
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023 2713
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Abstract—The mean and variance of portfolio returns are the
standard quantities to measure the expected return and risk of
a portfolio. Efficient portfolios that provide optimal trade-offs
between mean and variance warrant consideration. To express a
preference among these efficient portfolios, investors have put for-
ward many mean-variance portfolio (MVP) formulations which
date back to the classical Markowitz portfolio. However, most ex-
isting algorithms are highly specialized to particular formulations
and cannot be generalized for broader applications. Therefore, a
fast and unified algorithm would be extremely beneficial. In this
paper, we first introduce a general MVP problem formulation
that can fit most existing cases by exploring their commonalities.
Then, we propose a widely applicable and provably convergent
successive quadratic programming algorithm (SCQP) for the
general formulation. The proposed algorithm can be implemented
based on only the QP solvers and thus is computationally efficient.
In addition, a fast implementation is considered to accelerate
the algorithm. The numerical results show that our proposed
algorithm significantly outperforms the state-of-the-art ones in
terms of convergence speed and scalability.

Index Terms—Mean-variance portfolios, successive quadratic
programming algorithm, active set methods, Pareto frontier.

I. INTRODUCTION

MEAN-VARIANCE analysis, pioneered by Harry
Markowitz’s publication in 1952 [1], is a breakthrough

in modern portfolio theory. It starts a new era of financial
research using quantitative tools and becomes one of the
most widely-used investment decision rules among academics
and practitioners. Mean-variance analysis assumes that the
expected return and risk of a portfolio can be fully measured
by the mean and variance of the portfolio return. It accords
with the more general expected utility maximization when
returns are assumed to be normally distributed [2]. In addition,
it is the theoretical support of the capital asset pricing model
(CAPM) developed by Sharpe [3] and Lintner [4].

According to mean-variance analysis, rational risk-averse
investors would pursue efficient portfolios that provide the
highest expected return subject to a certain level of risk. The
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set of efficient portfolios with different risk aversion levels
is known as the efficient frontier. However, the number of
efficient portfolios is usually infinite, which is of low appli-
cability in practice. Therefore, to achieve a specific efficient
portfolio corresponding to individual risk appetite, investors
solve optimization problems based on well-designed trade-offs
between means and variances. These problems are collectively
referred to as mean-variance portfolio (MVP) problems, and
their optimization process is called MVP optimization [5].

Many MVP problem formulations have been proposed in
the literature. Markowitz portfolio, which optimizes a risk-
adjusted return in the form of a quadratic utility, serves as a
starting point [1], [6]. It has been popularly employed because
it is simple for theoretical analysis and numerical optimiza-
tion. Nonetheless, this formulation cannot fully characterize
the preferences of a wide range of investors, so it has been
extended in several directions. First, the risk-adjusted return is
measured by other metrics like the Sharpe ratio [7], and the
corresponding maximum Sharpe ratio portfolio (MSRP) also
belongs to the efficient frontier [8]. Second, investors adopt
other utility functions, including exponential and logarithmic
ones [9], to represent preferences over portfolio returns. In
this case, efficient portfolios could be obtained by applying
mean-variance approximations to expected utility [10], [11].
Third, practical linear and quadratic constraints, such as the
restrictions on desired return or risk, are included to take more
investment guidelines into account [5], [12]. Since various MVP
formulations contain different problem structures, a broadly
applicable and numerically efficient algorithm is favored by
academic research and the financial industry. However, there
are two significant challenges in algorithm design.

Challenge #1: Existing efficient algorithms are problem-
dependent and thus difficult to generalize. Markowitz portfolio
gains popularity partly because it can be directly solved by ef-
ficient quadratic program (QP) solvers. Nevertheless, involving
more intricate functional forms and constraints usually results
in more complicated problems that cannot benefit from the same
computational advantage of QPs. For example, given an MSRP
which is a fractional program (FP) instead, we have to resort
to FP algorithms such as the bisection method, Dinkelbach’s
algorithm [13], and the quadratic transform [14]. However,
these algorithms are limited to certain types of FPs and cannot
be applied to other problems [15]. As another example, given a
worst-case robust global maximum return portfolio (worst-case
robust GMRP), the majorization-minimization (MM) algorithm
efficiently solves it via a sequence of quadratic upper-bound
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problems [16], [17]. Nonetheless, this construction of quadratic
bounds relies on the structure of �2-norm, and upper-bound
problems may not be easily identifiable unless specific con-
vexity/concavity structures are contained in objective functions
[18], [19]. Therefore, the scope of applicability of MM is also
limited.

Challenge #2: General algorithms are inefficient in prac-
tice. We could turn to traditional off-the-shelf optimization
methods to solve MVP problems. For example, feasible
interior-point methods (FIP) [20] and feasible sequential
quadratic programming (FSQP) [21] are commonly used.
However, they are computationally expensive in most cases
[22], especially for nonconvex problems [23]. Metaheuristic
methods can be applied, including differential evolution and
genetic algorithms. Nonetheless, they are inefficient as they
require many objective function evaluations and barely exploit
problem-specific information [24]. Although general solvers
are available for some MVPs, it is widely accepted that QP
algorithms are faster, more reliable, and easier to use.

In response to the challenges in designing an efficient and
unified algorithm for MVP optimization, this work presents the
following major contributions:

• We provide a general formulation that can characterize
most of the existing MVP formulations.

• We propose an algorithm that solves different MVPs with
various structures by uniformly solving a sequence of QPs.
It can reuse the well-developed QP solvers, and has prov-
able convergence and a fast implementation.

• We present extensive results to show that our proposed
algorithm is more efficient and scalable than the state-of-
the-art methods.

The rest of the paper is organized as follows. We begin with
the general MVP formulation and its motivating examples in
Section II. Then, in Section III, we propose our successive QP
algorithm for the general problem formulation. The detailed
analysis of the proposed algorithm is provided in Section IV,
and the fast implementation that exploits the underlying spar-
sity pattern is developed in Section V. Section VI justifies the
proposed algorithm’s broad applicability and performance with
comprehensive experiments. In Section VII, we provide a case
study in parameter uncertainty to illustrate the practical usage of
the proposed algorithm in portfolio backtesting. Finally, Section
VIII concludes this paper.

II. PROBLEM FORMULATION

Firstly, we introduce the notation and related background.
We denote by r ∈ R

N the returns of N assets. The mean vector
and covariance matrix of the returns are represented by μ ∈ R

N

and Σ ∈ S
N
++, respectively. We let w ∈ R

N denote the portfolio
weights. Then, the expected return and risk of this portfolio
are individually measured by the mean (wᵀμ) and variance
(wᵀΣw) of the portfolio return (wᵀr).

The classical Markowitz portfolio can be obtained by solving
the following QP problem:

minimize
w∈W

−wᵀμ+
α

2
wᵀΣw, (1)

where α≥ 0 is a risk aversion parameter that determines the
trade-off between expected return and risk. W is the convex
feasible set of w and is defined in its simplest form as

W = {w ≥ 0, 1ᵀw = 1}, (2)

which includes the long-only and capital budget constraints
[6]. In practice, this set may contain other constraints such as
turnover control, upper bound limits, leverage constraints, etc.
For illustrative purposes, we focus on the constraints in (2).

