]. In this section, we explore an interesting
example of extending our framework to other portfolios.

In portfolio theory, though the MVSK framework finds a
solution on the efficient frontiers, choosing proper values for
λ may be difficult and the optimal weights are often concen-
trated into some positions, resulting in a greater idiosyncratic
risk [57]. Therefore, we can generalize the idea of the RFPA
algorithm for solving another important high-order portfolio
called the MVSK-Tilting problem with general deterioration
measures. This MVSK-Tilting portfolio aims at improving a
given portfolio that is not sufficiently optimal from the MVSK
perspective by tilting it toward a direction that concurrently
ameliorates all the objectives [58], [59].

The problem of interest is formulated as

minimize
w,δ

−δ + λ · gdet (w)

subject to φ1 (w)≥ φ1 (w0) + d1δ,
φ2 (w)≤ φ2 (w0)− d2δ,
φ3 (w)≥ φ3 (w0) + d3δ,
φ4 (w)≤ φ4 (w0)− d2δ,
w ∈W,

(42)

where d=
[
d1 d2 d3 d4

]T ≥ 0 represents the relative
importance of each target, gdet (w) is a differentiable function
that corresponds to an assigned deterioration measure with re-
spect to w0, and λ is the regularization coefficient. For example,
gdet (w) can represent a tracking error

gdet (w) = (w −w0)
T Cov [r] (w −w0). (43)

Implicitly, the point w0 refers to a reference portfolio that
satisfiesw0 = argminw∈W gdet (w), indicating that the penalty
would be imposed when we tilt w away from w0.

As the key for the success of the RFPA algorithm is to form
a separable function G such that the fixed point of G is the
stationary point we want to obtain. The function G corresponds
to an optimization problem that has the following properties:
• The objective function of the optimization problem is

separable.
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• The constraint of the optimization problem is simple. In
our case, we require that the constraint is just w ∈W .

Therefore, we first move the MVSK-Tilting constraints into
the objective, resulting in the following equivalent problem:

minimize
w

max [ϕ (w)] + λ · gdet (w)

subject to w ∈W,
(44)

in which

ϕ (w) =

⎡

⎢
⎢
⎣

ϕ1 (w)
ϕ2 (w)
ϕ3 (w)
ϕ4 (w)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

1
d1

[φ1 (w0)− φ1 (w)]
1
d2

[φ2 (w)− φ2 (w0)]
1
d3

[φ3 (w0)− φ3 (w)]
1
d4

[φ4 (w)− φ4 (w0)]

⎤

⎥
⎥
⎦ . (45)

To alleviate the difficulty taken by the non-smoothness of
the max term, instead of directly solving Problem (44), we
solve the relaxation of (44) via the p-norm smoothing approxi-
mation, i.e.,

minimize
w

gp (w) = ‖t1+ ϕ (w)‖p + λ · gdet (w)

subject to w ∈W,
(46)

where p is a positive integer, and t is larger than any possible
value of the elements of ϕ (w) such that

lim
p→∞

‖t1+ ϕ (w)‖p − t=max [ϕ (w)] . (47)

When the value of p is large enough, the relaxed problem re-
duces to the original problem. As gp (w) is smooth, the gradient
exists for any w ∈W , we have

∂

∂w

(
‖t1+ ϕ (w)‖p

)

=

(
(t1+ ϕ (w))

T

‖t1+ ϕ (w)‖p

)p−1

⎡

⎢
⎢
⎢
⎣

− 1
d1
∇φ1 (w)

T

1
d2
∇φ2 (w)

T

− 1
d3
∇φ3 (w)

T

1
d4
∇φ4 (w)

T

⎤

⎥
⎥
⎥
⎦
. (48)

Hence, the relaxed problem is equivalent to find the fixed point
of the following function

G
(
wk; η

) Δ
= PW

(
wk − η∇gp

(
wk

))
, (49)

where η is the step size and

∇gp
(
wk

)
=

∂

∂w

(
‖t1+ ϕ (w)‖p

)∣∣
∣
∣
w=wk

+ λ
∂

∂w
g det (w)

∣
∣
∣
∣
w=wk

. (50)

By simply applying Algorithm 1, the RFPA algorithm for the
MVSK-Tilting problem with general deterioration measure can
be easily solved.

