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Abstract—Strongly Adaptive meta-algorithms (SA-meta) are
popular in online portfolio selection due to their resilience in
adversarial environments and adaptability to market changes.
However, their application is often limited by high variance in
errors, stemming from calculations over small intervals with
limited observations. To address this limitation, we introduce
the Strongly Adaptive Optimistic Follow-the-Regularized-Leader
(SAOFTRL), an advanced framework that integrates the Op-
timistic Follow-the-Regularized-Leader (OFTRL) strategy into
SA-meta algorithms to stabilize performance. SAOFTRL is dis-
tinguished by its novel regret bound, which provides a theoretical
guarantee of worst-case performance in challenging scenarios.
Additionally, we reimagine SAOFTRL within a mean-variance
portfolio (MVP) framework, enhanced with shrinkage estima-
tors and adaptive rolling windows, thereby ensuring reliable
average-case performance. For practical deployment, we present
an efficient SAOFTRL implementation utilizing the Successive
Convex Approximation (SCA) method. Empirical evaluations
demonstrate SAOFTRL’s superior performance and expedited
convergence when compared to existing benchmarks, confirming
its effectiveness and efficiency in dynamic market conditions.

Index Terms—Optimistic follow-the-regularized-leader, stro-
ngly adaptive meta-algorithm, mean-variance portfolio, universal
portfolio.

I. INTRODUCTION

S INCE Kelly’s investment theory’s inception [1], online
portfolio selection has emerged as a pivotal area in finan-

cial engineering. Advances in online learning techniques have
enhanced strategies to rival the best constant rebalanced port-
folio (BCRP) in hindsight under an adversarial environment1,
without relying on assumptions about data distribution [2], [3].
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1An adversarial environment is designed or assumed to be as unfavorable
as possible for the algorithm.

The key performance metric in online portfolio selection
is the regret, which quantifies the cost incurred by an online
strategy in determining the optimal portfolio in real time. It
reflects the worst-case performance of the online portfolio strat-
egy under an adversarial environment. This concept was first
benchmarked by Cover’s universal portfolio, achieving a regret
of O(log T ) over T trading periods [2], [4], [5]. However, this
model faces scalability challenges with large high-dimensional
datasets [6], [7], [8]. While subsequent strategies have been
more efficient, they often compromise on regret bounds [9].
Addressing this, Agarwal et al. [10] combined Cover’s prin-
ciples with online convex programming [11], leading to
significant advancements in optimal and efficient portfolio con-
struction. Hazan et al. [12], [13] then introduced the Online
Newton Step (ONS) employing the property of exp-concave
functions to achieve O(N log T ) regret on N assets with man-
ageable complexity. Building on this, they further employed the
Follow-the-Regularized-Leader (FTRL) algorithm, achieving
logarithmic regret in terms of the variance of gradients that
surpass ONS in regret bounds [14]. To leverage the advantages
of correctly predicting future signals, an advanced variant of
FTRL called Optimistic FTRL (OFTRL) has emerged [15],
[16]. OFTRL incorporates prediction signals into the decision-
making process, offering enhanced performance with accurate
predictions and maintaining robustness against incorrect ones.

Given the nonstationarity of the stock market, Hazan et al.
proposed an adaptive meta-algorithm with the concept of adap-
tive regret [17]. This metric better reflects the market’s dy-
namic nature compared to static regret [18], [19], [20], [21],
[22]. Daniely et al. [23] generalized the concept of adap-
tive regret and proposed the Strongly Adaptive meta-algorithm
(SA-meta), enabling the transformation of low static regret
algorithms into strongly adaptive ones. This method involves
calculating multiple portfolio instances over selected intervals
and aggregating them based on past performance. Jun et al.
[24] further improved the SA-meta’s regret bounds using coin
betting techniques, achieving optimal theoretical performance.

In the dynamic landscape of online portfolio selection,
SA-meta faces challenges stemming from the significant vari-
ance in short-term calculations. This variance often leads
to inconsistent performance in real-world markets. We ob-
serve that OFTRL effectively mitigates variance error result-
ing from limited observations by introducing a deliberate bias.
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Expanding on this notion, we have integrated OFTRL into SA-
meta, giving rise to the Strongly Adaptive Optimistic Follow-
the-Regularized-Leader (SAOFTRL) approach. SAOFTRL is
equipped with a unified regret bound closely related to the regret
of OFTRL, benefiting from improved performance for accurate
estimations. This integration serves to stabilize performance
during short-term periods by striking a balance between vari-
ance and bias.

Recent advances in regret analysis for OFTRL focus on the
case where lag-1 signals are used for prediction [25], [26].
However, the inherent volatility of the stock market often makes
such predictions suboptimal. Therefore, we propose a robust
variant of OFTRL that uses the average of historical signals
for prediction. We further derive a novel regret bound for
OFTRL. Our analysis reveals that accurate predictions substan-
tially enhance performance, while incorrect predictions have
a negligible effect on the algorithm’s worst-case performance
guarantee. Moreover, we improve the computational efficiency
of OFTRL by utilizing the Successive Convex Approxima-
tion (SCA) method [27], without compromising regret bound.
Specifically, we have optimized the time complexity from a
previous standard of O(NT + log(1/ε)N3.5) to a more effi-
cientO (τiter (NT +N logN)), where ε and τiter are parameters
linked to the convergence gap of the algorithm.

While the regret bound for SAOFTRL ensures robustness
in adversarial environments, it may not fully encompass the
multifaceted complexities of the market, which extend beyond
adversarial conditions. To address this limitation, we estab-
lish a connection between SAOFTRL and the mean-variance
portfolio (MVP) model [28], known for its focus on average-
case market scenarios. Regret in SAOFTRL measures worst-
case performance, which may be overly conservative for real
markets, whereas MVP estimates expected profit based on com-
monly employed model assumptions. This provides a more pre-
cise representation of average performance expectations. Our
research shows that SAOFTRL can be equivalently viewed as an
advanced version of the MVP model, incorporating shrinkage
estimators and adaptive lookback windows, as illustrated in
Fig. 1. This dual analysis enables SAOFTRL to align with
MVP’s average-case expectations while preserving the worst-
case performance guarantees of online learning techniques.

To validate our methods, we conduct extensive simulations
using real market datasets. The results show significant im-
provements in computational efficiency and effectiveness. By
comparing the Sharpe ratio and maximum drawdown, we
demonstrate the outstanding average-case performance of our
methods. Additionally, comparing the regret of SAOFTRL with
benchmarks highlighted its robustness in maintaining worst-
case performance guarantees.

In summary, the main contributions of this paper are:
• We develop a versatile adaptive SAOFTRL framework

that integrates the benefits of SA-meta and OFTRL for
portfolio selection in dynamic environments.

• We introduce a novel regret bound for OFTRL utilizing
average historical signals as the prediction, providing a
theoretical worst-case performance guarantee under adver-
sarial conditions. Our analysis shows that this regret can

Fig. 1. Dual analysis of SAOFTRL and MVP: In SAOFTRL, SA-meta
functions as an adaptive lookback mechanism in MVP, while OFTRL operates
as MVP with a shrinkage estimator.

be decreased for accurate predictions while maintaining
robustness for incorrect estimations.

• We propose an efficient algorithm for SAOFTRL using
SCA, which significantly reduces time complexity while
maintaining a consistent regret bound.

• We establish the connection between SAOFTRL and MVP,
which enables a more precise representation of average
performance expectations in real market scenarios.

The structure of this paper is organized as follows. In Sec-
tion II, we introduce the fundamental concepts that form the
basis of this study. Section III presents the SAOFTRL frame-
work along with a novel regret bound for the underlying OFTRL
strategy. In Section IV, we present an efficient algorithm for
OFTRL without compromising regret bound. Section V pro-
vides a new analytical perspective for SAOFTRL by bridging
the connection to MVP. Extensive experiments to showcase
the performance and efficiency of our approach are provided
in Section VI. Finally, we conclude this paper and explore
potential future directions in Section VII.

