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Abstract—This paper introduces Polynomial Graphical Lasso
(PGL), a new approach to learning graph structures from nodal
signals. Our key contribution lies in modeling the signals as
Gaussian and stationary on the graph, enabling the development
of a graph learning formulation that combines the strengths of
graphical lasso with a more encompassing model. Specifically,
we assume that the precision matrix can take any polynomial
form of the sought graph, allowing for increased flexibility in
modeling nodal relationships. Given the inherent complexity
and nonconvexity of the optimization problem, we (i) propose
a low-complexity algorithm that alternates between estimating
the graph and precision matrices, and (ii) characterize its
convergence. We evaluate the performance of PGL through
comprehensive numerical simulations using both synthetic and
real data, demonstrating its superiority over several alternatives.
Overall, this approach presents a significant advancement in
graph learning and holds promise for various applications in
graph-aware signal analysis and beyond.

Index Terms—Network-topology inference, graph learning,
Gaussian signals, graph-stationary signals, covariance estimation.

I. INTRODUCTION

MODERN datasets often exhibit irregular non-Euclidean
support. In such scenarios, graphs have emerged as a

pivotal tool, facilitating the generalization of classical informa-
tion processing and structured learning techniques to irregular
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domains. Today, there is a wide range of applications that lever-
age graphs when processing, learning, and extracting knowl-
edge from their associated datasets (see, e.g., problems in the
context of electrical, communication, social, geographic, finan-
cial, genetic, and brain networks [2], [3], [4], [5], [6], to name
a few). When using graphs to process structured non-Euclidean
data, it is usually assumed that the underlying network topology
is known. Unfortunately, this is not always the case. In many
cases, the structure of the graph is not well defined, either
because there is no underlying physical network or because the
(best) metric to assess the level of association between the nodes
is not known.

Since in most cases the existing relationships are not
known beforehand, the standard approach is to infer the struc-
ture of the network from a set of available nodal observa-
tions/signals/features. To estimate the interactions between the
existing nodes, the first step is to formally define the relation-
ship between the topology of the graph and the properties of
the signals defined on top of it. Early graph topology inference
methods [7], [8] adopted a statistical approach, such as the
correlation network [2, Ch. 7.3.1], partial correlations, or Gaus-
sian Markov random fields (GMRF), with the latter leading to
the celebrated graphical Lasso (GL) scheme [2], [9]. Partial
correlation methods have been generalized to nonlinear settings
[10]. Also in the nonlinear realm, less rigorous approaches
simply postulate a similarity score, with links being drawn if
their score exceeds a given threshold. In recent years, graph
signal processing (GSP) based models [11], [12], [13], [14]
have brought new ideas to the field, considering more complex
relationships between the signals and the sought graph. These
approaches have been generalized to deal with more complex
scenarios that often arise in practice, such as the presence of
hidden variables [15], [16], [17] or the simultaneous inference
of multiple networks [18], [19].

The existing graph learning methods exhibit different advan-
tages and limitations, with relevant tradeoffs including compu-
tational complexity, expressiveness, model accuracy, or sample
complexity, among others. For instance, correlation networks
need very few samples and can be run in parallel for each
pair of nodes, but fail to capture intermediation nodal effects.
On the other hand, GL (a maximum likelihood estimator for
GMRF) can handle the intermediation effect while still requir-
ing a relatively small number of samples compared to the size
of the network. Some disadvantages of GL include assuming a
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relatively simple signal model (failing to deal with, e.g., linear
autoregressive network models) and forcing the learned graph
structure to be a positive definite matrix. To overcome some
of these issues, [13] proposed a more general model, Graph
Stationary Recovery (GSR) approach, that assumed that the
signals were stationary in the network or, equivalently, that
the covariance matrix can be defined as a polynomial of the
adjacency matrix of the graph [20]. Since GSR is a more general
model, it is less restrictive in terms of the signals it can handle.
However, it has the disadvantage of requiring a significantly
larger number of observations than GL [13].