VI. NUMERICAL SIMULATIONS

In this section, we conduct numerical experiments for eval-
uating our proposed high-order portfolio solving framework4.

4We have released an R package highOrderPortfolios implementing our
proposed algorithms at https://github.com/dppalomar/highOrderPortfolios.

Fig. 3. Errors of non-parametric and parametric approaches.

A. On Applying the ghMST Distribution

The portfolios based on parametric representation of the
high-order moments distinguishes the portfolio obtained from
traditional MVSK framework. In other words, given the same
data and optimization problem, we can either compute φi (w),
i= 1, 2, 3, 4, using non-parametric sample moments Φ and
Ψ in (7), or the parametric Θ from ghMST distribution in
Lemma 3, resulting in different optimal portfolios.

Assuming the data follows a ghMST distribution with the true
parameter Θtrue. We generate the synthetic data set D based on
Θtrue, then construct the high-order portfolios using either non-
parametric approach or parametric skew-t approach. Here we
consider an MVSK formulations with λ= (1, 1, 1, 1) with wtrue

as its optimal portfolio, i.e.,

wtrue = arg min
w∈W

f (w;Θtrue,λ) . (51)

Using the non-parametric approach, we first estimate Φ and
Ψ from D, then obtain the optimal portfolio wnp as the so-
lution to (6). While with the parametric approach, we have
to fit the ghMST distribution given D, then solve the optimal
portfolio wst based on the estimated parameters Θ. Here, we
denote the errors εnp and εst as εnp = ‖wnp −wtrue‖2 and εst =

‖wst −wtrue‖2, respectively.
We repetitively evaluate the errors from different data sets

under different problem sizes. According to the result shown in
Fig. 3, the parametric skew-t approach produces smaller errors
than the non-parametric approach on any problem size.

B. On Solving MVSK Portfolio Using RFPA Algorithm

In this subsection, we conduct experiments to evaluate how
applying the ghMST distribution would accelerate the existing
and proposed algorithms and the performance of our proposed
RFPA algorithm on efficiency and scalability. We mainly uti-
lize real-world data for the experiments. The data is randomly
selected from the S&P 500 stock index. The trading period is
chosen from 2011-01-01 to 2020-12-31.

1) Comparing Non-Parametric and Parametric (ghMST)
Approach: We first perform the comparison on the non-
parametric and parametric modeling of the high-order mo-
ments. Given the data, we first estimate the parameter Θ for
the ghMST distribution, then generate the sample moments, i.e.,
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Fig. 4. Convergence of algorithms for solving the MVSK portfolio opti-
mization problems (6).

sample skewness matrix and kurtosis matrix, using Lemma 2.
In this way, φi (w), i= 1, 2, 3, 4, will produce the same values
under both non-parametric and parametric modeling.

We list the benchmarks as (first-order) MM algorithm [23],
projected gradient descent (PGD) method, Q-MVSK (second-
order SCA) algorithm [60], the nonlinear optimization solver
’Nlopt’ [61] and our proposed RFPA algorithm. The inner
solver for QP is selected as quadprog [62]. The weights λ are
determined according to the Constant Relative Risk Aversion
utility function

λT =

[
1,

ξ

2
,
ξ (ξ + 1)

6
,
ξ (ξ + 1) (ξ + 2)

24

]
, (52)

where ξ ≥ 0 is a parameter to measure the risk aversion [63].
Suggested by [64], [65], [66], we set ξ = 6 in this experiment.
We further choose η = 5, β = 0.5 and investigate the empirical
convergence of all algorithms under two different dimensions
N = 100 and N = 400. The gap is defined as the difference of
the objective value at each iteration and the smallest objective
value we obtained across all the methods. When N = 400,
we cannot compare the performance of the non-parametric ap-
proaches due to the memory limit that renders them intractable.