The original formulation proposed by Markowitz has been
extended in two aspects. The first one is amending the mean-
variance framework with a broad class of objective functions
based on different combinations of means and variances to
express investors’ preferences. In practice, we may have mul-
tiple estimates of μ and Σ, denoted as {μ1,μ2, · · · ,μp} and
{Σ1,Σ2, · · · ,Σq}, by using different estimation methods or
market regimes. For instance, one may use shrinkage estimators
to address concerns around parameter uncertainty in the sam-
ple mean and covariance matrix (e.g., [25], [26]). Therefore,
we can obtain multiple estimates of expected return and risk,
denoted as vector-valued functions x(w) :W → R

p and y(w) :
W → R

q
++,

x (w) = [x1 (w) , . . . , xp (w)],

y (w) = [y1 (w) , . . . , yq (w)], (3)

where

xi (w) =wᵀμi, yj (w) =wᵀΣjw. (4)

To represent the family of objective functions of means x(w)
and variances y(w), we consider such functions in their most
general form F (x,y) : Rp × R

q → R. The second aspect con-
sists in adding minimum expected return or bearable maximum
risk as practical constraints.

Therefore, the general MVP can be formulated as

minimize
w

f (w)� F (x (w),y (w))

subject to xi (w)≥ ai, i= 1, . . . , p

yj (w)≤ bj , j = 1, . . . , q

w ∈W,

⎫
⎪⎬

⎪⎭
�K (P)

where
• f (w) :K→ R is a continuously differentiable and possi-

bly nonconvex function.
• K is the feasible set that contains at least one strictly

feasible point, where ai is the lower limit on the expected
return, and bj is the upper limit on the risk. The constraints
on the expected return and risk are named mean-variance
constraints. They can be written in a compact vector-
valued function g(w) :W → R

p × R
q satisfying

g (w)�
[
gx (w)
gy (w)

]

≤ 0, (5)

with

[gx (w)]i � ai − xi (w), [gy (w)]j � yj (w)− bj . (6)
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TABLE I
FORMULATIONS OF WELL-RESEARCHED MVPS UNDER THE FRAMEWORK OF P

Portfolio F (x(w),y(w)) g(w)≤ 0 Problem class

Markowitz portfolio −x(w) + α
2
y(w) - QP

MSRP
−(x(w)− rf )/

√
y(w) -

FP
√

y(w)/(x(w)− rf ) -

MGSRP −(x(w)− rf )/y(w)β -

Worst-case robust GMRP −x(w) + α
√

y(w) - SOCP

Expected utility portfolio −U(x(w))− 1
2
U

′′
(x(w))y(w) - Depends on U

Kelly portfolio − log(1 + x(w)) + 1
2

y(w)

(1+x(w))2
- -

Return-constrained Markowitz portfolio y(w) x(w)≥ a QP

Risk-constrained Markowitz portfolio −x(w) y(w)≤ b QCQP

Compared with Problem (1), which well-developed QP solvers
can efficiently solve, P is usually more complicated because
of the substantial flexibility regarding the objective function f
(i.e., F ) and the inclusion of mean-variance constraints. There-
fore, our goal is to efficiently deal with P by solving Problem
(1) iteratively.

As the risk-return trade-off characterized by F should be
reasonable, we require the following natural assumption.

Assumption 1: For each xi and yj that exists in F , we have

∇xi
F (x,y)< 0, ∇yj

F (x,y)> 0.

where ∇xi
F (x,y) and ∇yj

F (x,y) denote the partial gradient
of F evaluated at xi and yj , respectively.1

Assumption 1 implies that function F (x,y) is decreasing
with respect to xi and increasing with respect to yj . In other
words, a higher expected return is always better, while more risk
is always worse. It is a direct generalization of the continuity–
monotonicity–finiteness axiom of the two-moment decision
model [27].

A. Motivating Examples of General MVP

The general MVP formulation P can be easily customized to
many well-researched portfolios. Representative portfolios and
their classes of optimization problems are listed in Table I and
elaborated next.2

1) On Objective Function F : Investors’ preferences for
different risk-return trade-off strategies can be modeled with
different F . We provide some examples as follows.

MSRP: Sharpe ratio evaluates the expected return earned
over the risk-free rate rf per unit of volatility [7]. To find the
portfolio that provides the maximum Sharpe ratio, we minimize
the negative Sharpe ratio written as FSR,

FSR (x (w), y (w)) =−x (w)− rf
√

y (w)
, (7)

or, alternatively, the inverse of Sharpe ratio. MSRP is a spe-
cial case of the maximum generalized Sharpe ratio portfolio
(MGSRP) introduced in [28] with the objective function FGSR,

FGSR (x (w), y (w)) =−x (w)− rf

y (w)
β

, (8)

1xi (or yj ) exists in F iff ∇xiF (or ∇yjF ) does not always equal to 0.
2Scalar functions x(w) and y(w) denote a single expected return and a

single risk of a portfolio, respectively.

where β ≥ 1/2 is a risk aversion parameter. The corresponding
optimization problems are all FPs.

Worst-case robust GMRP: The estimate of the expected
return μ̂ is inevitably subject to estimation error. The trueμmay
be assumed to fall within an uncertainty ellipsoid shaped by
Σ, i.e., Uμ = {μ= μ̂+ αΣ1/2u|‖u‖2 ≤ 1}, where α > 0 is a
predefined parameter. Then, the objective function of the worst-
case robust GMRP is written as fWC (w) =−minμ∈Uμ wᵀμ,
which can be reformulated as the following FWC according
to [29],

FWC (x (w), y (w)) =−x (w) + α
√

y (w). (9)

The resulting optimizing problem can be recast as a second-
order cone program (SOCP).

Expected utility portfolio: A utility function U measures
the relative satisfaction with portfolio return. In this setting,
the expected utility portfolio is attained by maximizing the
expected utility, i.e.,

maximize
w∈W

E [U (wᵀr)]. (10)

It is common and effective to apply mean-variance approxima-
tions to the expected utility [10], [30], i.e., performing Taylor
expansion at the point r= μ and ignoring the moments greater
than the second one:

E [U (wᵀr)]≈ U (wᵀμ) + U
′
(wᵀμ)E [wᵀ (r− μ)]

+
1

2
U

′′
(wᵀμ)E

[
(wᵀ (r− μ))

2
]

= U (wᵀμ) +
1

2
U

′′
(wᵀμ)wᵀΣw. (11)

Therefore, the approximated expected utility as the objective
function can be expressed as FEU,

FEU (x (w), y (w)) =−U (x (w))− 1

2
U

′′
(x (w)) y (w).

(12)

Kelly portfolio: To achieve maximum growth of wealth,
Kelly portfolio maximizes the expected value of the logarithm
of portfolio return [31], [32]. It coincides with the expected util-
ity portfolio using the logarithmic utility function U(wᵀr) =
log(1 +wᵀr). Accordingly, the objective function FKL of the
Kelly portfolio is given by
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FKL (x (w), y (w)) = − log (1 + x (w))

+
1

2

y (w)

(1 + x (w))
2 , (13)

following the approximation (12), as shown in [33].
2) On Mean-Variance Constraints: The mean-variance con-

straints present in the following examples.
Alternatives of Markowitz portfolio: Markowitz portfolio

(1) has two alternative formulations, which lead to the same
efficient frontier. One minimizes the risk given a lower limit on
the return, known as a return-constrained Markowitz portfolio:

minimize
w∈W

y (w)

subject to x (w)≥ a. (14)

The other one maximizes the return given an upper limit on
the risk, known as a risk-constrained Markowitz portfolio. It is
formulated as the quadratically constrained quadratic program
(QCQP):

maximize
w∈W

x (w)

subject to y (w)≤ b. (15)

We have seen that the general formulation P has a number of
instances whose problem structures are distinct from each other.
However, their relationship with a common QP representation
can be explored, thus leading to an efficient successive QP
algorithm introduced in the next section.