II. PRELIMINARIES

In this section, we introduce the fundamental concepts un-
derpinning our research, laying the groundwork for subsequent
discussions.

A. Follow-the-Regularized-Leader

Online portfolio selection involves investors making sequen-
tial investment decisions to approximate the performance of an
ideal strategy, known as the Best Constant Rebalanced Portfolio
(BCRP), determined in hindsight. BCRP is a static portfolio de-
termined by maximizing the log cumulative return using future
prices:

b� = argmin
b∈W

T∑

t=1

ft(b).

Here, b is the portfolio vector, W is the feasible set, and
ft(b) =− log(1 + rTt b) represents the negative log return,
where rt

2 is the asset return vector at time t. Online portfolio
selection strategies sequentially select the portfolio bt+1 based
on historical information {f1, . . . , ft} to match the cumulative

2The return rt,i of an asset i at time t is defined as rt,i =
pt,i−pt−1,i

pt−1,i
,

where pt,i denotes the price of asset i at time t.
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return of the BCRP. The effectiveness of such a strategy is
quantified using the concept of regret, defined as:

R[T ] =
T∑

t=1

ft(bt)−
T∑

t=1

ft(b
�).

The regret R[T ] quantifies the discrepancy between the log
cumulative return of the selected portfolio and the BCRP.
A strategy attains universality if R[T ] = o(T ), suggesting that
the average performance gap reduces to zero as T approaches
infinity.

The Follow-the-Leader (FTL) strategy, which sets bt as the
action minimizing past cumulative losses (the Leader), often
fails to achieve optimal regret due to instability [29]. This leads
to the adoption of the Follow-the-Regularized-Leader (FTRL)
strategy. FTRL involves minimizing the cumulative past loss
plus a regularization term (the Regularized Leader) to enhance
stability, as shown below:

bt+1 = argmin
b∈W

t∑

τ=1

fτ (b) +
β

2
‖b‖22 , (1)

where β > 1 is the weight of the regularization term. The
FTRL strategy achieves one of the tightest known regret
bounds in the realm of online portfolio selection, which is
O(N logQ[T ]). Here, Q[T ] represents the variance of the gra-
dient series {∇ft(bt)}, a critical measure in this context [14].
Compared to the well-known Online Newton Step (ONS) that
attains regret of O(N log T ) [13], FTRL has priority in retain-
ing the worst-case robustness since Q[T ] ≤ T after appropriate
normalization.

B. Optimistic Follow-the-Regularized-Leader

The Optimistic Follow-the-Regularized-Leader (OFTRL)
strategy is an advanced variant of the FTRL strategy [15], [16].
OFTRL distinguishes itself by integrating predictions of future
losses into the decision-making process. The portfolio for the
subsequent period is determined as follows:

bt+1 = argmin
b∈W

t∑

τ=1

fτ (b) + f̃t+1(b) +
β

2
‖b‖22 , (2)

where f̃t+1(b) denotes the predicted loss function. Since the
regret bound for OFTRL is directly linked to the gradient of
f̃t+1(bt) [30, Theorem 7.35], we only need to consider the
first-order information about the predicted loss function. We can
represent f̃t+1(b) as:

f̃t+1(b) = 〈mt+1,b〉, (3)

where mt+1 :=∇f̃t+1(b) represents the gradient for the pre-
dicted loss function.

C. Strongly Adaptive Algorithm

The dynamic nature of trading environments often results
in varied optimal strategies over time. As such, standard re-
gret measures, which compare performance with the best static
action, are less effective in identifying a superior portfolio.

Addressing this, [17] introduced adaptive regret, later expanded
into strongly adaptive regret by [23], to evaluate the tracking
accuracy to the optimal portfolio over any contiguous time
interval I3. Strongly adaptive regret is defined as:

SA-R(τ)
T = max

I⊆[T ]:|I|=τ
RI , (4)

where RI is the static regret over interval I = [q, s]:

RI =
∑

t∈I

ft(bt)− min
b∈W

∑

t∈I

ft(b).

SA-R(τ)
T measures tracking accuracy against the BCRP for any

interval of length τ , which encompasses the static regret when
τ = T . A Strongly Adaptive meta-algorithm (SA-meta) can
transform a low-regret algorithm into a strongly adaptive one.
Specifically, if an algorithm has a static regret of RI = o(τ)
over an interval I of length τ , the meta-algorithm is con-
sidered strongly adaptive if SA-R(τ)

T =O(poly(log T ) ·RI).
Practically, for a market transitioning from a bear to a bull
phase, strongly adaptive algorithms would adeptly align with
the optimal portfolio in each phase.

Various SA-meta, as demonstrated in [17], [23], [24], [31],
[32], can transform standard low-regret algorithms into strongly
adaptive ones. In this paper, we adopt the Coin Betting for
Changing Environment (CBCE) method from [24], known for
its excellent strongly adaptive regret performance. For a given
low regret online learning algorithm A with regret RA

I , CBCE
[24, Lemma 2] can achieve the following strongly adaptive
regret:

SA-R(τ)
T =O

(√
τ log T + log τ ·RA

I

)
, (5)

where I = [q, s]⊆ [T ] denotes the interval with length |I|= τ .

III. PROPOSED METHOD

In this section, we present the Strongly Adaptive Optimistic
Follow-the-Regularized-Leader (SAOFTRL) framework. Addi-
tionally, we propose a novel regret bound specifically designed
for the underlying OFTRL strategy in the context of online
portfolio selection, where the average of past signals is used for
prediction. This bound is intrinsically connected to the regret
bound for FTRL, demonstrating superior performance for ac-
curate predictions and negligible cost for inaccurate predictions
in OFTRL.

A. Strongly Adaptive Optimistic
Follow-the-Regularized-Leader

To address the dynamic and complex nature of financial
markets, we introduce an advanced integration of SA-meta
and OFTRL into the domain of portfolio selection. Our ap-
proach, named as the Strongly Adaptive Optimistic Follow-
the-Regularized-Leader (SAOFTRL) algorithm, is outlined in
Algorithm 1.

3Compared to adaptive regret, strongly adaptive regret places greater
emphasis on the dependence on the interval length |I|.
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Algorithm 1 Strongly Adaptive Optimistic Follow-the-
Regularized-Leader (SAOFTRL) for Portfolio Selection

1: Parameter: β > 1
2: Initialize b1 =

1
N 1 ∈ R

N , p([1,1])1 = 1
3: for t= 1, . . . , T do
4: For each I ∈ Active(t), compute instantaneous regret

�
(I)
t = ft (bt)− ft

(
b
(I)
t

)
(6)

5: Update weight p(I)t+1 based on �
(I)
t according to (9)-(11)

6: For each I = [q, s] ∈ Active(t+ 1), compute

b
(I)
t+1 = argmin

b∈W

t∑

τ=q

fτ (b) + 〈m(I)
t+1,b〉+

β

2
‖b‖22 (7)

7: Compute the combined portfolio

bt+1 =
∑

I∈Active(t+1)

p
(I)
t+1 · b

(I)
t+1 (8)

8: end for
9: Output: {bt}

In essence, SAOFTRL computes the portfolio instances b(I)
t+1

for each interval I within a set of structured intervals, termed
Active(t+ 1), at any given time t+ 1. The weight assignment
for these portfolios is determined based on their historical
performance, favoring portfolios with better performance. The
portfolio is finally aggregated by combining the portfolio in-
stances according to their weights.

a) Active Intervals: The active intervals Active(t) at any
time t are derived from a collection of geometric covering (GC)
intervals I, as outlined in [23]. Specifically, GC intervals are
defined as:

I :=
⋃

k∈1,2,...