Our proposal is to combine the advantages of assuming Gaus-
sianity, which implies solving a maximum likelihood problem
that requires fewer node observations, with the larger gener-
ality of graph-stationary approaches. Our ultimate goal is to
generalize the range of scenarios where GL can be used, while
keeping the number of observations and computational com-
plexity under control. To be more precise, we introduce Poly-
nomial Graphical Lasso (PGL), a new scheme to learn graphs
from signals that works under the assumption that the sam-
ples are Gaussian and graph-stationary, so that the covariance
(precision) matrix of the observations can be written as a poly-
nomial of a sparse graph. These assumptions give rise to a con-
strained log-likelihood minimization that is jointly optimized
over the precision and adjacency matrices, with GL being a
particular instance of our problem. The price to pay is that the
postulated optimization, even after relaxing the sparsity con-
straints, is more challenging, leading to a biconvex problem. To
mitigate this issue, we provide an efficient alternating algorithm
with convergence guarantees.

Contributions. To summarize, our main contributions are:
• Introducing PGL, a novel graph learning scheme that,

by assuming that the observations are Gaussian and
graph-stationary, generalizes GL and is able to learn a
meaningful graph structure in scenarios where the pre-
cision/covariance matrices are polynomials of the sparse
matrix that represents the graph.

• Formulating the inference problem as a biconvex con-
strained optimization, with the variables to optimize being
the precision matrix and the graph. While our focus is on
learning graphs, note that this implies that PGL can also
be used in the context of covariance estimation.

• Developing an efficient algorithm to solve the proposed
optimization, together with convergence guarantees to a
stationary point (block coordinatewise minimizer).

• Evaluating the performance of the proposed approach
through comparisons with alternatives from the literature
on synthetic and real-world datasets.

A preliminary version of this work was presented in a confer-
ence paper [1]. Compared to [1], this manuscript devotes more
space to introducing the problem, clarifying the differences
relative to the state of the art, and discussing pros and cons.
More importantly, from a technical point of view, we propose a
new approach to solve the graph learning optimization problem.
The new algorithm is more efficient and requires less com-
putational complexity, making it more suitable for handling
graphs with a larger number of nodes. Equally relevant from

a contribution perspective, we provide a theoretical analysis
of the algorithm’s convergence. Additionally, the manuscript
provides a more comprehensive numerical evaluation, incorpo-
rating both synthetic and real datasets, covering more scenarios,
offering additional evaluation metrics, and comparing against
more alternative approaches.

Outline. The remainder of the paper is organized as follows.
Section II surveys the basic graph and GSP background, placing
special emphasis on the concepts of graph stationarity and
Gaussian graph signals. In Section III, the problem of learning
(inferring) graphs from signals under different assumptions on
the observations is formally stated. Section IV presents a com-
putationally tractable relaxation of the graph learning problem,
along with an efficient algorithm and its associated convergence
guarantees. Section V quantifies and compares the recovery
performance of the proposed approach with other methods from
the literature using both synthetic and real data. Section VI
closes the paper with concluding remarks.

II. GRAPHS AND RANDOM GRAPH SIGNALS

This section introduces the notation used in the paper and
fundamental concepts of graphs and GSP that will help to
explain the relationship between the available signals and the
topology of the underlying graph.

Notation. We represent scalar, vectors and matrices using low-
ercase (x ∈ R), bold lowercase (x ∈ R

N ), and bold uppercase
(X ∈ R

N×R) letters, respectively. Xij represents the values of
the entry [i, j] of matrix X. IN denotes the identity matrix
of size N ×N . The expression diag(x) represents a diagonal
matrix with the values of x in the diagonal. The expressions
‖ · ‖0 and ‖ · ‖1 refer to the entry-wise (vectorized) �0 and �1
matrix norms, and ‖ · ‖F is the Frobenius norm.