III. PROPOSED ALGORITHM

In this section, we propose an algorithm to solve P via a
sequence of QP surrogate problems.

A. Algorithmic Framework

Unlike P which implicitly specifies investors’ risk-return
trade-off, the QP surrogate problem that we are interested in
applies a straightforward characterization of this trade-off. It
adopts the following formulation

minimize
w∈W

− (λx + ηx)
ᵀ
x (w) +

(
λy + ηy

)ᵀ
y (w), (16)

whose objective function is a weighted combination of the
means and variances. Specifically, λ= [λx;λy] is the non-
negative weight that characterizes the mean-variance trade-off
reflected in f , and η = [ηx;ηy] is the non-negative weight
that controls the magnitude of impact from g(w)≤ 0. Without
loss of generality, we assume that Problem (16) has a unique
solution ŵ(λ,η) at every iterate in our algorithm. By verifying
the optimality conditions, ŵ(λ,η) coincides with the stationary
solution of P when λ and η are correctly chosen (see Section
IV). Therefore, instead of solving the complicated P directly,
we propose that by solving a sequence of QP surrogate prob-
lems (16), the weights could be dynamically adjusted such that
ŵ(λ,η) converges to the stationary solution of P .

As mentioned, we already have efficient QP solvers for Prob-
lem (1). Interestingly, Problem (16) can be rewritten in the form
of (1) as follows

minimize
w∈W

−wᵀμ̄+
1

2
wᵀΣ̄w, (17)

where

μ̄=

p∑

i=1

(λx,i + ηx,i)μi, Σ̄=

q∑

j=1

2 (λy,j + ηy,j)Σj . (18)

Therefore, solving Problem (16) shares the same computational
convenience as dealing with Problem (1). Overall, this algorith-
mic framework can be efficient due to the low computational
cost of QP surrogate problems with the undermentioned fast
implementation presented in Section V and the simplicity of
the weight updates introduced next.

We begin with a systematic manner that updates λ by itera-
tively approximating f using quadratic functions f̃ . Given the
current iterate wk, according to the successive convex approx-
imation (SCA) framework [22], [34], we propose to optimize
P by iteratively solving the following problem

minimize
w∈K

f̃
(
w;wk

)
�∇xF

(
xk,yk

)ᵀ
x (w)

+∇yF
(
xk,yk

)ᵀ
y (w), (19)

where we denote xk = x(wk) and yk = y(wk) for notational
simplicity. If K =W , i.e., the mean-variance constraints are not
present, Problem (19) coincides with Problem (16) when λ is
chosen as

λk
x =−∇xF

(
xk,yk

)
, λk

y =∇yF
(
xk,yk

)
, (20)

and η is ignored. In this way, P can be handled via a sequence
of QP problems. However, if quadratic constraints are included,
Problem (19) is still a QCQP, which has a much higher com-
plexity than a QP.

To further recast Problem (19) as a sequence of QP (16), we
apply the partial relaxation method [35]. Given Problem (19)
with λ= λk, we relax its mean-variance constraints and then
optimize its Lagrangian dual problem

maximize
η≥0

h
(
η;λk

)
, (21)

where h is the Lagrangian dual function of (19), and η is
the Lagrange multiplier with respect to g(w)≤ 0. At the lth
iteration, the gradient projection method updates ηl+1 by

ηl+1 =
[
ηl + αl∇h(ηl;λk)

]

+
, (22)

where αl is a step-size and [·]+ =max{0, ·} denotes projection
for nonnegative constraints. Following [36], the gradient of h
can be computed as

∇h(ηl;λk) = g(ŵ(λk,ηl)). (23)

Obviously, each evaluation of ∇h is attained by a QP (16).
Therefore, Problem (19) is solved by alternatively conducting
a QP (16) to compute ∇h and taking an inexpensive gradient
projection step.

Algorithm 1 summarizes the proposed algorithm for P that
consists of solving a sequence of QP (16), which is referred to
as SCQP (SucCessive QP). It adopts a double-loop scheme: the
outer loop decomposes P into problems (19) with quadratic ob-
jectives and iteratively updates λ; the inner loop further recasts
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TABLE II
CLOSED-FORM UPDATES OF λ AND η FOR WELL-RESEARCHED MVPS

Portfolio Updates of λ and η
Markowitz portfolio λx ← 1 λy ← α/2

MSRP∗ λx ← 1 λy ← (xk − rf )/(2y
k)

GMSRP∗ λx ← 1 λy ← β(xk − rf )/y
k

Worst-case robust GMRP λx ← 1 λy ← α/(2
√

yk)

Expected utility portfolio λx ← U
′
(xk) + U

′′′
(xk)yk/2, λy ←−U

′′
(xk)/2

Kelly portfolio λx ← 1/(1 + xk) + yk/(1 + xk)3 λy ← 1/(2(1 + xk)2)
Return-constrained Markowitz portfolio ηx ← [ηx + α (a− x (w� (λy , ηx)))]+ λy ← 1

Risk-constrained Markowitz portfolio ηy ← [ηy + α (y (w� (λx, ηy))− b)]+ λx ← 1

∗λ is scaled by a constant factor so that λx ← 1.

Algorithm 1 SCQP Algorithm for P .

Input: k = 0, w0 ∈ K, η0 ≥ 0, and {αl}, {γk} ∈ (0, 1];

1: repeat
2: λk

x =−∇xF
(
xk,yk

)
, λk

y =∇yF
(
xk,yk

)
;

3: if K =W (no mean-variance constraints) then
4: Compute ŵk = ŵ(λk,0) via QP (16);
5: else
6: Set l = 0;.
7: repeat
8: Compute ŵk = ŵ(λk,ηl) via QP (16);
9: ηl+1 = [ηl + αlg(ŵk)]+;

10: l← l + 1;
11: until convergence
12: end if
13: wk+1 =wk + γk(ŵk −wk);
14: k ← k + 1;
15: until convergence

Output: A stationary solution wk+1 of P .

Problem (19) into QP surrogate problems (16) and iteratively
updates η. We remark again that Algorithm 1 can be generalized
when W includes other constraints. Technical details of SCQP
are deferred to Section IV.

Algorithm 1 can be simplified in two scenarios. First, if
K =W , i.e., P does not include mean-variance constraints, we
get rid of the difficulty mentioned in solving Problem (19), and
thus we can set η to zero and ignore its update. Second, if the
objective function f already satisfies the form of f̃ , we maintain
λ without tuning. Though P allows different problem structures
that result in various difficulties in numerical optimization, with
the proposed algorithm, we only require to focus on QP surro-
gate problems with simple updates of λ and η. The applicability
of the proposed algorithm will be described in detail in the next
subsection.

B. Applicability of Proposed Algorithm

The proposed algorithm is broadly applicable in two aspects.
The first aspect is that when dealing with different instances of
P , the modification only resides in the updates ofλ and η. Some
closed-form updates are summarized in Table II, and we note
that they are easily derived and almost computationally free.
The second aspect is that SCQP, as a more general algorithmic

framework, includes some problem-dependent algorithms as
specific cases.

On the Connection to Quadratic Transform for MSRP:
Under Assumption 1, the MSRP problem is equivalent to3

minimize
w∈W

− (x (w)− rf )
2

y (w)
. (24)

Problem (24) can be solved by the quadratic transform [14] via
a sequence of quadratic subproblems given as

minimize
w∈W

−
2
(
xk − rf

)

yk
(x (w)− rf ) +

(
xk − rf

yk

)2

y (w).