Ik,

with Ik consisting of intervals [i · 2k, (i+ 1) · 2k − 1] for i ∈
N. This configuration of Ik segments N\{1, . . . , 2k} into se-
quential intervals of equal length 2k, as detailed in Table I. The
set Active(t) comprises GC intervals that include t:

Active(t) := {I ∈ I : t ∈ I}.
A notable feature of this method is its computational efficiency.
At any time t, the number of active intervals is 	log(t)
+ 1,
indicating only O(log(t)) calculations of OFTRL per round.
This logarithmic scalability is crucial for the efficiency of the
algorithm in rapidly changing stock markets.

b) Weighting Method: The crucial difference among these
SA-meta algorithms is their interval weight update mecha-
nisms, as specified in Line 5 of Algorithm 1. In this paper, we
adopt the CBCE method. CBCE involves scaling the instan-
taneous regret �(I)t to the [−1, 1] range and updating weights
accordingly:

�̃
(I)
t =

⎧
⎨

⎩
�
(I)
t /�̃max p̂

(I)
t > 0[

�
(I)
t /�̃max

]

+
otherwise,

(9)

TABLE I
GEOMETRIC COVERING (GC) INTERVALS I [23], WHERE EACH

INTERVAL IS DENOTED BY [ ]

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
I0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ...
I1 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ...
I2 [ ] [ ] [ ] [ ...
I3 [ ] [ ...
I4 [ ...

where [·]+ denotes max{·, 0}, �̃max is a scaling number, and
p̂
(I)
t is the adjusted weight determined by the previous instan-

taneous regret. The adjusted weight for the next round p̂
(I)
t+1 for

each I = [q, s] ∈ Active(t+ 1) is then calculated by

p̂
(I)
t+1 =

∑t
τ=q �̃

(I)
τ

(t− q + 2)

(
1 +

t∑

τ=q

p̂(I)τ �̃(I)τ

)
. (10)

The interval weight for each I = [q, s] ∈ Active(t+ 1) is then
calculated using a normalization process with a predefined scal-
ing factor π(I) = 1

q2�1+log2 q� :

p
(I)
t+1 =

⎧
⎨

⎩
C−1

1 π(I)
[
p̂
(I)
t+1

]

+
if C1 > 0

C−1
2 π(I) otherwise,

(11)

where C1 and C2 are normalization factors. This method en-
sures the theoretical performance for SAOFTRL by reflecting
the interval performance and maintaining a balanced distribu-
tion among all active intervals.

c) Regret Analysis: The worst-case performance analy-
sis for SAOFTRL leverages Equation (5) with the underlying
low regret algorithm A as OFTRL. Consequently, the strongly
adaptive regret for SAOFTRL is primarily determined by the
regret bound of the underlying OFTRL strategy. In the fol-
lowing section, we will present an in-depth analysis of the
regret bound for OFTRL within the context of online portfolio
selection. Furthermore, we will introduce a novel regret bound
for OFTRL that depends on the variance of the gradients. This
bound underscores the robust performance of OFTRL, even
when the prediction of the next gradient is inaccurate.

B. OFTRL With Logarithmic Variance Bound

To further analyze the regret bound of OFTRL, we introduce
the following assumptions:

Assumption 1: The gradients of any loss function ft are
bounded, with supb∈W ‖∇ft(b)‖2 ≤G for all t ∈ [T ].

Assumption 2: The domain W has a bounded diameter,
meaning ‖b− u‖2 ≤B for all b,u ∈W .

Suppose the feasible set W is a simplex, the diameter can
be conveniently set as B =

√
2 in Assumption 2. Furthermore,

Assumption 1 can be easily satisfied by ensuring that the stock
price does not fall to half its original value. We denote gt :=
∇ft(bt) as the gradient of the loss function at time t. For
convenience, instead of considering the regret on interval I , we
calculate the regret on [T ]. Under Assumptions 1 and 2, we es-
tablish the following theorem, which provides the regret bound
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for OFTRL in online portfolio selection for any prediction term
mt+1:

Theorem 1: Under Assumption 1 and 2, the regret of OFTRL
for online portfolio selection is bounded by

ROFTRL
[T ] ≤ 1

2

T∑

t=1

‖gt −mt‖2A−1
t

+
β

2
B2, (12)

where ‖gt −mt‖2A−1
t

= (gt −mt)
TA−1

t (gt −mt), At =

βI+ α
∑t

τ=1 gτg
T
τ , and α= 1

8GB .
The proof, based on [30, Lemma 7.1], can be found in Ap-

pendix A. Intriguingly, the FTRL method for portfolio selection
[14], which becomes identical to OFTRL when f̃t+1(b) = 0,
exhibits a similar regret bound:

RFTRL
[T ] ≤ 1

2

T∑

t=1

‖gt‖2A−1
t

+
β

2
B2 =O

(
N logQ[T ]

)
. (13)

Here Q[T ] =
∑T

t=1 ‖gt − ḡ‖22 represents the variance of the
gradients, where ḡ = 1

T

∑T
t=1 gt. By comparing the regret

bounds of OFTRL and FTRL, we observe that OFTRL, with an
accurate prediction of the gradient, can significantly minimize
the term

∑T
t=1 ‖gt −mt‖2A−1

t
, thus achieving better perfor-

mance compared to FTRL. Consequently, when the predictions
are perfect, the regret is a constant value (no regret).

Recent advancements in OFTRL have primarily relied on a
lag-1 gradient as a predictive signal in subsequent iterations
with a corresponding regret bound to guarantee the worst-
case performance theoretically [25], [26]. However, the inherent
volatility of the stock market often makes relying solely on the
most recent signal for gradient prediction suboptimal in general.
Therefore, we would like to improve the prediction in OFTRL
for the stock market and construct a regret bound that reflects
the worst-case performance of utilizing such a prediction.

A robust alternative for the prediction signal, favored by
investors, is to use the historical average of data points:

mt+1 =
1

t

t∑

s=1

gs.

We further establish a regret bound for OFTRL with mt+1 as
the historical average signal, which is related to the variance
of gradients. The details of this regret bound are provided in
Theorem 2.

Theorem 2: Utilizing mt+1 =
1
t

∑t
s=1 gs in OFTRL results

in a regret bound over [T ]:

ROFTRL
[T ] =O

(
N log

(
Q[T ] + log T

))
, (14)

where N is the number of assets, and Q[T ] is the variance of
gradients defined as

∑T
t=1 ‖gt − ḡ‖22 with ḡ = 1

T

∑T
t=1 gt.

This theorem facilitates a direct calculation of the regret
bound for OFTRL over any specific interval I = [q, s] with
m

(I)
t+1 =

1
t−q+1

∑t
τ=q g

(I)
τ :

ROFTRL
I =O (N log (QI + log |I|)) , (15)

where QI represents the variance of the gradients over in-
terval I . The foundational proof of Theorem 2 builds on the

regret bound established in Theorem 1. To effectively bound
‖gt −mt‖2A−1

t
, insights from Lemma 1 is leveraged, with de-

tailed proofs provided in Appendices B.
Lemma 1: Given ms =

1
s−1

∑s−1
τ=1 gτ with m1 = 0 ∈ R

N , it

follows that
∑t

s=1 (gs −ms) (gs −ms)
T ≤ 8

∑t
s=1 gsg

T
s .

Let g̃s = gs −ms and define Ãt = βI+ α
∑t

s=1 g̃sg̃
T
s . In

light of Lemma 1, for ms =
1

s−1

∑s−1
τ=1 gτ , we directly estab-

lish the following inequality:

t∑

s=1

g̃sg̃
T
s ≤ 8

t∑

s=1

gsg
T
s ,

implying that Ãt � 8At. Setting Ã0 = βI, the inequality is
reformulated as:

T∑

t=1

‖gt −mt‖2A−1
t

=

T∑

t=1

g̃T
t A

−1
t g̃t

≤ 8

α

T∑

t=1

(√
αg̃t

)T
Ã−1

t

(√
αg̃t

)

≤ 8

α
log

⎡

⎣
det

(
ÃT

)

det
(
Ã0

)

⎤

⎦

≤ 8N

α
log

(
β + α

T∑

t=1

‖g̃t‖22

)
,

where the third inequality utilizes [33, Lemma 11.11]. Defining

Q̃[T ] =
∑T

t=1 ‖g̃t‖22, and basedv on Lemma 3 in Appendix C,
we deduce:

T∑

t=1

‖gt −mt‖2A−1
t

=O
(
N log

(
Q[T ] + log T

))
.