Graphs. Let G = {V, E} be a weighted and undirected graph
with N nodes, where V and E denote the vertex and edge set, re-
spectively. The topology of the graph G is encoded in the sparse,
weighted adjacency matrix A ∈ R

N×N , where Aij represents
the weight of the edge between nodes j and i, and Aij = 0
if i and j are not connected. A more general representation
of the graph is the Graph Shift Operator (GSO), denoted by
S ∈ R

N×N , where Sij �= 0 if and only if i= j or (i, j) ∈ E .
Common choices for the GSO are the adjacency matrix A
[21], the combinatorial graph Laplacian L := diag(A1)−A
[4], where diag(A1) represents the degree matrix, containing
the sum of edge weights connected to each node along its
diagonal, and their degree-normalized variants. Since the graph
is undirected, the GSO is symmetric and can be diagonalized as
S=VΛV�, where the orthogonal matrixV ∈ R

N×N contains
the eigenvectors of the GSO, and the diagonal matrixΛ contains
its eigenvalues.

Graph signals and filters. A graph signal is represented by
a vector x ∈ R

N , where xi denotes the signal value observed
at node i. Alternatively, a graph signal can be understood as a
V → R mapping, so that the signal values can represent features
associated with the node at hand. Graph filters provide a flexible
tool for either processing or modeling the relationship between
a signal x and its underlying graph G. Succinctly, a graph filter
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is a linear operator H ∈ R
N×N that takes into account the

topology of the graph and is defined as a polynomial of the
GSO S of the form

H=

L−1∑

l=0

hlS
l =

L−1∑

l=0

hlVΛlV� =V

(
L−1∑

l=0

hlΛ
l

)
V�, (1)

where {hl}L−1
l=0 represent the filter coefficients, andV andΛ are

the eigenvectors and eigenvalues of the GSO respectively. Since
H is a polynomial of S, it readily follows that both matrices
have the same eigenvectors V.

Stationary graph signals. A graph signal x is defined to
be stationary on the graph G if it can be expressed as the
output of a graph filter H excited by a zero-mean white signal
w ∈ R

N [20], [22], [23]. In other words, if w has a covari-
ance of E[ww�] = IN , and x=Hw, then the covariance of x
is Σ= E[xx�] =HE[ww�]H� =HH� =H2. This reveals
that if x is stationary on G, then the covariance matrix Σ can
be written as a polynomial of the GSO S, and that, as a result,
Σ and S have the same eigenvectors V [cf. (1)]. Hence, graph
stationarity implies that the matrices S and Σ commute, which
is a significant property to be exploited later on.

Gaussian graph signals. A Gaussian graph signal is an
N -dimensional random vector x whose entries are jointly
Gaussian. If x ∈ R

N follows a multivariate normal distribution
N (0,Σ), then Σ is the covariance matrix, and Θ=Σ−1 is the
precision matrix. The probability density function (PDF) of x
is given by:

fΘ(x) = (2π)−N/2 · det(Θ)
1
2 · exp

(
−1

2
xTΘx

)
. (2)

Here, Θ ∈ R
N×N captures the conditional dependency struc-

ture among the graph’s variables. [7].
Suppose now that we have a collection of R Gaussian

signals X= [x1, ...,xR] ∈ R
N×R each of them independently

drawn from the distribution in (2). The log-likelihood associated
with X is

L(X|Θ) =
R∏

r=1

fΘ(xr), L(X|Θ) =
R∑

r=1

log(fΘ(xr)). (3)

This expression will be exploited when formulating our pro-
posed inference approach and establishing links with classical
methods.

III. GRAPH LEARNING PROBLEM FORMULATION

This section begins with a formal definition of the graph
learning problem, followed by an explanation of some com-
mon approaches used in the literature to tackle this problem.
Afterwards, we proceed to formalize the learning problem we
aim to address and cast it as an optimization problem. We then
provide an overview of the key features of our formulation and
conduct a comparative analysis with the two closest approaches
available in the literature.

To formally state the graph learning problem, let us recall
that we assume: i) G is an undirected graph with N nodes,

ii) there is a random process associated with G, and iii) we
denote by X= [x1, ...,xR] ∈ R

N×R a collection of R indepen-
dent realizations of such a process. The goal in graph learning
is to use a given set of nodal observations to find the (estimates
of the) links/associations between the nodes in the graph (i.e.,
use X to estimate the S associated with G).