(25)

Note that Problem (25) is in the form of Problem (16), and the
weight updates coincide with that in SCQP after scaling. Hence,
the quadratic transform is a special case of SCQP.

On the Connection to Dinkelbach’s Algorithm for MGSRP:
To solve the MGSRP problem whose objective is (8) given
β = 1, Dinkelbach’s algorithm [13] deals with the following
surrogate problem

minimize
w∈W

− (x (w)− rf ) +

(
xk − rf

yk

)

y (w), (26)

equivalent to the one in SCQP. Therefore, SCQP can be readily
specialized as Dinkelbach’s algorithm.

On the Connection to MM for Worst-Case Robust GMRP:
To solve the worst-case robust GMRP problem whose objective
is (9), the MM algorithm [16] iteratively approximates the
�2-norm and constructs a sequence of upper-bound problems

minimize
w∈W

− x (w) +
α

2

(
y (w)
√

yk
+
√

yk

)

. (27)

We notice that Problem (27) matches Problem (16) with the
same updates of weights as SCQP, which means MM can be
interpreted as a special case of SCQP.

We remark again that the existing algorithms are only pre-
ferred in specific cases when their surrogate problems are easy
to compute. In contrast, our algorithmic framework is more
accessible because it can always solve P via a series of simple
QP surrogate problems. We refer the reader to Sections IV and
V for more detailed analysis and design, and Section VI for the
performance in representative applications.

3The satisfaction of Assumption 1 indicates x(w)> rf .
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IV. ANALYSIS OF PROPOSED ALGORITHM

In the previous section, we have offered an overview of the
proposed algorithm to solve P . In this section, we provide more
details and insights. In Subsection IV-A, we show how P and
the proposed algorithm strongly relate to Pareto optimality. In
Subsections IV-B and IV-C, we elaborate the technical details
of constructing QP surrogate problems, and in Subsection IV-D,
we provide the convergence analysis.

A. Insight From Multiobjective Optimization

We begin by interpreting general MVP optimization using
the tools from multiobjective optimization. Given multiple es-
timates of expected return and risk in (3), portfolio selection
can be treated as a multiobjective optimization problem

minimize
w∈W

{−x1(w), . . . ,−xp(w), y1(w), . . . , yq(w)}. (28)

Ideally, investors attempt to obtain the portfolio w ∈W that
simultaneously maximizes all xi(w) and minimizes all yj(w).
However, such a portfolio does not usually exist due to com-
peting objectives. Therefore, Pareto optimal solutions, a.k.a.
efficient portfolios, are favored by investors. Given a Pareto
optimal solution, we cannot find any other solution that im-
proves one objective (i.e., higher return or lower risk) without
degrading at least one of the other objectives. The set of Pareto
optimal solutions constitutes the Pareto frontier. Although P
can represent various risk-return preferences by different for-
mulations, its design should obey a rational risk-return trade-
off discipline and produce a Pareto optimal solution. For ease
of interpretation, we denote the stationary solution of P as w�

and make the following assumption.
Assumption 2: For each xi and yj that does not exist in F ,

we have

xi (w
�) = ai, yj (w

�) = bj .

The above assumption requires that for all xi and yj that does
not exist in F , their corresponding mean-variance constraints
must be active at w�. Otherwise, these estimates can be safely
removed from P without affecting w�. We note that this as-
sumption is not required by the proposed algorithm. Then, the
connection between P and Pareto optimality can be established
as follows.

Lemma 1: Under Assumptions 1 and 2, every stationary
solution of P is a Pareto optimal solution of Problem (28).

Fig. 1 depicts the relationship between several MVPs and
the Pareto frontier. It is based on a bi-objective optimization
problem with a single expected return x(w) and a single risk
y(w). The feasible objective region in gray contains all possible
objective vectors that could be achieved by any w ∈W . There-
fore, its upper left boundary, highlighted with a dashed curve, is
the Pareto frontier. We observe that all the exhibited portfolios
reside along the Pareto frontier. By changing the parameter α
of the worst-case robust portfolio, we can also achieve different
Pareto optimal solutions.

Fig. 1. MVPs in the risk-return objective space for illustrative purposes.

We now show how the QP surrogate problem (16) relates to
the Pareto frontier. To characterize the Pareto optimal solutions,
the weighting method solves the following problem

minimize
w∈W

− vᵀ
xx (w) + vᵀ

yy (w), (29)

where vx and vy are non-negative coefficients. The weighing
coefficients have the physical meaning of reflecting the relative
importance of the objectives [37]. Previous studies have demon-
strated that Problem (29) has two properties: every Pareto opti-
mal solution of (28) can be found by (29) given proper vx and
vy; the unique solution of (29) is always Pareto optimal [38].
In our case, the surrogate problem (16) coincides with Problem
(29) when vx and vy are chosen as

vx = λx + ηx, vy = λy + ηy. (30)

Therefore, the surrogate problem (16) inherits the properties
of Problem (29). Based on the above findings, we reveal our
proposed algorithm’s insight. By dynamically adjusting λ and
η, SCQP tracks the Pareto frontier as every point in its solution
sequence {ŵk} is Pareto optimal. When λ and η converge, the
algorithm terminates at the Pareto optimal solution that corre-
sponds to the stationary solution ofP . This insight distinguishes
our proposed algorithm from the general state-of-the-art meth-
ods. As the Pareto frontier has a number of attractive features,
SCQP can benefit from them and has the fast implementation
given in Section V.

Fig. 2 exhibits how iterates of FIP, FSQP, and SCQP shift in
the risk-return objective space when solving P . Specifically, for
FIP and FSQP whose subproblems have no guarantee of Pareto
optimal solutions, usually they do not achieve Pareto optimality
before termination.

B. Outer Loop: Making Objective Function Quadratic

In Section III, we iteratively approximate f with the
quadratic function f̃ in the form of the weighted combination
of means and variances. When the outer loop converges to its
fixed point, denoted by w� with a slight abuse of notation, we
obtain

(z−w�)
ᵀ ∇f̃ (w�;w�)≥ 0, for all z ∈ K, (31)

from the optimality conditions of Problem (19). It is easy to ob-
serve that w� is also a stationary solution of P whose stationary
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Fig. 2. Iterates of FIP, FSQP, and SCQP plotted in the risk-return objective
space for illustrative purposes.

condition matches (31) as ∇f(w�) =∇f̃(w�;w�). Therefore,
the outer loop should converge only when it meets the stationary
solution of P . The rationality of using successive quadratic
approximation with f̃ to solve P can be formally established
in the SCA framework [22], [34] when the following additional
assumption is made.

Assumption 3: At least one yj(w) exists in F . In addition,
f has a Lipschitz continuous gradient on K.

Note that Assumption 3 is quite standard and is satisfied by a
large class of practical problems. Therefore, f̃ has the following
properties: for all wk ∈ K,

• f̃(w;wk) is differentiable and ∇f(wk) =∇f̃(wk;wk);
• f̃(w;wk) is strongly convex on K.
These properties confirm that f̃ is a suitable approximant in

the SCA framework, which requires consistency in the first-
order derivative of f and strong convexity [17]. λ computed
as the partial derivatives in (20) represents the intended prefer-
ences of f over the objectives, aligning with the interpretation
of the weighing coefficients in Problem (29).

We note that there are other approximants under the SCA
framework. They may have outstanding performance in risk
parity portfolio optimization [23] and high-order portfolio opti-
mization [39]. However, in our case, the proposed f̃ is preferred
due to the following advantages. First, it does not require a
proximal-like regularization term that adds to the strong con-
vexity for convergence as it is strongly convex in nature by
taking a positive weighted sum of yj(w). Second, it grasps the
benefits of tracking the Pareto frontier for a much more efficient
implementation.