When comparing this regret bound with that of the FTRL algo-
rithm in Equation (13), the additional overhead incurred due to
incorrect predictions is negligible, amounting to o(log log T ).
As a result, OFTRL with a historical average for gradient pre-
diction proves to be a highly adaptable and resilient strategy,
especially in the dynamic and ever-changing landscape of fi-
nancial markets.

Our proposed method not only achieves a problem-dependent
regret guarantee, which improves performance when the data
is stable and exhibits low variance, but also ensures that the
minimax regret rates are safeguarded in worst-case scenar-
ios. For exp-concave functions in online portfolio selection
tasks, the optimal minimax regret bound is well-established
as O(N log T ), representing the best achievable performance
for any algorithm in general cases [13], [34], [35]. Under As-
sumption 1, the variance term Q[T ] can be further bounded
as follows:

Q[T ] =
T∑

t=1

‖gt‖22 + T‖ḡ‖22 − 2
T∑

t=1

〈gt, ḡ〉 ≤ 4TG2.

Consequently, this results in the worst-case regret bound:

ROFTRL
[T ] =O(N log(T + log T )) =O(N log T ),
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which aligns with the established minimax regret lower bound.
Thus, our OFTRL algorithm meets the theoretical minimax
bound in the worst case, while allowing for improved perfor-
mance in more favorable conditions.

IV. EFFICIENT ALGORITHM

The SAOFTRL algorithm, as outlined in Algorithm 1, in-
volves solving the optimization problem of OFTRL multiple
times at each iteration (see Line 6). Assuming the feasible set
is a simplex, the problem can be formulated as follows:

minimize
b∈RN

t∑

τ=1

fτ (b) + 〈mt+1,b〉+
β

2
‖b‖22

subject to b≥ 0, 1Tb= 1. (16)

Although this problem could be solved directly by using the
Interior Point Method (IPM) with an off-the-shelf solver [36],
it generally incurs a high-order time complexity as O(NT +
log (1/ε)N3.5), with ε as the convergence tolerance.

To enhance efficiency, we introduce an efficient implemen-
tation algorithm that incorporates the Successive Convex Ap-
proximation (SCA) method to accelerate computation [27],
[37], [38]. The SCA method is a strategy for reducing time
complexity by iteratively optimizing a more manageable sur-
rogate function for the objective function until convergence.
We denote the objective function of problem (16) as ht(b).
To apply the SCA method, the surrogate function denoted as
h̃t(b |bk) should be strongly convex and satisfies the property
that ∇h̃t(b

k |bk) =∇ht(b
k).

Let’s start by approximating the logarithmic part of the ob-
jective function with a quadratic function. We define the sum of
loss functions as Ft(b) =

∑t
τ=1 fτ (b). To approximate Ft(b)

around bk, we utilize the following quadratic function:

Ft(b)≈ Ft

(
bk

)
+

(
b− bk

)T ∇Ft

(
bk

)

+
1

2

(
b− bk

)T
L1

(
b− bk

)
.

Here, we set L1 = μμT with μ= 1
t

∑t
τ=1 rτ . By incorporating

the quadratic approximation of the logarithmic terms into the
objective function, we obtain the surrogate function h̃t(b |bk):

h̃t(b |bk) =
1

2
bT (L1 + βI)b− vk,T

t b+ const,

where vk
t = L1b

k −mt+1 +
∑t

τ=1
rτ

1+rTτb
k . The surrogate

function h̃t(b |bk) constructed above satisfies the criteria for
the surrogate function of SCA. Specifically, it’s easy to ver-
ify that h̃t(b |bk) is strongly convex and ∇h̃t(b

k |bk) =
∇ht(b

k). To further simplify the calculation, we can ma-
jorize the quadratic term of h̃t(b |bk) using the following
lemma.

Lemma 2 [39]: Let L be a real symmetric matrix and M
another real symmetric matrix such that M� L. Then for any
point bk ∈ R

N the quadratic function bTLb is majorized at bk

by bTMb+ 2bT(L−M)bk + bk,T(M− L)bk.

Based on Lemma 2, if we set M1 = λ
(L1)
max I= μTμI, then

M1 � L1 holds. Thus we can and further majorize h̃t

(
b |bk

)

at bk by ĥ(b|bk), which is given by:

ĥ(b|bk) =−bT

(
λ(L1)
maxb

k −mt+1 +

t∑

τ=1

rτ
1 + rTτb

k

)

+
β + λ

(L1)
max

2
bTb+ const. (17)

It’s easy to verify that ĥ(bk|bk) =∇ht(b
k). By simplifying

ĥ(b|bk), we obtain an equivalent, simplified surrogate problem
at the (k + 1)-th iteration:

minimize
b∈RN

bTb− 2dk,T
t b

subject to b≥ 0, 1Tb= 1, (18)

where

dk
t =

1

β + λ
(L1)
max

(
λ(L1)
maxb

k −mt+1 +

t∑

τ=1

rτ
1 + rTτb

k

)
.

(19)

The optimization problem (18) possesses a closed-form so-
lution, which can be directly computed using a water-filling
algorithm [40]. This solution is articulated in the following
proposition:

Proposition 3: Consider the optimization problem:

minimize
b∈RN

bTb− 2qTb

subject to b≥ 0, 1Tb= 1. (20)

This problem has a closed-form solution given by:

b�i = [qi + κ]+ i= 1, . . . , N, (21)

where κ= 1
ρ

(
1−

∑ρ
i=1 q[i]

)
with:

ρ=max

{
1≤ j ≤N : q[j] +

1

j

(
1−

j∑

i=1

q[i]

)
> 0

}
,

and q[i] are the sorted elements of q, arranged such that q[1] ≥
q[2] ≥ · · · ≥ q[N ].

With this closed-form solution, the overall procedure for effi-
ciently optimizing Problem (16) can be effectively encapsulated
in Algorithm 2. Unlike previous work that reduces compu-
tational complexity at the expense of deteriorating the regret
bound [14], our efficient implementation enhances computa-
tional efficiency without compromising the regret bound. By
setting γk+1 = γk(1− εγk) with ε ∈ (0, 1) and γ0 < 1/ε, Al-
gorithm 2 converges to the optimal point of Problem (16). This
convergence is analyzed in Proposition 4. The computational
efficiency of Algorithm 2 is notable. For each iteration, two key
steps are performed: computing dk

t and solving Problem (18).
The former has a computational cost of O(tN), while the latter
requires O (N logN). Overall, the algorithm’s time complexity
is O(τiter(NT +N logN)), where τiter is the number of itera-
tions to convergence.

Proposition 4: With γk ∈ (0, 1], γk → 0 and
∑

k γ
k =+∞,

Algorithm 2 converges in a finite number of iterations to an
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Algorithm 2 Efficient OFTRL with SCA (OFTRL-SCA)

1: Initialize k = 1, b1
t+1 = bt and {γk}

2: repeat:
3: Compute dk

t according to (19)
4: Solve (18) by Proposition 3 and obtain b̂k+1

t+1

5: Compute bk+1
t+1 = bk

t+1 + γk
(
b̂k+1
t+1 − bk

t+1

)

6: k ← k + 1
7: until convergence
8: Output bt+1 = bk

t+1

optimal solution of (16) or every limit point of the sequence
{bk

t+1}∞k=1 (at least one such point exists) is an optimal solution
of (16).

Proof: Since [27, Assumptions A1-A4] hold and (16) is a
convex problem, the proof for Proposition (4) follows directly
from [27, Theorem 3].

In practice, truncation errors can arise due to the need for
computational efficiency for large-scale problems. Despite this,
we demonstrate that under specific termination conditions for
Algorithm 2, the same order of regret as the exact solution can
be maintained.