We have the following observations according to the simu-
lation results exhibited in Fig. 4. When N = 100, the time cost

Fig. 5. Comparison of algorithms with respect to the computational time
under different data dimension.

for Nlopt (Non-parametric) and Nlopt (skew-t) is 9.349 and
1.275 seconds, respectively. When N = 400, the number for
Nlopt(skew-t) becomes 52.934 seconds. Note that all the non-
parametric approaches, which model the high-order moments
using sample moments, are not applicable in high dimension
due to the memory limit. Besides, MM methods require com-
puting η that meets the condition 1

η ≥ supw∈W ‖∇f (w)‖2,
which is computationally expensive to obtain in high dimen-
sional problems. From the numerical simulations we observe
the following.
• By applying the parametric skew-t distribution, we can

accelerate the MVSK portfolio design by one-to-two
orders of magnitude given any optimization algorithm
when N = 100.

• The per-iteration cost of proposed RFPA and PGD algo-
rithms is significantly smaller than other methods with the
help of water-filling algorithms.

• The effect of using the parametric skew-t distribution tends
to be algorithm-dependent. The acceleration is more no-
ticeable for first-order algorithms like RFPA, which has
negligible per-iteration cost.

2) Comparison on Efficiency: To better compare the effi-
ciency of the proposed algorithms, we also conduct experiments
using real-world data sets with different problem dimensions.
For each problem size, we set η = 5, β = 0.5, and take 200
independent experiments with ξ randomly drawn from the in-
terval

(
10−1, 10

)
. All the methods are initialized with the same

starting point w0. For Nlopt, the stopping criteria are set as
the default. For Q-MVSK, PGD, and RFPA, the algorithms
are regarded as converged when both the following conditions
are satisfied:

∣
∣wk+1 −wk

∣
∣≤ 10−6

(∣∣wk+1
∣
∣+

∣
∣wk

∣
∣) , (53)

∣
∣f
(
wk+1

)
− f

(
wk

)∣∣≤ 10−6
(∣∣f

(
wk+1

)∣∣+
∣
∣f
(
wk

)∣∣).
(54)

According to the numerical simulation results shown in
Fig. 5, our proposed outperforms the state-of-the-art methods
by one-to-two orders of magnitude when we assume the data
follows a ghMST distribution. The difference seems to be
enlarged when the problem dimension increases. Besides, the
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TABLE IV
EMPIRICAL ORDERS OF COMPLEXITY

Q-MVSK Nlopt PGD RFPA
2.864 3.827 1.976 1.944

Fig. 6. Investigation on the empirical complexity of RFPA and Q-MVSK
algorithms.

RFPA algorithm appears to be more stable compared to the
PGD method.

3) Comparison on Scalability: Interestingly, implied by
Fig. 5, first-order methods, including RFPA and PGD, appear
to be more scalable than the second-order Q-MVSK algorithm.
To better investigate this phenomenon, we will be conducting a
comparison of these algorithms using a synthetic data set, where
the parameter Θ is randomly generated.

As shown in Fig. 6, the proposed RFPA algorithm has
a significantly lower complexity compared to the Q-MVSK
algorithm, as its every single iteration does not contain pro-
cedures with high complexity. Meanwhile, PGD method also
enjoys the benefits of low complexity but its overall efficiency
is worse than the RFPA method. We also fit the empirical
orders of the four methods considered. The relative results are
shown in Table IV. It turns out that the empirical computational
complexity of our method is O

(
N2

)
and the complexity of

the second-order method Q-MVSK is around O
(
N3

)
. The

results of numerical simulations coincide with the discussion in
Section IV-D.