C. Inner Loop: Dealing With Mean-Variance Constraints

When the mean-variance constraints exist in Problem (19),
we apply the partial relaxation of g(w)≤ 0 and then obtain the
partial Lagrangian written as

L(w,η;λk) = f̃(w;wk)− ηᵀ
x (x (w)− a)

+ ηᵀ
y (y (w)− b), (32)

where ηx ∈ R
p
+ and ηy ∈ R

q
+ are the Lagrangian multipliers

associated with the constraints x(w)≥ a and y(w)≤ b, re-
spectively [35]. The Lagrangian dual function h is defined as
the infimum of L over w ∈W:

h(η;λk) = inf
w∈W

L(w,η;λk), (33)

where the infimum is achieved at w̃(η;λk).
The strong duality holds as Problem (19) is convex and has

at least one strictly feasible point [40]. Therefore, instead of
solving the primal problem, we can optimize its dual problem
(21) using the gradient projection method. According to [36],
the gradient of h can be computed as

∇h(η;λk) = g(w̃(η;λk)). (34)

An important feature is that the partial minimization problem
in (33) coincides with our QP surrogate problem (16), i.e., we
have w̃(η;λk) = ŵ(λk,η). In other words, each ∇h can be
simply obtained from a QP (16) as shown in (23).

The Lagrangian multiplier η has the following explanation.
Assume ηj corresponds to the risk constraint yj(w)≤ bj . If
this constraint is satisfied with strict inequality yj(w)< bj , ηj
will decrease according to (22) and (23). From the view of the
weighing method, the weight on yj(w) will decrease, which
means more risk yj(w) is preferred in exchange for a better
risk-return trade-off in the next iteration. Otherwise, if the risk
constraint is violated with yj(w)> bj , ηj will increase, and
thus the concern about the risk yj(w) will rise. The above inter-
pretation can also be applied to the expected return constraint
xi(w)≥ ai.

D. Convergence Analysis

In this subsection, we provide the convergence of the pro-
posed SCQP. We note that the convergence of the outer loop is
based on that of the inner loop.

To ensure the convergence of the inner loop, we choose αl

according to the Armijo rule along the projection arc [36]. To be
more specific, selecting αinit > 0, and σ, β ∈ (0, 1), αl is chosen
to be the largest element in {αinitβj}j=0,1,... satisfying

h(ηl+1;λk)− h(ηl;λk)≥ σg(ŵ(λk,ηl))ᵀ(ηl+1 − ηl),
(35)

where

ηl+1 =
[
ηl + αlg(ŵ(λk,ηl))

]

+
. (36)

Then, the convergence of the inner loop can be established as
follows.

Proposition 1: Under Assumption 1, suppose αl is cho-
sen according to Armijo rule along the projection arc, then
the sequence {ŵ(λk,ηl)}∞l=1 generated by the inner loop of
Algorithm 1 converges to the optimal solution of Problem (19).

Proof: The convergence of the gradient projection method
follows directly from [36], Proposition 2.3.3]. It states that
every limit point of {ηl}∞l=1 is a stationary solution of the dual
problem (21). Given the strong duality holds, the generated
sequence {ŵ(λk,ηl)}∞l=1 converges to the optimal solution of
Problem (19).

Based on the convergence of the inner loop, we next analyze
the convergence of the outer loop.

Proposition 2: Under Assumption 1 and 3, suppose γk ∈
(0, 1], γk → 0 and

∑
k γ

k =+∞. Then, either Algorithm 1
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Fig. 3. Sparsity pattern in efficient portfolios.

converges in a finite number of iterations to a stationary solution
of P or every limit point of the solution sequence {wk}∞k=1 (at
least one such point exists) is a stationary solution of P .

Proof: Note that problem P has a feasible region K that
is closed, bounded, convex and nonempty. Thus, [34, Assump-
tions A1–A4] hold, and the proof of Proposition 3 follows
directly from [34, Theorem 3].

Thus, by proving Propositions 2 and 3, we prove the conver-
gence of the proposed algorithm.

V. FAST IMPLEMENTATION

Since the updates of λ and η are generally cheap as men-
tioned, the major cost of the proposed algorithm comes from
solving the sequence of QP surrogate problems (16). Although
open-source QP solvers are well established and considered ef-
ficient for a single problem, solving a sequence of QP problems
is not a small workload. Therefore, it is necessary and attractive
to explore the hidden structures of SCQP for potential signif-
icant speed-up. In this section, we first introduce the sparsity
pattern related to the Pareto frontier, and then propose a novel
active-set strategy to take advantage of this sparsity pattern for
a fast implementation of SCQP.

A. Sparsity Pattern on Pareto Frontier

One of the crucial features of the Pareto frontier is the spar-
sity pattern. Previous studies have shown that Pareto optimal
solutions are naturally sparse under the long-only constraint
[41], [42]. One explanation is that the long-only constraint acts
like the �1-norm penalty which is extensively used to promote
sparsity [43].

To better illustrate the sparsity pattern, Fig. 3 visualizes the
efficient portfolios of N = 20 given different levels of risk aver-
sion, which is based on the trade-off between a single expected
return x(w) and a single risk y(w) in the S & P 500 market.
Two observations from Fig. 3 should be noted. First, the sparsity
is remarkable, and the portfolios are concentrated on a small
number of assets with high returns, especially when the risk
tolerance is high. Second, the sparsity pattern between any two
neighboring portfolios is similar.

The above two observations have important algorithmic im-
plications. The first observation motivates us to solve each QP
surrogate problem (16) via an equivalent dimension-reduced

problem defined on only a small portion of assets corresponding
to wi > 0. Because the complexity of the QP solver is around
O(N3) [44], [45], solving the dimension-reduced problem can
be computationally much cheaper than directly handling the
original problem, especially when N is large. The second obser-
vation inspires that the solution of the previous QP can be used
to “warm start” the solution of the next so that QP algorithms
benefit from the similar sparsity pattern and thus have faster
convergence. The following subsection details how we achieve
the above speedup.

B. New Active-Set Strategy for QP

We focus on the general form of the QP surrogate problem
(16) given as

minimize
w∈RN

q (w) = cᵀw +
1

2
wᵀHw

subject to Aw = b, l≤w ≤ u, (37)

where H ∈ S
N
++, A ∈ R

M×N , b ∈ R
M , and l,u ∈ R

N that
specify bounds on the variables. Specifically, suppose A= 1ᵀ,
b= 1, l= 0, and u=+∞, the set of constraints in Problem
(37) specializes to W . Empirically, a large proportion of the
variables wi will touch the boundaries, i.e., wi = li or wi = ui,
when they meet the optimality, which results in sparsity in our
case. Hence, if we know such variables in advance, we can
instead search for the solution of Problem (37) on a subspace
spanned by the remaining variables or, equivalently, solve the
following small-sized problem

minimize
w∈RN

cᵀw +
1

2
wᵀHw

subject to Aw = b, li ≤ wi ≤ ui, i /∈ L̄ ∪ Ū ,

wi = li, i ∈ L̄, wi = ui, i ∈ Ū , (38)

where L̄ ∪ Ū is called a working set, and L̄ ∩ Ū = ∅. Problem
(38) is generally low-cost because it can be reduced to an
N − |L̄ ∪ Ū | dimensional QP by eliminating the variables fixed
on the bound. By analyzing the difference in optimality condi-
tions of Problems (37) and (38), solving the reduced problem
is equivalent to solving the original problem if and only if the
following conditions are satisfied

βl
i ≥ 0, ∀i ∈ L̄, βu

i ≥ 0, ∀i ∈ Ū , (39)

where βl
i and βu

i are the Lagrangian multipliers corresponding
to wi = li and wi = ui.