Let b̃t+1 = bk
t+1 be the point generated by Algorithm 2

based on a predefined stopping criterion. The regret with inexact
solutions is given by:

R̃OFTRL
[T ] =

T∑

t=1

ft(b̃t)− min
b∈W

T∑

t=1

ft(b). (22)

Since ft is convex, we can bound the difference between inexact
point b̃t and exact point bt under Assumption 1 as:

ft(b̃t)− ft(bt)≤ 〈∇ft(b̃t), b̃t − bt〉 ≤G
∥∥∥b̃t − bt

∥∥∥
2
.

Thus, the regret with inexact solutions can be bounded by:

R̃OFTRL
[T ] ≤ROFTRL

[T ] +G

T∑

t=1

∥∥∥b̃t − bt

∥∥∥
2
, (23)

where ROFTRL
[T ] is the regret for exact solutions. To bound the gap

between exact and inexact points, we introduce the following
stopping criterion for Algorithm 2:

∥∥∥b̂k
t+1 − bk−1

t+1

∥∥∥
2
≤ Cth/T

2, (24)

whereCth is a predefined threshold constant for Algorithm 2. By
enforcing this stopping criterion, we ensure that the regret with
inexact solutions remains within the same order as the regret
with exact solutions, as stated in Proposition 5.

Proposition 5: By setting the stopping criterion as∥∥∥b̂k
t+1 − bk−1

t+1

∥∥∥
2
≤ Cth/T

2, with Cth being a predefined
threshold constant for Algorithm 2, we have

T∑

t=1

∥∥∥b̃t − bt

∥∥∥
2
≤ Ce, (25)

where b̃t = bk
t and Ce is a constant.

The proof for Proposition 5 is provided in Appendix D.
Therefore, we demonstrate that even with inexact solutions
produced by Algorithm 2, the same order of regret can still be
ensured by appropriately choosing the stopping criterion.

V. CONNECTION WITH MEAN-VARIANCE PORTFOLIO

In this section, we establish the connection between the
SAOFTRL framework and the mean-variance portfolio. Specif-
ically, in Section V-A, we demonstrate that the underlying
OFTRL strategy in the SAOFTRL framework can be viewed as
the popular mean-variance portfolio with shrinkage estimators.
Furthermore, in Section V-B, we illustrate how the use of active
intervals in SAOFTRL offers an adaptive approach to selecting
the lookback window.

A. Connection With Shrinkage Estimators

In a mean-variance portfolio, the objective is to maximize
the expected portfolio return while maintaining a specified level
of risk. This involves assessing the risks and expected returns
of assets using the sample covariance matrix Σ and sample
mean μ for the asset returns and minimizing the following
optimization problem:

minimize
b∈RN

1

2
bTΣb− bTμ

subject to b ∈W. (26)

However, the effectiveness of the resulting portfolios is signifi-
cantly influenced by the accuracy of these estimators. Notably,
in cases of small sample sizes, the variance of the estimator
becomes a dominant source of error [41], [42], [43].

It’s well known that such variance can be mitigated by in-
troducing a deliberate bias, thereby achieving a trade-off for a
reduced error [44]. This strategy involves shrinking the estima-
tor towards specific target values as follows:

θ̂sh = (1− ρ)θ̂ + ρθtar. (27)

In this equation, θ̂ is the empirical estimate (usually sample
mean μ and covariance matrix Σ), and θtar denotes the prede-
fined target values based on prior information or assumptions
about the parameter. The shrinkage process outcome, θ̂sh, is
a combination of the empirical estimate and the target value,
moderated by the shrinkage trade-off parameter ρ. The critical
challenge is in selecting an optimal shrinkage trade-off param-
eter ρ and target θtar to minimize the mean squared error (MSE)
or other criteria [45].

Our study reveals an intriguing parallel between the predic-
tive component in the OFTRL strategy and the target value
of the shrinkage estimator in the mean-variance portfolio. To
demonstrate this connection, we approximate the loss func-
tion of OFTRL using the sample mean and covariance matrix.
Considering the feasible set defined as a simplex W = {b ∈
R

N |1Tb= 1,b> 0}, we employ a second-order Taylor ex-
pansion at bk. Since the absolute value of each element in
the stock return vector rt is small, with |rt,i| � 1, we have
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Fig. 2. Comparison of different learning schemes. Left: the learning scheme of portfolio selection with a fixed lookback sliding window; Right: the learning
scheme of portfolio selection with multiple lookback sliding windows.

|rTt b| � 1. Therefore, by carefully selecting bk, we can ap-
proximate 1 + rTt b

k ≈ 1, and the loss function can be simpli-
fied as:

ft(b)≈− log
(
1 + rTt b

k
)
− (b− bk)T

(
rt

1 + rTt b
k

)

+
1

2

(
b− bk

)T
(

rtr
T
t(

1 + rTt b
k
)2

)
(
b− bk

)

≈−bTrt +
1

2
bTrtr

T
t b+ const.

Applying this to the OFTRL objective function yields:

t∑

τ=1

fτ (b) + f̃t+1(b) +
β

2
‖b‖22

≈ 1

2
bT

(
t∑

τ=1

rτr
T
τ + βI

)
b− bT

(
t∑

τ=1

rτ −mt+1

)

≈ 1

2
bT (tΣ+ βI)b− bT (tμ−mt+1) . (28)

Here, the sample covariance matrix Σ is calculated by assuming
E[r] = 0. As a result, OFTRL emerges as a specialized MVP
that incorporates shrinkage estimators. In this setup, the tar-
get value of the mean and covariance matrix are represented
by −mt+1 and βI, respectively, while the shrinkage trade-
off factor is ρ= 1

t+1 . To further substantiate our findings, we
conduct experiments in Section VI-B to validate the equivalence
numerically.

Recalling that SAOFTRL calculates portfolio instances over
active intervals, which are derived from the GC intervals listed
in Table I. It is worth noting that these GC intervals often
consist of numerous small intervals, which can contribute to
high variance in the resulting portfolio. However, the utilization
of the OFTRL effectively mitigates this issue by incorporating
predictive elements and regularization terms. This leads to a
reduction in variance and ultimately stabilizes the performance
of the resulting portfolio.

Moreover, OFTRL inherently provides a theoretically justi-
fied choice of the shrinkage factor ρ= 1

t+1 for t data samples.
This selection ensures a worst-case performance guarantee, as
stated in Theorem 1, even when dealing with uninformative tar-
get values. This simplicity in determining the shrinkage factor
adds to the practical appeal of OFTRL.

B. Connection With Adaptive Lookback Windows

In managing mean-variance portfolios with streaming data, a
prevalent approach involves employing a rolling window with a
fixed lookback period [46], as illustrated in the left-hand side of
Fig. 2. The choice of an optimal lookback size is pivotal. Larger
lookback periods are beneficial as they yield more reliable
estimates for the expected return μ and covariance matrix Σ.
However, excessively large lookback periods can lead to issues
due to the nonstationary nature of financial data. Older data may
no longer accurately reflect current return and variance trends,
which can adversely impact portfolio performance. Therefore,
finding the right balance in the lookback size is a critical yet
complex task in the management of mean-variance portfolios.

Our proposed SAOFTRL framework provides an innovative
solution to address this challenge. Specifically, SAOFTRL al-
lows for dynamic adjustment of the lookback period for each
round, as shown on the right-hand side of Fig. 2. In each round,
SAOFTRL runs multiple portfolio instances with different look-
back sizes and aggregates them based on past performance. The
length of the lookback size utilized for each round is strategi-
cally distributed on a logarithmic scale to ensure optimal com-
putational efficiency. Importantly, as stated in Equation (5), the
design of the set of lookback sizes enables rapid convergence to
the BCRP over any arbitrary intervals I ⊆ [T ]. This guarantees
portfolio performance and provides a significant advancement
in adaptive portfolio management.

This strong correspondence between SAOFTRL and MVP
offers dual advantages. Firstly, it provides a worst-case per-
formance guarantee under the SAOFTRL strategy, ensuring
robust performance even in challenging scenarios. Secondly, it
offers an average-case performance guarantee under the mean-
variance framework, providing confidence for the portfolio se-
lection in the general stock market cases.

VI. NUMERIC EXPERIMENTS

This section presents extensive simulations to demonstrate
the effectiveness and efficiency of our proposed methods.