This problem has been addressed under different approaches
[20], [24], [25]. Differences among these models typically
arise from the underlying assumptions that are made regarding
i) the graph, which almost universally entails just considering
that the graph is sparse (see, e.g., [26] for a recent exception),
ii) the signals, which assume certain properties related to the
nature of the signals such as smoothness [25] or Gaussianity,
[24] among others, and iii) the relationship between the graph
and the signal, such as the stationarity property [20].

The model we propose aims to incorporate several assump-
tions about both the graph and the graph signals. To that end,
we propose an approach for which we assume that: i) the graph
is sparse, ii) the signals are Gaussian and, iii) the signals are
stationary in the underlying graph.

Having established these assumptions, we now proceed to
formally state our graph learning problem as follows

Problem 1: Given a set of signals X ∈ R
N×R, find the

underlying sparse graph structure encoded in S under the
assumptions:

(AS1): The graph signalsX are i.i.d. realizations ofN (0,Σ).
(AS2): The graph signals X are stationary in S.

Our approach is to recast Problem 1 as the following
optimization

minimize
Θ�0,S∈S

− log(det(Θ)) + tr(Σ̂Θ) + ρ‖S‖0,

subject to ΘS= SΘ, (4)

where ρ is a hyperparameter that controls the sparsity of the
graph, S is a generic set representing additional constraints
that S is known to satisfy (e.g., the GSO being symmetric, its
entries being between zero and one, and every node having
at least one neighbor). The minimization takes as input the
sample covariance matrix Σ̂= 1

RXXT and generates as output
the estimate for S and, as a byproduct, the estimate for Θ.
Moreover, for the problem in (4), we require Θ to be positive
semidefinite. This constraint arises because Θ is the inverse of
Σ̂ which is symmetric and positive definite by construction.
Consequently, Θ inherits the properties of being symmetric and
positive semidefinite.

Next, we explain the motivation for each term in (4) with
special emphasis on the constraint ΘS= SΘ, which is a fun-
damental component of our approach.

• The first two terms in the objective function are due
to (AS1) and arise from minimizing the negative log-
likelihood expression in (3). Indeed, it is clear that sub-
stituting (2) into (3) yields

R∑

r=1

(
−N

2
log(2π)− log(det(Θ)) + tr(xT

r Θxr)

)
.
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Since constants are irrelevant for the optimization, we drop
the first term and divide the other two by R, yielding

− log(det(Θ)) +
1

R

R∑

r=1

tr(xrx
T
r Θ)

=− log(det(Θ)) + tr(Σ̂Θ). (5)

• The equality constraint serves to embody (AS2). It is
important to highlight that the polynomial relationship
between Σ and S, as implied by (AS2), can be addressed
in estimation and optimization problems through the fol-
lowing approaches: i) extracting the eigenvectors of Σ and
enforcing them to align with the eigenvectors of S [13], a
method that typically requires manifold-type optimization;
ii) estimating higher-order polynomials in S, which is
inherently challenging due to the nonlinearity and non-
convexity introduced by the powers of S; or iii) imposing
the constraint ΣS= SΣ [17]. In contrast, our approach
encodes the polynomial relation implied by (AS2) by
enforcing commutativity between Θ and S. Note that if
Σ and S are full-rank matrices and commute, it follows
that Θ and S also commute. In other words, Θ=Σ−1 can
be represented as a polynomial in S, which can be veri-
fied by the Cayley-Hamilton theorem. Since the proposed
commutativity constraint is bilinear, the problem exhibits
a scaling ambiguity that can be trivially addressed by, e.g.,
normalizing one or several entries of the matrices involved
(see the algorithmic section for details).

• Finally, the term ρ‖S‖0 accounts for the fact of S being
a GSO (hence, sparse), with ρ > 0 being a regularization
parameter that determines the desired level of sparsity in
the graph among all feasible graphs (i.e., S satisfying the
commutativity constraints and those in the set S). For
ρ� 0, the regularization term ‖S‖0 dominates, yielding
the sparsest graph allowed by the constraints (with those
in S preventing the trivial all zero solution). For the ex-
treme case of ρ= 0, no explicit sparsity is enforced, so
that the optimal graph/s S would be fully characterized
by the constraints. As will be apparent in the following
sections, the role of ρ becomes particularly relevant when
the commutativity constraint is relaxed and the problem
considers a larger set of feasible graphs.