The above findings further inspire our new active-set strategy
in two aspects. First, we hope that the size of the working set can
be as large as possible for the sake of computational efficiency.
Second, if the current subproblem (38) cannot solve (37), the
violation of condition (39) instructs the update of the working
set. The detailed procedure is given as follows.

We begin with a feasible subproblem (38) with a large
working set L̄0 ∪ Ū0. At the kth iteration, we compute wk

and (βl,βu) as the primal and dual optimal solutions of the
subproblem (38) based on the current working set L̄k ∪ Ūk.
If condition (39) is satisfied, the algorithm terminates as wk

meets the optimality conditions of Problem (37). Otherwise,
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Algorithm 2 New Active-set Strategy for Problem (37).

Input: L̄0 and Ū0;

1: for k = 0, 1, 2, . . . do
2: Compute wk, βl, and βu via (38) given {L̄k, Ūk};
3: if min(βl)< 0 or min(βu)< 0 then
4: L̄k+1 = L̄k \ {i

∣
∣βl

i < 0};
5: Ūk+1 = Ūk \ {i |βu

i < 0};
6: else
7: Stop;
8: end if
9: end for

Output: The optimal solution wk of Problem (37).

the objective function q(w) may be further decreased by re-
laxing the bounded variables corresponding to negative mul-
tipliers. Hence, the working set for the subsequent iteration
should be adjusted as L̄k+1 = L̄k \ {i

∣
∣βl

i < 0} and Ūk+1 =
Ūk \ {i |βu

i < 0}. We formally describe this new active-set
strategy in Algorithm 2. Its convergence is summarized in the
following proposition.

Proposition 3: The sequence {wk} generated by Algorithm
2 converges to the optimal solution of Problem (37) within
|L̄0 ∪ Ū0| iterations.

Proof: See Appendix A.
Warm Starting for a Sequence of QP: In practice, Problem

(37) can be solved in much fewer iterations than the theoretical
result in Proposition 4. When dealing with a sequence of related
QPs, the number of iterations can be further reduced using
warm starting. This is because the optimal working set stays
mostly the same from one QP to the next because of similar data
input, manifesting as the similar sparsity pattern in our case. To
take advantage of this prior knowledge, the new active-set strat-
egy applies the warm starting that uses the optimal working set
of the former QP as an initial guess. In numerical experiments,
Algorithm 2 with the warm starting typically solves each QP
surrogate problem (16) in less than three iterations, significantly
reducing the cost of SCQP.

VI. NUMERICAL EXPERIMENTS

We evaluate the applicability and performance of SCQP by
conducting experiments on representative MVPs.

A. Experiment Set-Up

1) Real Market Data: To evaluate the performance of SCQP,
we perform experiments on historical daily price time series
data. Each dataset contains N stocks randomly chosen from the
S & P 500 index, and a time period of 5N continuous trading
days is randomly picked over the long period from 2008-12-
01 to 2018-12-01. All results are averaged over 20 independent
realizations.

2) Benchmarks: The benchmarks for different MVPs are
usually different. Specific problems can be solved either indi-
vidually or jointly by the following methods:

• ECOS: an open-source conic optimization software using
the interior point method [46]; efficient for small and
medium-sized SOCP problems.

• MOSEK: a commercial conic optimization software using
the interior point method [47]; performs closely to other
commercial solvers like GUROBI and CPLEX; efficient
for large-scale SOCP problems.

• Dinkelbach’s algorithm & quadratic transform: iterative
methods for FP problems proposed in [13], [14].

• Majorization-minimization (MM): an iterative method that
solves difficult optimization problems by solving a series
of upper-bound surrogate problems [16], [17].

• NLopt: a standard library for nonlinear optimization [48];
applicable to general problems.

• DEoptim and GA: libraries of differential evolution
and genetic algorithm [49], [50]; applicable to general
problems.

Note that all the benchmarks safeguard the convergence, and
thus our comparisons focus on their convergence speed. It is
generally difficult to have a unified termination criterion for all
methods as interior-point solvers focus on the tolerance of pri-
mal and dual feasibility while the other methods do not. There-
fore, we set the termination criterion of ECOS and MOSEK
to their default options, and terminate the other methods
when

|wk+1 −wk| ≤ 10−6. (40)

3) Implementation Details: All experiments were carried
out on 3.40GHz Intel Xeon Gold 6246R machines with 80G
RAM running R 3.6.3. The inner QP solver of SCQP is the
open-source quadprog [51]. In addition, we allow DEoptim and
GA to run in parallel mode with the same initial population of
size 2000 as the starting population, while the other methods
run on only one core.

B. Application I: Worst-Case Robust GMRP

We consider the worst-case robust GMRP formulated as

minimize
w∈W

−wᵀμ+ α
√
wᵀΣw, (41)

where α > 0 is the predefined parameter. Without loss of gen-
erality, we consider α= 1. Problem (41) does not include the
mean-variance constraint g (w)≤ 0, so the inner loop of SCQP
is not required. It is suitable for evaluating the efficiency of the
outer loop in dealing with convex objective functions. Problem
(41) can be converted in the standard way into a SOCP. Thus,
SOCP solvers (ECOS and MOSEK), NLopt, DEoptim, and GA
serve as benchmarks.

Fig. 4(a) shows the convergence of different methods in
one realization of Problem (44) given N = 200. The gap is
defined as the absolute difference between the objective value
and the minimum one obtained by all the methods. The plot
shows that the proposed SCQP takes substantially less time
than the other methods to reach the gap of 10−9. We also
observe that SCQP consumes fewer iterations. Besides, ECOS
and MOSEK converge with similar performance as they share
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Fig. 4. Numerical experiments on solving worst-case robust GMRP (41). (a) Convergence of algorithms in a realization with N = 200. (b) Timing results
of algorithms with different N .

TABLE III
EMPIRICAL TIME COMPLEXITY ORDER

Application Empirical time complexity order O (Nc)

I: (41) Proposed (1.155) < MOSEK (1.691) < ECOS (2.453) < NLopt (3.134)

II: (42) Proposed (0.944) < MM (1.620) < NLopt (3.241)

III: (43) Proposed (1.137) < MOSEK (1.615) < ECOS (2.365) < NLopt (3.140)

IV: (44) Proposed (0.768) < Dinkelbach (1.786) < QT (1.853) < NLopt (3.085)

similar interior point methods. As for the metaheuristic meth-
ods, DEoptim converges to an accurate solution but has a
much slower rate, while GA cannot obtain good solutions
within 1000s.

Fig. 4(b) compares the CPU time of different methods across
different problem sizes N . DEoptim and GA are omitted be-
cause they are time-consuming in this application. The results
show that SCQP consistently outperforms all the other estab-
lished solvers concerning computation time. More specifically,
when N = 50, the proposed algorithm is ∼ 2.5× faster than
ECOS; when N ≥ 100, the proposed algorithm has a 4.7∼
8.7× faster speed than MOSEK. Another observation is that
ECOS performs better than MOSEK in small problems (N =
50) and worse when the problem dimension becomes larger,
which is also verified by [46].