A. Performance Comparison With Benchmarks

To validate the effectiveness of our proposed methods, we
conducted simulations using the stock lists of the S&P 500
and NASDAQ 100 indices. For each stock list, we sampled
80 datasets from January 1st, 2010 to January 1st, 2023. Each
dataset consisted of 40 assets observed over a 1-year period,
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TABLE II
HYPERPARAMETERS OF THE DATASETS AND BACKTESTING

Hyper-Parameters Value

dataset

# datasets 80
# assets 40

# samples per dataset 252
data period 2010-01-01 ∼ 2023-01-01

backtesting

training history 189
optimize every 1
rebalance every 1

price name adjusted
# bars per year 252

cost buy = 0, sell = 0

amounting to 252 observations. The training history for each
dataset spanned 9 months, equivalent to 189 observations. The
backtesting process was facilitated by utilizing the ‘portfo-
lioBacktest’ R package [47]. Further details and specific param-
eters can be found in Table II.

We utilize the annualized Sharpe ratio and max drawdown
to illustrate the average-case performance in the stock market.
Specifically, the annualized Sharpe ratio [48] is our primary
metric for performance assessment:

Sharpe ratio =
√
252 · E[bTr]√

Var [bTr]
. (29)

This ratio measures the annualized return per unit of annualized
risk, and we complement it with the max drawdown (maxi-
mum loss from a peak to a trough) for a comprehensive risk
assessment.

To further illustrate the worst-case performance of different
methods, we also present the comparison of average strongly
adaptive (SA) regret, with the value of SA-R(τ)

T /τ , versus dif-
ferent interval length τ . This metric indicates the largest average
gap compared to the oracle during all consecutive trading peri-
ods with the same length τ , serving as a worst-case performance
indicator in changing environments.

Our benchmarks include the Equal Weights (EW) portfolio,
FTL [13], Online Newton Step (ONS) [12], FTRL [14], and
various OFTRL strategies with different mt+1 predictions: last
(mt+1 = gt) [25] and average (mt+1 =

1
t

∑t
τ=1 gτ ). We also

include Optimistic Follow-the-Leader (OFTL) for comparison,
which has the same formulation as OFTRL but without reg-
ularization terms [49]. The mt+1 settings in OFTL in OFTL
are the same as in OFTRL for simulations. We compare the
above benchmarks with the proposed SAOFTRL framework
under different mt+1 settings: zero, last, and average.

In our simulations, we systematically vary the regularization
weight β for the FTRL, OFTRL, and SAOFTRL methods to
assess the Sharpe ratio and max-drawdown. This is done to eval-
uate their performance and examine the sensitivity of the param-
eters. We compare their median Sharpe ratios and maximum
drawdowns across 80 datasets, as depicted in Fig. 3. Interest-
ingly, OFTRL with average historical gradients (OFTRL-avg)
demonstrates a performance nearly identical to that of FTRL.
This similarity can be attributed to the fact that in OFTRL-avg,

the average historical gradients tend to converge to a stationary
point over long-term data periods, diminishing the impact of
the prediction term and aligning its performance with FTRL.

Furthermore, we observe that the Sharpe ratios of OFTRL
with different predictors are worse than the EW strategy. This
can be attributed to the relatively small expected returns μ in
the real stock market. The small expected returns make the
portfolio updating process more conservative, resulting in a
slower convergence speed to the optimal portfolio compared to
a more aggressive strategy.

Our proposed SAOFTRL-avg method outperforms all oth-
ers, including SAOFTRL-zero. As discussed in Section V-A,
this superior performance is largely due to the utilization of
historical averages, which effectively reduces variance in er-
rors for small intervals, thereby enhancing overall performance.
Although the naive EW portfolio is generally difficult to out-
perform, as highlighted in the literature [50], our experiments
show that, in most cases, our proposed methods achieve a higher
Sharpe ratio compared to EW. Overall, SAOFTRL strategies
exhibit a stable equilibrium between risk and return compared
to other methods. Notably, SAOFTRL-avg consistently excels
in the Sharpe ratio across various β settings and maintains the
lowest maximum drawdown in most scenarios, underscoring its
robustness.

We then fix the regularization weight β = 6 for the FTRL,
OFTRL, and SAOFTRL methods to compare the average SA
regret across different interval lengths τ . We analyze the median
values across 80 datasets, as shown in Fig. 3. The SA-regret
curves of different methods in the NASDAQ 100 dataset are
nearly identical. This behavior is due to the specific charac-
teristics of the NASDAQ data, which appears to have a stable
market trend during the evaluation period. In such scenarios,
the additional benefits of the regularization term in OFTRL
and SAOFTRL, which primarily aids in more volatile or ad-
versarial environments, do not significantly affect the outcome.
Consequently, this results in similar behavior under such sta-
ble conditions. In datasets with higher volatility or adversarial
conditions, as shown in our results for the S&P 500 dataset, the
advantages of OFTRL and SAOFTRL become more apparent,
as the regularization term helps manage the increased variance
in the data. Thus, while the regret performance of different
methods may be similar in stable markets like NASDAQ during
this period, methods with regularization terms remain more
robust across a variety of challenging market conditions, which
is consistent with our theoretical analysis. The exceptional per-
formance of SAOFTRL across different datasets underscores its
superb worst-case performance in changing environments.

B. Validation of Equivalence Between OFTRL and MVP
With Shrinkage Estimators

To verify our finding in Section V-A, we conduct a com-
prehensive comparison between the optimal points obtained
through OFTRL and those derived from the MVP with
shrinkage estimators. Our analysis focuses on evaluating the
differences between these optimal points based on the �1
norm, considering various data dimensions from N = 100 to
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Fig. 3. Performance comparison on S &P 500 (Top) and NASDAQ 100 (Bottom) datasets. Left and Middle: Sharpe ratio and max drawdown across
varying regularization weights β; Right: SA regret over different interval lengths τ with fixed β = 6.

Fig. 4. Comparison of �1 norm residuals between optimal points
from OFTRL and MVP with shrinkage estimators across different data
dimensions N .

N = 400. For each dimension, we generate 100 datasets, each
containing T = 400 observations. The datasets are generated by
sampling rt ∼N (μ,Σ), where μ ∈ R

N and Σ ∈ R
N×N are

the sample mean and sample covariance matrix calculated using
real market data from the S&P 500.

The resulting �1 norm residuals are then visualized using a
boxplot, as shown in Fig. 4. The observed distribution patterns

demonstrate that the distance between the optimal points gen-
erated by OFTRL and MVP consistently remains small, even
in high-dimensional data scenarios. This consistent proximity
across different dimensions robustly demonstrates the strong
correspondence between OFTRL and MVP.

C. Speed Comparison of Different Acceleration Schemes

This section evaluates the computational efficiency of our
proposed efficient method in Section IV against benchmarks
across varying problem dimensions N . We specifically compare
the CPU time of our efficient implementation with the widely-
used convex problem solver ‘CVXR’ [51] and Projected Gradi-
ent Descent (PGD). Given that OFTRL can be approximated as
a mean-variance portfolio (MVP) with specific shrinkage esti-
mators, as discussed in Section V-A, we include solving MVP
with an efficient QP solver ‘quadprog’ [52] in our efficiency
comparison. The experiments are carried out on a PC equipped
with a 13th Gen Intel(R) Core(TM) i7-13700 CPU and 16GB
of RAM, running R 4.1.3.

In 100 randomized trials across datasets with varying data
dimensions N , we observe CPU time for each method as de-
picted in Fig. 5. The results show that OFTRL-SCA consumes
the least CPU time compared to other methods. OFTRL-SCA
demonstrates a significant speed advantage, being almost 100
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Fig. 5. CPU time comparison of 100 randomized trials on datasets with N
assets.

Fig. 6. Convergence speed comparison over 100 randomized trials on
datasets with 400 assets, with the gap indicating the distance from the optimal
point.

times faster than CVXR and 10 times faster than MVP and PGD
for high-dimensional data.