It is important to note that the assumption of stationarity may
seem stringent since it implies commutativity between S and Θ.
However, it provides more degrees of freedom than many exist-
ing methods [24], [25], [27]. For example, in partial correlation
methods [2, Ch. 7.3.1], S is restricted to be S=Θ, while in our
case, assuming stationarity allows Θ to be any polynomial in S.
This leads to a more general approach, including partial correla-
tion as a particular case. To further illustrate this point, consider
the sparse structural equation model X=AX+W, with W
being white noise. GL will identify S=Θ= (IN −A)2, while
PGL will identify S=A.

To better understand the features of PGL, let us briefly dis-
cuss the main differences relative to its two closest competitors:
GSR and GL.

GSR handles Problem 1 without considering the Gaussian
assumption in (AS1). As a result, the first two terms in (4),
which are associated with the log-likelihood function, are not
present. This reduces the problem to inferring a sparse graph
under the stationarity constraint. The stationarity assumption is
incorporated into (4) through the expression ΘS= SΘ, which
is equivalent to ΣS= SΣ if Σ is a full-rank matrix. This
property enables learning the graph by solving the following op-
timization problem with the commutativity constraint between
Σ̂ and S:

minimize
S∈S

ρ‖S‖0 subject to Σ̂S= SΣ̂, (6)

where the constraint is typically relaxed as ‖Σ̂S− SΣ̂‖2F ≤ ε
to account for the fact that we have Σ̂≈Σ. By assuming
stationarity, the formulation in (6) allows the sample covariance
to be modeled as any polynomial in S, making it more general
than the formulation in (4). However, the absence of Gaussian-
ity in (6) means that it is no longer a maximum likelihood
estimation. As a result, correctly identifying the ground truth
S requires very reliable estimates of Σ̂, which usually entails
having access to a large number of signals to set ε close to zero.
This is indeed a challenge, especially in setups with a large
number of nodes.

For the second scenario, suppose we simplify (AS2) and
instead of considering Θ as any polynomial in S, we restrict
it to a particular case with the following structure: Θ=Σ−1 =
σI+ δS. Then, up to the diagonal values and scaling issues, the
sparse matrix S to be estimated and Θ=Σ−1 are the same.
Consequently, it suffices to optimize over one of them, leading
to the well-known GL formulation:

minimize
Θ�0,Θ∈SΘ

− log(det(Θ)) + tr(Σ̂Θ) + ρ‖Θ‖0, (7)

where SΘ denotes the set of structural constraints imposed
on the precision matrix Θ. In this context, SΘ ensures that
Θ is symmetric and positive semidefinite, formally defined as
SΘ :=

{
Θ∈RN×N |Θ=ΘT ; S	0

}
. The main advantages of

(7) relative to (4) are that the number of variables is smaller and
the resulting problem (after relaxing the �0 norm) is convex. The
main drawback is that by forcing the support of S and Θ to be
the same, the set of feasible graphs (and their topological prop-
erties) is more limited. Indeed, GL can only estimate graphs
that are positive definite, while the problem in (4) can yield any
symmetric matrix. Remarkably, when the model assumed in (7)
holds true (i.e., data is Gaussian and Θ is sparse), GL is able to
find reliable estimates of S even when the number of samples
R is fairly low. On the other hand, simulations will show that
GL does a poor job estimating S when the relation between the
precision matrix and G is more involved.

In conclusion, from a conceptual point of view, our for-
mulation reaches a favorable balance between GL and graph-
stationarity approaches. This leads to the following two main
advantages i) a more general model than GL since our ap-
proach models Θ as any polynomial in S and ii) a model with
more structure than the graph-stationarity approaches due to
the incorporation of (AS1). However, it is important to note
that the optimization in (4), even if the �0 norm is relaxed,
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lacks convexity due to the presence of a bilinear constraint that
couples the optimization variables Θ and S. These challenges
will be addressed in the subsequent section.