Table III presents the empirical time complexity order of
different methods using O(N c) notation. They are obtained
by fitting the average CPU time vs N curves (in a log-log
scale) with linear functions. We observe that SCQP has the low-
est empirical time complexity which is nearly linear. Besides,
NLopt has an empirical time complexity around O(N3), which
coincides with the discussion in [48]. Combined with Fig. 4(b),
these results show that SCQP is more scalable than the bench-
marks. The major reason is that the sparsity pattern becomes
prominent in high-dimensional problems, while SCQP benefits
from it using the new active-set strategy for low computational
cost.

C. Application II: Kelly Portfolio

In the first application, we show that the outer loop efficiently
deals with convex objective functions. Next, we focus on an

MVP with a nonconvex objective function. Recall the Kelly
portfolio formulated as

minimize
w∈W

− log (1 +wᵀμ) +
1

2

wᵀΣw

(1 +wᵀμ)2
. (42)

The challenge of solving Problem (42) is that it is a nonconvex
problem with a ratio term in the objective function. Similar to
Problem (41), the inner loop of SCQP is also not required.

It is difficult to apply Dinkelbach’s algorithm as Problem (42)
is not a traditional single-ratio FP. Alternatively, we introduce
the MM method that recasts the problem to a sequence of
convex conic subproblems in Appendix B. In addition, NLopt,
DEoptim, and GA are also applicable. Fig. 5(a) shows the
convergence of different methods in one realization of Problem
(42) given N = 200. The proposed SCQP converges to the gap
of 10−9 in very few iterations and exhibits superior performance
over the benchmarks. MM and NLopt are slower than SCQP by
at least two orders of magnitude. Similar to the first applica-
tion, DEoptim and GA have slow convergence or cannot obtain
appropriate solutions within the time limit. The results show
the high efficiency of the proposed algorithm in dealing with
nonconvex objective functions.

Fig. 5(b) compares the CPU time of SCQP, MM, and NLopt
for different N . As expected, the proposed SCQP algorithm
shows a significant gain. When N = 50, the convergence speed
achieved by SCQP is ∼ 10.5× higher than that of NLopt. This
difference tends to grow in favor of SCQP as the problem size
increases. Besides, MM is more competitive than NLopt when
more assets are considered. This may be because MM requires
calling the inner SOCP solver, and the setup time of the solver
is less significant compared with the solving time when the
problem size is large. Table III also shows that SCQP enjoys
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Fig. 5. Numerical experiments on solving Kelly portfolio (42). (a) Convergence of algorithms in a realization with N = 200. (b) Timing results of algorithms
with different N .

Fig. 6. Numerical experiments on solving risk-constrained Markowitz portfolio (43). (a) Convergence of algorithms in a realization with N = 200.
(b) Timing results of algorithms with different N .

the best scalability with the lowest empirical time complexity
order.

D. Application III: Risk-Constrained Markowitz Portfolio

The third application we consider is the risk-constrained
Markowitz portfolio formulated as

minimize
w∈W

−wᵀμ

subject to wᵀΣw ≤ b. (43)

Since its objective function satisfies the form of f̃ , only the inner
loop of SCQP is required. Therefore, it is suitable for evaluating
the efficiency of the inner loop in dealing with mean-variance
constraints. Given that the equally weighted portfolio w̄ = 1/n
achieves the risk r = w̄ᵀΣw̄, here we set the risk limit as b= r.

Problem (43) is in a standard SOCP form. Therefore, we
include SOCP solvers (ECOS and MOSEK), NLopt, DEoptim,
and GA as benchmarks. Fig. 6(a) shows the convergence of
different methods in one realization of Problem (43) given
N = 200. The result indicates that SCQP is far better than
the benchmarks regarding convergence speed. Compared with
Fig. 4(a), metaheuristic methods perform worse due to the
difficulty in handling nonlinear constraints.

Fig. 6(b) compares the CPU time of all methods except
DEoptim and GA across different problem sizes N . Compared
with Fig. 4(b), we have two observations. First, SCQP is still
much faster than the benchmarks, especially when the dimen-
sion is high. This fact shows that the inner loop handles the
mean-variance constraints efficiently, and taking advantage of
sparsity is necessary. Second, SOCP solvers and NLopt have
consistent performance in optimizing different SOCP problems.
These observations are also corroborated by the similar empir-
ical time complexity order in Applications I and III, shown in
Table III.

E. Application IV: Long-Term MSRP With Short-Term Goals

The fourth application we consider is the maximization of
the long-term Sharpe ratio along with the goals of running over
the short-term market. It is formulated as

minimize
w∈W

− wᵀμ1√
wᵀΣ1w

subject to wᵀμ2 ≥ a, wᵀΣ2w ≤ b. (44)

Without loss of generality, μ1 and Σ1 are estimated from the
whole period of 5N trading days, while μ2 and Σ2 are esti-
mated from the latest 2N trading days. Given that the equally
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Fig. 7. Numerical experiments on solving long-term MSRP with short-term goals (44). (a) Convergence of algorithms in a realization with N = 200.
(b) Timing results of algorithms with different N .

weighted portfolio w̄ = 1/n achieves the short-term expected
return e= w̄ᵀμ2 and risk r = w̄ᵀΣ2w̄, we set a= 1.2e and
b= 0.8r, representing the interest in higher return and lower
risk than the short-term market.

Dinkelbach’s algorithm and the quadratic transform (QT)
solve Problem (44). Besides, NLopt, DEoptim, and GA also
serve as benchmarks. Fig. 7(a) shows the convergence of differ-
ent methods in one realization of Problem (44) given N = 200.
We observe that the proposed SCQP reaches the gap of 10−9

faster than Dinkelbach’s algorithm and the quadratic transform
by more than one order of magnitude.

Fig. 7(b) shows the average CPU time across different prob-
lem sizes N . We observe that SCQP has the best performance,
consistently outperforming the benchmarks. Compared with the
first three applications that solely require the inner or outer
loop, SCQP takes longer solving time in this case because both
loops are required. Moreover, the performance of Dinkelbach’s
algorithm is fairly close to that of the quadratic transform. One
possible reason is that both FP algorithms share the same al-
gorithmic framework that recasts Problem (44) into a sequence
of conic subproblems. In addition, SCQP is far more efficient
than NLopt when the dimension increases. The empirical time
complexity order in Table III further supports our findings.

VII. PRACTICAL USAGE IN PORTFOLIO BACKTESTING:
PARAMETER UNCERTAINTY CASE STUDY

Portfolio backtesting involves running investment strategies
using historical prices to evaluate their performance in the past.
However, this process poses two significant challenges. Firstly,
executing trades for a large number of stocks over several
decades is computationally intensive. Secondly, evaluating nu-
merous trading strategies using different solvers is less man-
ageable. Our proposed algorithm can efficiently address these
challenges in a unified manner in mean-variance settings.

To demonstrate the universality and efficiency of our method
in handling different formulations, we present a case study that
focuses on evaluating various strategies to deal with parameter
uncertainty. It is important to note that the goal of this case study
is not to provide an exhaustive comparison.

As previous studies have shown, mean-variance portfolios
face the issue of parameter estimation error as the number
of assets N increases and approaches the sample size T . For
comparison purposes, we assume that the mean is known (e.g.,
obtained from factor models) and evaluate different methods to
enhance the robustness of the maximum Sharpe ratio portfolio
(MSRP)

minimize
w∈W

− wᵀμ√
wᵀΣw

. (45)

Three class of approaches are considered.
1) Shrinkage Methods: Shrinkage covariance estimators are

proposed to mitigate the undesired impact of sample covari-
ance matrix.4 We examine two shrinkage covariance estimators,
namely the linear Ledoit-Wolf estimator [25] and the nonlinear
Ledoit-Wolf estimator [26]. Our framework supports both of
these estimators, as discussed in Section II.