C. Empirical Convergence of the Proposed RFPA Algorithm

According to Theorem 6, when wk =wk+1, the algorithm
terminates at a stationary point of Problem (6). Though exact
equality is often unattainable, empirically, the relative differ-
ence of w, denoted as

Relative Error
(
wk

) Δ
=
∥
∥wk −wk−1

∥
∥/

∥
∥wk

∥
∥ , (55)

would tend to zero. To show this, we conduct experiments using
real-world data sets with different problem dimensions. The
values of (55) are computed at each iteration. From Fig. 7 we
observe that the differences all reduce to very small numbers.
Empirical studies show that the residual value R

(
wk; η

)
would

Fig. 7. Median relative difference at each iteration.

tend to zero after 20 iterations and the final solution would
converge to the stationary point of Problem (6).

VII. CONCLUSION

In this paper, we have proposed a high-order portfolio design
framework with the help of the parametric skew-t distribution
and a robust fixed point acceleration. The parametric approach
is practical for modeling the skewness and kurtosis of portfolio
returns in high-dimensional settings. By assuming the returns
follow a ghMST distribution, we can alleviate the difficulties
caused by the high complexity of traditional methods and accel-
erate all existing algorithms to a certain extent. Additionally, the
proposed RFPA algorithm immensely cut down the number of
iterations for first-order methods. Numerical simulations have
demonstrated the outstanding efficiency and scalability of our
proposed framework over the state-of-the-are benchmarks.

APPENDIX

A. Computational Time of Different Estimation Methods

Fig. 8 depicts the computational time of different estimation
methods. It can be observed that fitting the ghMST distribution
is much more efficient than others.

B. Proof for Lemma 2

The proof starts with a fact that the central moments of a
Gaussian variable X̃∼N

(
μ̃, Σ̃

)
is given by

E[X̃i] = μ̃i,

E[X̃iX̃j ] = μ̃iμ̃j + Σ̃ij ,

E[X̃iX̃jX̃k] = μ̃iμ̃j μ̃k + μ̃iΣ̃jk + μ̃jΣ̃ik + μ̃kΣ̃ij ,

E[X̃iX̃jX̃kX̃l] = μ̃iμ̃j μ̃kμ̃l + (Σ̃ij μ̃kμ̃l + · · ·+ Σ̃klμ̃iμ̃j)︸ ︷︷ ︸
6 items

+ (Σ̃ijΣ̃kl + Σ̃ikΣ̃jl + Σ̃ilΣ̃jk). (56)

Then, given the first term of the hierarchical structure r|τ i.i.d∼
N
(
μ+ 1

τ γ,
1
τΣ

)
, we have

E [ri|τ ] = μi +
1

τ
γi, (57)
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Fig. 8. Comparing computational time (seconds) of different estimation
methods.

E [ri] = μi + E

[
1

τ

]
γi = μi +

ν

ν − 2
γi. (58)

Meanwhile, the hierarchical structure can be further written as

r|τ − E [r|τ ] i.i.d∼ N
(
μ+

1

τ
γ − E [r|τ ] , 1

τ
Σ

)
,

τ
i.i.d∼ Gamma

(ν
2
,
ν

2

)
, (59)

where μ+ 1
τ γ − E [r|τ ] =

(
1
τ − ν

ν−2

)
γ. Therefore, we can

compute the central moments of r̃|τ = r|τ − E [r|τ ] by regard-

ing μ̃=
(

1
τ − ν

ν−2

)
γ and Σ̃= 1

τΣ:

E[ r̃ir̃j | τ ] =
(
1

τ
− ν

ν − 2

)2

γiγj +
1

τ
Σij ,

E[ r̃ir̃j r̃k| τ ] =
(
1

τ
− ν

ν − 2

)3

γiγjγk +
1

τ

(
1

τ
− ν

ν − 2

)
·

[γiΣjk + γjΣik + γkΣij ] ,

E[ r̃ir̃j r̃kr̃l| τ ] =
(
1

τ
− ν

ν − 2

)4

γiγjγkγl+

(
1

τ
− ν

ν − 2

)2
1

τ
·

(Σijγkγl + · · ·+Σklγiγj)︸ ︷︷ ︸
6 items

+

1

τ2
(ΣijΣkl +ΣikΣjl +ΣilΣjk). (60)

By taking expectation subject to τ , i.e., E
[
τ−1

]
= ν

ν−2 ,

E
[
τ−2

]
= ν2

(ν−2)(ν−4) , E
[
τ−3

]
= ν3

(ν−2)(ν−4)(ν−6) , and

E
[
τ−4

]
= ν4

(ν−2)(ν−4)(ν−6)(ν−8) , the Lemma 2 is obtained.