IV. BICONVEX RELATION AND ALGORITHM DESIGN

As explained in the previous section, the problem in (4) is
not convex and this challenges designing an algorithm to find
a good solution. This section reformulates (4), develops an
iterative algorithm, referred to as PGL, to estimate S and Θ, and
characterizes its convergence to a coordinate-wise minimum
point. The proposed approach involves several modifications,
with the two most important ones being: i) we replace the
�0-norm with an elastic net regularizer, which is convex [28],
[29]; and ii) we relax the commutativity constraint using an
inequality instead of an equality. Next, we explain step by step
the resulting formulation.

A. Biconvex Relaxation

The first modification to reformulate (4) is to relax the con-
straint that imposes commutativity between S and Θ. Such
a constraint is stringent and significantly narrows the feasible
solution set of (4), which may not be practical in real-world
scenarios. Furthermore, considering that our access to the co-
variance (or precision) matrix is limited to its sampled esti-
mates, enforcing exact commutativity is excessively restrictive.
To mitigate this, we relax the original constraint by replacing
the matrix equality ΘS= SΘ with the scalar Frobenius norm-
based inequality ‖ΘS− SΘ‖2F ≤ δ. This modification not only
expands the feasible region but also endows the model with a
greater degree of robustness.

The second modification addresses the non-convexity of the
objective in (4), which originates from the use of the �0-norm.
To alleviate this issue, we relax the problem using an elastic
net regularizer. Specifically, we replace the ρ‖S‖0 penalty with
ρ
(
‖S‖1 + η

2ρ‖S‖2F
)
, where the parameter η controls the trade-

off between the �1-norm and the Frobenius norm components,
and is typically set to a very small value. Although elastic net
regularizers have demonstrated practical effectiveness, alterna-
tive methods for relaxing the �0-norm exist (see, for example,
[30], [31]), each offering distinct trade-offs in computational
complexity, convergence speed, and theoretical underpinnings.

With the incorporation of these two modifications, we
reformulate the original graph learning problem presented in
(4) as follows

minimize
Θ�0,S∈S

− log(det(Θ)) + tr(Σ̂Θ) + ρ‖S‖1 +
η

2
‖S‖2F ,

subject to ‖ΘS− SΘ‖F ≤ δ. (8)

In this setup, δ serves as a hyperparameter chosen according to
the quality of the estimation of Σ̂which affects the estimation of
Θ. A smaller value of δ is appropriate when the quality of Σ̂ is
high, which typically corresponds to having a sample sizeR that
is substantially larger than the number of nodes. Similarly, ρ and
η are chosen to control the trade-offs in the structure of S where
ρ governs sparsity, with higher values enforcing fewer edges,

while η balances sparsity with control over the overall mag-
nitude of S through its Frobenius norm. While the relaxation
of the commutativity constraint enhances the robustness of our
formulation to data quality and simplifies the optimization by
reducing the number of Lagrange multipliers, the product of Θ
and S still introduces nonconvexity into the problem. The way
we propose for dealing with the (updated) biconvex constraint
is to solve (8) using an alternating optimization algorithm. This
family of algorithms is widely used to approximate nonconvex
problems by dividing the original problem into several convex
subproblems and solving them with respect to each of the
variables by fixing all the others. In our particular case, this
methodology involves alternately solving for Θ with S held
fixed, and then updating S using the newly updated Θ, at each
iteration.

In the subsequent two subsections, we delve into the detailed
methodologies employed to solve each of the two subproblems.
Following this, we outline the overall algorithm and discuss
its convergence properties. To simplify exposition, in the re-
mainder of the section, we will assume that S represents the
adjacency matrix of an undirected graph. Consequently, the
feasible solution set for S is defined as:

S :=
{
S∈RN×N |S= ST ; S≥0; diag(S) = 0; S1≥1

}
, (9)

where S is constrained to be symmetric with zero diagonal
entries and non-negative off-diagonal elements. The additional
condition S1≥ 1 is imposed to preclude the trivial solution,
i.e., S= 0. Nonetheless, the techniques presented next can be
readily extended to accommodate different forms of S.