2) Robust Optimization: Another approach is robust opti-
mization [54], which involves defining an uncertainty set of the
covariance matrix and optimizing for the worst-case scenario.
In particular, this method assumes the uncertainty set to be a
sphere UX = {X|‖X− X̂‖F ≤ δ} when dealing with a noisy
data matrix X̂. As described in [55], [56], the worst-case MSRP
can be formulated as

minimize
w∈W

− wᵀμ

max
X∈UX

√

wᵀ 1
T X

ᵀXw

=− wᵀμ
√

wᵀΣ̂w + δ√
T
‖w‖2

. (46)

Our proposed algorithm can solve this problem by setting
Σ1 = Σ̂ (sample covariance matrix) and Σ2 = I in (3), (4), and
Problem P .

3) Weight Constraints: The third approach aims to solve
Problem (45) based on sample covariance matrix but with
additional constraints on the portfolio weights. Specifically,
researchers have proposed using �0-norm, �1-norm, and
�2-norm constraints/regularization [57], [58]. We focus on the

4Shrinkage methods can also be applied to portfolio weights [52], [53].
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Fig. 8. Out-of-sample Sharpe ratio of different methods. (a) Number of
assets N = 50. (b) Number of assets N = 100.

�0-norm regularized MSRP, which involves a regularization
term λ‖w‖0 in the objective of Problem (45). Our proposed
algorithm can solve this problem in a reweighted �1-norm
minimization scheme [59]. Additionally, we investigate the
�2-norm constrained MSRP, which includes an additional
constraint ‖w‖2 ≤ ε in Problem (45).

We conduct portfolio backtesting on real financial data to
evaluate the out-of-sample performance of different methods
for robustification. These methods are denoted as:

• SCM: Problem (45) based on the sample covariance
matrix;

• LSM: Problem (45) based on the linear shrinkage covari-
ance matrix [25];

• NLSM: Problem (45) based on the nonlinear shrinkage
covariance matrix [26];

• Robust: Worst-case robust MSRP (46) with δ = 1.
• �0-norm: �0-norm regularized MSRP with λ= 10−4.
• �2-norm: �2-norm constrained MSRP with ε= 0.25.
We use a dataset of 15-year historical daily price data of

stocks in the S & P 500, spanning from 2008-01-01 to 2022-
12-31. To ensure the reliability of our findings, we randomly
select 100 datasets, each containing the price of N = 50 (also
N = 100) stocks over 500 continuous trading days. We then
conduct rolling-window backtesting on each dataset using the
R package portfolioBacktest [60] on the same platform as
described in Section VI.

Fig. 8 shows the out-of-sample Sharpe ratio of various meth-
ods for robustification, with Fig. 8(a) displaying the results for
N = 50 and Fig. 8(b) for N = 100. We observe that all methods
perform relatively worse when T ≤N , indicating the presence
of significant parameter uncertainty.

Our findings suggests that LSM, Robust, and the �2-norm
method consistently outperform SCM. However, the �0-norm
method, which produces sparser portfolios, may perform worse
than SCM because it is more sensitive to out-of-sample obser-
vations. Additionally, NLSM exhibits worse performance than
LSM when T ≤N , which aligns with the results reported in
[26]. From the perspective of ease of use, shrinkage estimators
are more convenient than other methods as they do not require
tuning of hyperparameters.5

To clarify, the purpose of the above comparison is not to
provide a comprehensive analysis of various robust variations
but rather to demonstrate how our proposed algorithm can sup-
port different formulations. It is worth noting that each robust
variation needs to be solved approximately 13, 000 times per
experiment, which can be a significant computational chal-
lenge for existing solvers. However, our proposed algorithm
can complete each experiment within an hour, demonstrating
its practical value in portfolio design and evaluation.

VIII. CONCLUSION

In this paper, we proposed and analyzed a successive QP
algorithm for general MVP optimization. The main advantage
is that no matter what problem structures are contained in
different MVPs, the proposed algorithm only requires solving
a sequence of QP surrogate problems which already have well-
developed efficient solvers. In addition, by exploiting the un-
derlying sparsity pattern of this algorithm, we proposed the fast
implementation that can further reduce the computational cost.
The theoretical convergence analysis has been established, and
comprehensive experiments reveal that the proposed algorithm
has a higher convergence speed and better scalability than the
state-of-the-art methods.

APPENDIX

A. Proof for Proposition 4

We begin with the following technical lemma.
Lemma 2: For any two adjacent iterations in Algorithm 2, we

have (L̄k+1 ∪ Ūk+1)⊂ (L̄k ∪ Ūk) together with q(wk+1)<
q(wk).

Proof: wk is the solution of Problem (38) with the KKT
condition

βl
i ≥ 0, βu

i ≥ 0, i /∈ L̄k ∪ Ūk, (47)

so the “violated” assets with βl
i < 0 or βu

i < 0 must belong to
the working set. Relaxing the strict equality bound constraints
on these variables results in a smaller working set, i.e., (L̄k+1 ∪
Ūk+1)⊂ (L̄k ∪ Ūk). Thus, we have

5The implementation of shrinkage methods is detailed in [25, Theorem 2.1]
and [26, Appendix E].
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{

w

∣
∣
∣
∣
Aw = b, li ≤ wi ≤ ui, i /∈ L̄k ∪ Ūk

wi = li, i ∈ L̄k, wi = ui, i ∈ Ūk

}

⊂
{

w

∣
∣
∣
∣
Aw = b, li ≤ wi ≤ ui, i /∈ L̄k+1 ∪ Ūk+1

wi = li, i ∈ L̄k+1, wi = ui, i ∈ Ūk+1

}

, (48)

which means wk is also a feasible point of the subproblem (38)
in the (k + 1)th iteration. Also, wk �=wk+1, or we would not
have “violated” assets. Therefore, each iteration must decrease
the objective function, i.e., q(wk+1)< q(wk).

We are now ready to prove Proposition 4. First of all, the
proposed algorithm is convergent. This is guaranteed by the
monotone decrease of the size of the working set, according to
Lemma 5. As the minimum size of the working set is bounded
by zero (i.e., optimality achieved), the algorithm converges to
the optimal solution within finite steps. At each iteration, at least
one index is dropped from the working set. Hence, the number
of iterations is bounded by |L̄0 ∪ Ū0|.

B. MM Algorithm for Kelly Portfolio

To solve Problem (42), we first apply the quadratic transform
on the ratio term and reformulates it as

minimize
w∈W

(− log (1 +wᵀμ) + a1
√
wᵀΣw

− a21
2

(1 +wᵀμ)2), (49)

where a1 is an auxiliary variable iteratively updated by

a1 =
√

(wk)
ᵀ
Σwk/

(
1 + μᵀwk

)2
. (50)

As shown by [61], (49) is an upper-bound problem of the primal
problem (42). Further, we apply the first-order Taylor expan-
sion to the nonconvex quadratic term of the objective function
in (49). It constructs a convex upper-bound problem of (49)
given by

minimize
w∈W

(− log (1 +wᵀμ) + a1
√
wᵀΣw

− a21 (μ+ a2)
ᵀ
w + c), (51)

where c is a constant, and a2 is another auxiliary variable
computed as

a2 = μμᵀwk. (52)

Overall, this algorithm solves Problem (42) by solving a se-
quence of upper-bound problems (51), and thus it can be inter-
preted as an MM algorithm.
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