C. Proof for Lemma 3

Assuming r∼ ghMST (μ,Σ,γ, ν), which indicates that
the portfolio return wT r satisfies the following hierarchical
structure:

wT r|τ i.i.d∼ N
(
wTμ+

1

τ
wTγ,

1

τ
wTΣw

)
,

τ
i.i.d∼ Gamma

(ν
2
,
ν

2

)
, (61)

Then, according to (61), we have

wT r∼ ghMST
(
wTμ,wTΣw,wTγ, ν

)
. (62)

As wT r is a scalar, its high-order central moments, i.e., Φ and
Ψ are all scalars. Based on Lemma 2, we replace μ, Σ, and γ
withwTμ,wTΣw, andwTγ, respectively. Then we can obtain

φ3 (w) = Φ = E

[(
1

τ
− ν

ν − 2

)3
]
(
wTγ

)3
+

3E

[
1

τ

(
1

τ
− ν

ν − 2

)]
(
wTΣw ·wTγ

)
,

φ4 (w) = Ψ = E

[(
1

τ
− ν

ν − 2

)4
]
(
wTγ

)4

+ 6E

[(
1

τ
− ν

ν − 2

)2
]
(
wTγ

)2 (
wTΣw

)

+ 3E

[
1

τ2

]
a43

(
wTΣw

)2
. (63)

Simply follows the definition of a, Lemma 3 is proved.

D. Gradient and Hessian of the High-Order Moments

Based on Lemma 3, the gradient and Hessian of the skewness
and kurtosis subject to w can be computed as

∇φ3 (w) = 3a31
(
wTγ

)2
γ

+ a32
[(
wTΣw

)
γ + 2

(
wTγ

)
Σw

]
,

∇2φ3 (w) = 6a31
(
wTγ

)
γγT

+ 2a32
[
γwTΣ+ΣwγT +wTγΣ

]
,

∇φ4 (w) = 4a41
(
wTγ

)3
γ

+ 2a42

[(
wTγ

)2
Σw +

(
wTΣw

) (
wTγ

)
γ
]

+ 4a43
(
wTΣw

)
Σw,

∇2φ4 (w) = 12a41
(
wTγ

)2
γγT

+ 2a42

[
2
(
wTγ

)
ΣwγT +

(
wTγ

)2
Σ

+ 2
(
wTγ

)
γwTΣ+

(
wTΣw

)
γγT

]

+ 4a43

[
2ΣwwTΣ+

(
wTΣw

)
Σ

]
. (64)

E. Water-Filling Algorithm

Here we consider an optimization problem

minimize
w

1
2

∥
∥w −

(
wk − η∇f

(
wk

))∥∥2
2

subject to w ∈W.
(65)
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Given W =
{
w
∣
∣1Tw = 1,w ≥ 0

}
, the Lagrangian of Prob-

lem (65) is

L (w,ψ, γ) =
1

2

∥
∥w −

(
wk − η∇f

(
wk

))∥∥2
2

−ψTw + γ
(
1Tw − 1

)
, (66)

where ψ and γ are dual variables associated with the constraints
w ≥ 0 and 1Tw = 1, respectively. The KKT conditions are

η∇f
(
wk

)
+
(
w −wk

)
−ψ + γ1= 0,

ψ �w = 0. (67)

Hence, we have

wi =max
(
0, wk

i − η
[
∇f

(
wk

)]
i
− γ

)
. (68)

Define a continuous and monotone decreasing function
ζ : R→ R:

ζ (γ) =

N∑

i=1

max
(
0, wk

i − η
[
∇f

(
wk

)]
i
− γ

)
− 1 (69)

with ζ (−∞) = +∞ and ζ (−∞) =−1, the root

γ� = arg (ζ (γ) = 0) (70)

exists and is unique. The root provides a dual optimal of the
KKT system. We can easily solve γ and w� via bisection.