B. Solving Subproblem for S

We begin by addressing the subproblem with respect to S,
while holding Θ fixed. The subproblem is formulated as:

minimize
S∈S

ρ‖S‖1 +
η

2
‖S‖2F ,

subject to ‖ΘS− SΘ‖F ≤ δ. (10)

To solve (10), we adopt a linearized ADMM approach [32],
which introduces an auxiliary variable P and leads to the fol-
lowing equivalent formulation:

minimize
S∈S,P

ρ‖S‖1 +
η

2
‖S‖2F ,

subject to ΘS− SΘ=P, ‖P‖F ≤ δ. (11)

The augmented Lagrangian associated with (11) is then
given by

L(S,P,Z) = ρ‖S‖1 +
η

2
‖S‖2F + 〈Z,ΘS− SΘ−P〉

+
β

2
‖ΘS− SΘ−P‖2F , (12)

where Z is the Lagrange multiplier. Note that the term ‖P‖F ≤
δ was omitted in (12) because the optimization is performed
over S first, for a fixed P.
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To update S at the t-th iteration, we address the following
minimization problem:

minimize
S∈S

ρ‖S‖1 +
η

2
‖S‖2F +

β

2
‖ΘS− SΘ−P+

1

β
Z‖2F ,

(13)

where, for the sake of simplicity, we omit the iteration subscript
from Θ(t) and Z(t). Problem (13) does not admit a closed-form
solution due to the term 1

2‖ΘS− SΘ−P+ 1
βZ‖2F . To deal

conveniently with this problem we resort to the majorization-
minimization (MM) algorithm [33]. We denote this term as
g(S) and proceed to majorize both g(S) and η

2‖S‖2F at the point
S(t), resulting in the following problem:

minimize
S∈S

〈ρ1N×N + ηS(t) + β∇g(S(t)),S− S(t)〉

+
L1

2
‖S− S(t)‖2F , (14)

where 1N×N represents an all ones square matrix of size N
and ∇g(S) is the gradient of g(S), detailed in the equation:

∇g(S) =ΘΘS+ SΘΘ− 2ΘSΘ+PΘ

−ΘP+
1

β
(ΘZ− ZΘ). (15)

Now, Problem (14) has a closed-form solution, allowing for
the update of S(t+1) as follows:

S(t+1) = PS
(
S(t) − 1

L1

(
ρ1N×N + ηS(t) + β∇g

(
S(t)

)))
,

(16)

where PS is the projection onto the set S with respect to the
Frobenius norm, which can be computed efficiently by the
Dykstra’s projection algorithm [34]. More specifically, the set
S can be written as the intersection of two closed convex sets
as follows:

S = SA ∩ SB , (17)

where SA :=
{
S ∈ R

N×N |S= ST
}

and SB :=
{
S ∈

R
N×N |S≥ 0; diag(S) = 0; S1≥ 1

}
. We employ Dykstra’s

projection algorithm [34] to compute the nearest point
projection of a given point onto the intersection of sets SA

and SB . Dykstra’s projection algorithm achieves this by
alternately projecting the point onto SA and SB until the
solution is reached. For a more comprehensive understanding
of Dykstra’s projection algorithm, the reader is directed to
[34]. Detailed descriptions of the projection computations onto
sets SA and SB are provided in Appendix A.

Returning to the augmented Lagrangian in (12), we update
P at the t-th iteration by solving the following problem:

minimize
P

β

2
‖P−ΘS+ SΘ− 1

β
Z‖2F ,

subject to ‖P‖F ≤ δ, (18)

where we have simplified the notation by omitting the iteration
subscripts from S(t+1) and Z(t). Problem (18) has a closed-
form solution. As a result, P(t+1) can be updated by

P(t+1) = Pδ

(
ΘS− SΘ+

1

β
Z

)
, (19)

Algorithm 1: Inner loop for S update.