We further compare the convergence speed between OFTRL-
SCA and PGD over 100 randomized trials, as illustrated in
Fig. 6. The gap indicates the distance from the optimal point. We
observe that OFTRL-SCA consistently converges to the optimal
point after a few iterations, while PGD maintains a slower
convergence speed across all trials. This clearly demonstrates
that OFTRL-SCA accelerates the optimization process, leading
to quicker convergence to the optimal point.

These results highlight the computational efficiency of our
proposed efficient methods, particularly OFTRL-SCA, com-
pared to existing benchmarks. The faster convergence and re-
duced computation time make our methods highly practical
and applicable in real-world scenarios with large-scale portfolio
optimization problems.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduce a novel framework called
SAOFTRL with efficient implementation for online portfo-
lio selection in volatile stock markets. Our framework offers
a worst-case performance guarantee, providing a novel re-
gret. Moreover, we establish an intriguing equivalence between
SAOFTRL and MVP, which instills confidence in its average
performance within the MVP context. Through extensive nu-
merical experiments, we demonstrate the efficiency and efficacy
of our proposed methods.

Furthermore, our findings highlight the potential of making
more informed predictions in portfolio management while still
maintaining a safeguard for worst-case performance, as stated
in Theorem 1. This opens up avenues for further research in im-
proving time series predictions using methods such as ARMA,
ARIMA, Kalman filter, and other online time series techniques
[53], [54], [55]. Integrating these time series prediction methods
into SAOFTRL has the potential to enhance the regret guarantee
and overall effectiveness of the algorithm. This integrative ap-
proach represents a fruitful direction for future research, aiming
to combine robust theoretical foundations with practical, data-
driven prediction techniques.

APPENDIX

A. Proof of Theorem 1

We can interpret the OFTRL as FTRL with a regular-
ization term ψ̃t(b) = ψt(b) + f̃t(b), where ψt(b) =

β
2 ‖b‖22

and f̃t(b) = 〈mt,b〉. Let F̃t(b) =
∑t−1

s=1 fs(b) + ψ̃t(b) and
F̄t(b) =

∑t−1
s=1 fs(b) + ψt(b). According to the update rule

for OFTRL, we have bt = argminb∈W F̃t(b). Since f̃T+1(b)
has no influence on the algorithm, we can set it to the null
function. According to [30, Lemma 7.1], we have

R(u) =
T∑

t=1

ft(bt)−
T∑

t=1

ft(u)

= ψ̃T+1(u)− min
b∈W

ψ̃1(b) + F̃T+1(bT+1)− F̃T+1(u)︸ ︷︷ ︸
≤0

+

T∑

t=1

[
F̃t(bt) + ft(bt)− F̃t+1(bt+1)

]

≤ ψ̃T+1(u)− min
b∈W

ψ̃1(b)

+

T∑

t=1

[
F̃t(bt) + ft(bt)− F̃t+1(bt+1)

]

= ψT+1(u) + f̃T+1(u)− min
b∈W

(
ψ1(b) + f̃1(b)

)

+

T∑

t=1

[
F̄t(bt) + f̃t(bt) + ft(bt)

]

−
T∑

t=1

[
F̄t+1(bt+1) + f̃t+1(bt+1)

]
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= ψT+1(u)− ψ1(b1)

+

T∑

t=1

[
F̄t(bt) + ft(bt)− F̄t+1(bt+1)

]

= ψT+1(u)− ψ1(b1) +
T∑

t=1

[
F̄t+1(bt)− F̄t+1(bt+1)

]

≤
T∑

t=1

[
F̄t+1(bt)− F̄t+1(bt+1)

]
+

β

2
B2.

Now we focus on bounding the term F̄t+1(bt)− F̄t+1(bt+1).
Observe that F̄t+1(b) is an exp-concave function, hence we
have:

F̄t+1(bt)− F̄t+1(bt+1)≤〈g′
t,bt − bt+1〉

− 1

2
(bt − bt+1)

TAt(bt − bt+1),

where g′
t =∇F̄t+1(bt) and At = βI+

∑t
τ=1 αgτg

T
τ with

gt =∇ft(bt) and α= 1
8GB . As a shorthand, we denote

‖bt − bt+1‖At
= (bt − bt+1)

TAt(bt − bt+1). Note that
ψt+1(b) = ψt(b), we have F̄t+1(bt) = F̄t(bt) + ft(bt), thus
g′
t =∇F̄t(bt) +∇ft(bt). According to the updating rule

of OFTRL, we have bt = argminb∈W F̄t(b) + f̃t(b), thus
0=∇F̄t(bt) +∇f̃t(bt). Therefore, using [30, Theorem 2.16],
we have g′

t =∇ft(bt)−∇f̃t(bt) = gt −mt. Therefore, we
have

F̄t+1(bt)− F̄t+1(bt+1)≤〈gt −mt,bt − bt+1〉

− 1

2
‖bt − bt+1‖At

.

With the property of dual norm such that 〈a, b〉 ≤ ‖a‖∗ ‖b‖ ≤
1
2c ‖a‖

2
∗ +

c
2 ‖b‖

2, we have:

〈gt −mt,bt −bt+1〉≤
1

2
‖gt −mt‖2A−1

t
+

1

2
‖bt −bt+1‖2At

.

Summing over 1 to T , we have
T∑

t=1

[
F̄t+1(bt)− F̄t+1(bt+1)

]

≤
T∑

t=1

(
〈gt −mt,bt − bt+1〉 −

1

2
‖bt − bt+1‖At

)

≤
T∑

t=1

(
1

2
‖gt −mt‖2A−1

t

)
.

Consequently, the regret for OFTRL over the interval [T ] is
given by:

ROFTRL
[T ] ≤ 1

2

T∑

t=1

‖gt −mt‖2A−1
t

+
β

2
B2. (30)

B. Proof of Lemma 1

First of all, we have
t∑

s=1

(gs −ms) (gs −ms)
T

= g1g
T
1 +

t∑

s=2

(
gs −

1

s− 1

s−1∑

τ=1

gτ

)(
gs −

1

s− 1

s−1∑

τ=1

gτ

)T

= g1g
T
1 +

t∑

s=2

(
gsg

T
s − 1

s− 1

s−1∑

τ=1

gsg
T
τ − 1

s− 1

s−1∑

τ=1

gτg
T
s

)

+

t∑

s=2

(
1

(s− 1)2

s−1∑

r=1

gr

s−1∑

τ=1

gT
τ

)

=

t∑

s=1

gsg
T
s +

t∑

s=2

s−1∑

r=1

(
− 1

s− 1

[
gsg

T
r + grg

T
s

])

+

t∑

s=2

1

(s− 1)2

s−1∑

r=1

s−1∑

τ=1

grg
T
τ . (31)

The last term of Equation (31) could be written as:

t∑

s=2

1

(s− 1)2

s−1∑

r=1

s−1∑

τ=1

grg
T
τ

=

t∑

s=2

1

(s− 1)2

s−1∑

τ=1

gτg
T
τ

+

t∑

s=2

1

(s− 1)2

s−1∑

r=1

(
r−1∑

τ=1

grg
T
τ +

s−1∑

τ=r+1

grg
T
τ

)

=

t−1∑

s=1

(
t−1∑

τ=s

1

τ2

)
gsg

T
s

+

t−1∑

s=2

s−1∑

r=1

(
t−1∑

τ=s

1

τ2

)
[
grg

T
s + gsg

T
r

]
.

Therefore, we have
t∑

s=1

(gs −ms) (gs −ms)
T

=

t∑

s=1

(
1 +

t−1∑

τ=s

1

τ2

)
gsg

T
s

+
t∑

s=2

s−1∑

r=1

(
− 1

s− 1
+

t−1∑

τ=s

1

τ2

)
[
grg

T
s + gsg

T
r

]
.

For s > 2, we have

1

s
− 1

t
=

∫ t

s

1

x2
dx≤

t−1∑

τ=s

1

τ2
≤

∫ t−1

s−1

1

x2
dx=

1

s− 1
− 1

t− 1
,

thus
∣∣∣∣∣−

1

s− 1
+

t−1∑

τ=s

1

τ2

∣∣∣∣∣≤
1

(s− 1)2
+

1

t
.