F. Monotonicity of the Sequence
{
f
(
wk

)}

According to the projection theorem [67], i.e.,

∀x, z : 〈z− x,PW (z)− PW (x)〉 ≥ ‖PW (z)

−PW (x)‖22 , (71)

we apply z=wk − η∇f
(
wk

)
and x=wk to obtain

〈
−η∇f

(
wk

)
,wk+1 −wk

〉
≥
∥
∥wk+1 −wk

∥
∥2
2
, (72)

or equivalently

〈
∇f

(
wk

)
,wk+1 −wk

〉
≤−1

η

∥
∥wk+1 −wk

∥
∥2
2
. (73)

Hence, from the inequality (41) we have

f
(
wk+1

)
≤ f

(
wk

)
+∇f

(
wk

)T (
wk+1 −wk

)

+
1

2η

∥
∥wk −wk+1

∥
∥2
2

≤ f
(
wk

)
− 1

η

∥
∥wk+1 −wk

∥
∥2
2

+
1

2η

∥
∥wk −wk+1

∥
∥2
2

= f
(
wk

)
− 1

2η

∥
∥wk −wk+1

∥
∥2
2
≤ f

(
wk

)
, (74)

which indicates that the sequence
{
f
(
wk

)}
is then monotone.

G. Proof of Theorem 6

Proof: When wk =wk+1, we may have wk+1 = PW
(
wk−

2αkR
(
wk; η

)
+
(
αk
)2

V
(
wk; η

) )
or wk+1 =G

(
wk; η′

)
.

(i) We first analyze the first case where wk+1 = PW
(
yk
)
,

in which

yk Δ
=wk − 2αkR

(
wk; η

)
+
(
αk
)2

V
(
wk; η

)
. (75)

By applying the contraposition, we prove the following state-
ment instead

∀wk ∈W :R
(
wk; η

)
�= 0⇒PW

(
yk
)
�=wk. (76)

For simplicity, we denote α=−αk > 0. Note that α �= 0 as
R
(
wk; η

)
�= 0.

(A) If α ∈ (0, 1], then, we obtain

yk =
(
1− 2α+ α2

)
wk +

(
2α− 2α2

)
G
(
wk; η

)

+ α2G
(
G
(
wk; η

)
; η
)

Δ
= akwk + bkG

(
wk; η

)
+ ckG

(
G
(
wk; η

)
; η
)

(77)

in which ak = 1− 2α+ α2, bk = 2α− 2α2, and ck = α2. As
0< α≤ 1, we have 0≤ ak < 1, 0≤ bk ≤ 1

2 , 0< ck ≤ 1, and
ak + bk + ck = 1. Hence, yk is a convex combination of wk,
G
(
wk; η

)
, and G

(
G
(
wk; η

)
; η
)
. As a result, yk ∈W and

the projection of yk onto W is itself, i.e., PW
(
yk
)
= yk.

Consequently, we obtain

wk+1 = PW
(
yk
)
�=wk. (78)

(B) If α ∈ (1,∞). We will first show that the following
inequality holds for any wk

ξ
Δ
=
〈
R
(
wk; η

)
, R

(
wk; η

)
+ αV

(
wk; η

)〉
≥ 0. (79)

In principle, we consider the following three cases based on the
value of

〈
R
(
wk; η

)
, V

(
wk; η

)〉
.

(B.1) If
〈
R
(
wk; η

)
, V

(
wk; η

)〉
≥ 0, then b

(
wk

)
=−∞.