Since (gr + gs) (gr + gs)
T � 0 and (gr − gs) (gr − gs)

T �
0, thus we have grg

T
r + gsg

T
s �±

(
grg

T
s + gsg

T
r

)
. Therefore,

we have
t∑

s=1

(gs −ms) (gs −ms)
T

=

t∑

s=1

(
1 +

t−1∑

τ=s

1

τ2

)
gsg

T
s

+

t∑

s=2

s−1∑

r=1

(
− 1

s− 1
+

t−1∑

τ=s

1

τ2

)
[
grg

T
s + gsg

T
r

]
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≤
t∑

s=1

(
1 +

t−1∑

τ=s

1

τ2

)
gsg

T
s

+

t∑

s=2

s−1∑

r=1

∣∣∣∣∣−
1

s− 1
+

t−1∑

τ=s

1

τ2

∣∣∣∣∣
[
grg

T
r + gsg

T
s

]

≤
t∑

s=1

(
1 +

t−1∑

τ=s

1

τ2

)
gsg

T
s

︸ ︷︷ ︸
1©

+
t∑

s=2

s−1∑

r=1

(
1

(s− 1)2
+

1

t

)[
grg

T
r + gsg

T
s

]

︸ ︷︷ ︸
2©

.

Since

1 +

t−1∑

τ=s

1

τ2
≤ 2 +

∫ t−1

s

1

x2
dx= 2 +

1

s
− 1

t− 1
≤ 3,

we have

1©=

t∑

s=1

(
1 +

t−1∑

τ=s

1

τ2

)
gsg

T
s ≤ 3

t∑

s=1

gsg
T
s .

Besides, we have

2©=

t∑

s=2

s−1∑

r=1

(
1

(s− 1)2
+

1

t

)[
grg

T
r + gsg

T
s

]

=
t∑

s=2

(
1

s− 1
+

s− 1

t

)
gsg

T
s

+

t∑

s=2

s−1∑

r=1

(
1

(s− 1)2
+

1

t

)
grg

T
r

≤ 2

t∑

s=2

gsg
T
s +

t∑

s=2

(
1

(s− 1)2
+

1

t

) s−1∑

r=1

grg
T
r

= 2

t∑

s=2

gsg
T
s +

t∑

s=1

(
t−1∑

r=s

(
1

r2
+

1

t

))
gsg

T
s

≤ 2

t∑

s=2

gsg
T
s + 3

t∑

s=1

gsg
T
s

≤ 5

t∑

s=1

gsg
T
s .

To summarize, for ms =
1

s−1

∑s−1
τ=1 gτ , we have

t∑

s=1

(gs −ms) (gs −ms)
T
= 1©+ 2©� 8

t∑

s=1

gsg
T
s .

C. Supplementary Lemmas and Proofs

Lemma 3: Let ḡ = 1
T

∑T
t=1 gt, Q[T ] =

∑T
t=1 ‖gt − ḡ‖22,

Q̃[T ] =
∑T

t=1 ‖gt −mt‖22 with mt =
1

t−1

∑t−1
τ=1 gτ , we have

Q̃[T ] ≤Q[T ] + 4G2 (log T + 1).
Proof: Consider the following loss function for an online

learning algorithm:

ct(x) = ‖gt − x‖22 . (32)

Our goal is to minimize the cumulative loss
∑T

t=1 ct(x).
It’s easy to see that the best-fixed point in hindsight is
x� = 1

T

∑T
t=1 gt = ḡ. Consider the Follow-the-Leader strategy

[29], where we select the next point that minimizes the loss
over the past rounds

∑t
τ=1 cτ (x), which is exactly xt+1 =

1
t

∑t
τ=1 gt =mt+1. Then we have

R[T ] =

T∑

t=1

ct(mt)− ct(ḡ)

=
T∑

t=1

‖gt −mt‖22
︸ ︷︷ ︸

Q̃[T ]

−
T∑

t=1

‖gt − ḡ‖22
︸ ︷︷ ︸

Q[T ]

≤
T∑

t=1

ct(mt)− ct(mt+1)

=

T∑

t=1

(
1−

(
1− 1

t

)2
)
‖gt −mt‖22

≤
T∑

t=1

1

t
‖gt −mt‖22

≤ 4G2 (log T + 1) ,

where the third inequality is from [29, Lemma 2.1] and the
fourth equality follows from mt+1 =

t−1
t mt +

1
tgt.

D. Proof of Proposition 5

The objective function in Equation (16), denoted as ht(b),
is β-strongly convex and smooth. For simplicity, we drop sub-
scripts of ht(b) and bk+1

t+1 and denote as h(b) and bk+1, re-
spectively. Let b� represent the optimal point that minimizes
h(b). Given that h(b) is convex and L-smooth, and bk+1 =
bk + γk(b̂k+1 − bk), we have the following:

h
(
bk+1

)
≤ h

(
bk

)
+ γk∇h

(
bk

)T (
b̂k+1 − bk

)

+
L

2

(
γk

)2 ∥∥∥b̂k+1 − bk
∥∥∥
2

2

≤ h(b�)−∇h(bk)T
(
b� − bk

)

+ γk∇h
(
bk

)T (
b̂k+1 − bk

)

+
L

2

(
γk

)2 ∥∥∥b̂k+1 − bk
∥∥∥
2

2
,

where the last inequality follows by the convexity of
h(b). Given that the feasible set is bounded, we assume∥∥∥∇ĥ(b̂k+1;bk)

∥∥∥
2
≤Q, where ĥ(b̂k+1;bk) is defined

in Equation (17). Since ∇ĥ(bk;bk) =∇h(bk) and
b̂k+1 = argminb∈W ĥ(b;bk), we obtain

−∇h(bk)T
(
b� − bk

)

=∇ĥ(bk;bk)T
(
bk − b�

)

=∇ĥ(b̂k+1;bk)T
(
bk − b̂k+1 + b̂k+1 − b�

)

+
〈
∇ĥ(bk;bk)−∇ĥ(b̂k+1;bk),bk − b�

〉
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≤∇ĥ(b̂k+1;bk)T
(
bk − b̂k+1

)

+
〈
∇ĥ(bk;bk)−∇ĥ(b̂k+1;bk),bk − b�

〉

≤Q
∥∥∥b̂k+1 −bk

∥∥∥
2
+

(
β + λ(L1)

max

)

×
∥∥∥b̂k+1 − bk

∥∥∥
2

∥∥bk − b�
∥∥
2

≤
(
Q+B

(
β + λ(L1)

max

))∥∥∥b̂k+1 − bk
∥∥∥
2
,

where the second inequality is followed by Cauchy–Schwarz
inequality and ĥ(b;bk) is

(
β + λ

(L1)
max

)
-smooth. Similarly, we

have

∇h
(
bk

)T (
b̂k+1 − bk

)
≤

(
β + λ(L1)

max

)∥∥∥b̂k+1 − bk
∥∥∥
2

2
.

Summarizing these results and considering γk < 1, we con-
clude that

h(bk+1)− h(b�)≤ Zc

∥∥∥b̂k+1 − bk
∥∥∥
2
, (33)

where Zc =Q+ 2B
(
β + λ

(L1)
max + L/4

)
. Let bt+1 denote the

optimal point for ht(b) at t-th iteration. We have:

∥∥bk+1
t+1 − bt+1

∥∥2

2
≤ 2

β

(
ht(b

k+1
t+1 )− ht(bt+1)

)

≤ 2

β
Zc

∥∥∥b̂k+1
t+1 − bk

t+1

∥∥∥
2
.

Therefore, by setting the stopping criterion as∥∥∥b̂k
t+1 − bk−1

t+1

∥∥∥
2
≤ Cth/T

2 with Cth being a predefined
constant, we have:

T∑

t=1

∥∥bk
t − bt

∥∥
2
≤ Ce,

where Ce =
√

2ZcCth
β .
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