(79) holds as ∀α > 1:

ξ =
∥
∥R

(
wk; η

)∥∥2 + α
〈
R
(
wk; η

)
, V

(
wk; η

)〉
≥ 0. (80)

(B.2) If
〈
R
(
wk; η

)
, V

(
wk; η

)〉
< 0 and b

(
wk

)
=

‖R(wk;η)‖2

2

〈R(wk;η),V (wk;η)〉 �=−∞, we have α≤−b
(
wk

)
. In this case,

(79) holds as ∀α ∈
(
1,−b

(
wk

))
:

ξ =
∥
∥R

(
wk; η

)∥∥2 + α
〈
R
(
wk; η

)
, V

(
wk; η

)〉

≥
∥
∥R

(
wk; η

)∥∥2 − b
(
wk

) 〈
R
(
wk; η

)
, V

(
wk; η

)〉
= 0.

(81)

(B.3) If
〈
R
(
wk; η

)
, V

(
wk; η

)〉
< 0 but b

(
wk

)
→−∞

due to V
(
wk; η

)
→ 0, the value of α can be either∥

∥R
(
wk; η

)∥∥ /
∥
∥V

(
wk; η

)∥∥→∞ or −b
(
wk

)
→∞. When

α=
∥
∥R

(
wk; η

)∥∥ /
∥
∥V

(
wk; η

)∥∥, we suppose
〈
R
(
wk; η

)
, V

(
wk; η

)〉

=
∥
∥R

(
wk; η

)∥∥
∥
∥V

(
wk; η

)∥∥ cos θR,V , (82)
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in which θR,V is the angle between R
(
wk; η

)
and V

(
wk; η

)
.

Hence, as cos θR,V ∈ [−1, 1], we obtain

ξ =
∥
∥R

(
wk; η

)∥∥2 +

∥
∥R

(
wk; η

)∥∥

‖V (wk; η)‖
〈
R
(
wk; η

)
, V

(
wk; η

)〉

=
∥
∥R

(
wk; η

)∥∥2 (1 + cos θR,V )≥ 0. (83)

When α=−b
(
wk

)
=− ‖R(wk;η)‖2

2

〈R(wk;η),V (wk;η)〉 , it is obvious that

ξ =
∥
∥R

(
wk; η

)∥∥2 − b
(
wk

) 〈
R
(
wk; η

)
, V

(
wk; η

)〉
= 0.

(84)

Therefore, (79) holds. As a consequence, we can compare
the following two terms

yk −wk = αR
(
wk; η

)

+ α
(
R
(
wk; η

)
+ αV

(
wk; η

))
,

yk −G
(
wk; η

)
= (α− 1)R

(
wk; η

)

+ α
(
R
(
wk; η

)
+ αV

(
wk; η

))
, (85)

by evaluating the difference of their squared 2 norms, i.e.,
∥
∥yk −wk

∥
∥2 −

∥
∥yk −G

(
wk; η

)∥∥2

= (2α− 1)
∥
∥R

(
wk; η

)∥∥2

+ 2α
〈
R
(
wk; η

)
, R

(
wk; η

)
+ αV

(
wk; η

)〉
. (86)

Then, we obtain the following strict inequality
∥
∥yk −wk

∥
∥2 −

∥
∥yk −G

(
wk; η

)∥∥2 > 0 (87)

as α > 1 and
∥
∥R

(
wk; η

)∥∥> 0. Therefore, PW
(
yk
)
�=wk as

there exists a feasible point G
(
wk; η

)
∈W that is closer to yk

compared to wk.
Hence, we have shown that PW

(
yk
)
�=wk if R

(
wk; η

)
�=

0. As a result, we have obtained the following statement

PW
(
yk
)
=wk ⇒R

(
wk; η

)
= 0. (88)

Then, wk is a stationary point of Problem (6) according to
Lemma 5.

(ii) We then analyze the second case where

wk+1 = PW
(
wk − η′∇f

(
wk

))
. (89)

Then, wk is a stationary point of Problem (6) when wk+1 =wk

with the proof directly from [68], Theorem 9.10].
In conclusion, once we obtainwk+1 =wk from the proposed

RFPA algorithm, wk is a stationary point of Problem (6).
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