Input: Θ̂
(k)

, Ŝ(k), P̂(k), Ẑ(k), ρ, η, β, δ

Outputs: Ŝ(k+1), P̂(k+1), Ẑ(k+1)

1 Initialize S(0)=Ŝ(k), P(0)=P(k), Z(0)=Z(k)

2 for t= 0 to T − 1 do

3 Update S(t+1) by (16);

4 Update P(t+1) by (19);

5 Update Z(t+1) by (21);

6 end

7 Ŝ(k+1) = S(T ), P̂(k+1) =P(T ), Ẑ(k+1) = Z(T ).

where Pδ denotes the projection defined by:

Pδ(A) =

{ δ
‖A‖F

A if ‖A‖F > δ

A otherwise.
(20)

Finally, the dual variable Z is updated according to:

Z(t+1) = Z(t) + β(ΘS− SΘ−P), (21)

where the iteration subscripts from S(t+1) and P(t+1) have
been omitted for simplicity. A pseudocode of the steps to be
performed for the update of S is summarized in Algorithm 1.

If the parameter L1 in (14) is larger than the Lipschitz
constant of the gradient of βg

(
S
)
+η

2‖S‖2F , then the sequence{(
S(t),P(t)

)}
converges to the optimal solution of Problem

(11), and
{
Z(t)

}
converges to the optimal solution of the dual

of problem (11), which follows from the existing convergence
result of majorized ADMM [35]. To enhance empirical con-
vergence rates, adopting a more proactive strategy for selecting
the parameter L1 is beneficial. For example, utilizing a back-
tracking line search to determine the stepsize in (16) can help
to accelerate convergence.

We note that the choice of the penalty parameter β can affect
the convergence speed of the ADMM algorithm. A poorly cho-
sen β may lead to very slow convergence in practice. Adaptive
schemes that adjust β have been shown to often result in better
practical performance. For example, we can adopt the adaptive
update rule presented in [32]:

β(t+1) =

⎧
⎪⎨

⎪⎩

τ incβ(t), if
∥∥r(t)

∥∥
F
> μ

∥∥s(t)
∥∥
F
,

β(t)/τ dec, if
∥∥s(t)

∥∥
F
> μ

∥∥r(t)
∥∥
F
,

β(t), otherwise,

(22)

where μ > 1, τ inc > 1, and τ dec > 1 are predefined parameters.
Here, r(t) and s(t) represent the primal and dual residuals at
iteration t, respectively. They are defined as

r(t) =ΘS(t) − S(t)Θ−P(t),

and

s(t) = β(t)Θ
(
P(t) −P(t−1)

)
− β(t)

(
P(t) −P(t−1)

)
Θ.

Although it can be challenging to prove the convergence of
ADMM when β varies by iteration, the convergence theory
established for a fixed β remains applicable if one assumes that
β becomes constant after a finite number of iterations.
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C. Solving Subproblem for Θ

Using the formulation from (8), we now turn our attention to
the subproblem for Θ

minimize
Θ�0

− log(det(Θ)) + tr(Σ̂Θ),

subject to ‖SΘ−ΘS‖F ≤ δ. (23)

Similarly to the approach taken for the S subproblem, we re-
formulate the subproblem (23) for Θ as follows

minimize
Θ�0, Q

− log(det(Θ)) + tr(Σ̂Θ),

subject to SΘ−ΘS=Q, ‖Q‖F ≤ δ. (24)

The augmented Lagrangian associated with (24) is given by

L(Θ,Q,Y) =− log(det(Θ))+tr(Σ̂Θ)+〈Y, SΘ−ΘS−Q〉

+
β

2
‖SΘ−ΘS−Q‖2F . (25)

To update Θ at the t-th iteration, we solve the following opti-
mization problem

minimize
Θ�0

− log(det(Θ)) + tr(Σ̂Θ)

+
β

2
‖SΘ−ΘS−Q+

1

β
Y‖2F , (26)

where we have omitted the iteration subscripts from Q(t) and
Y(t) for simplicity. Note that in (26), the terms 〈Y,SΘ−
ΘS−Q〉 and β

2 ‖SΘ−ΘS−Q‖2F have been combined into
a single quadratic term β

2 ‖SΘ−ΘS−Q+ 1
βY‖2F , which is

equivalent when minimizing with respect to Θ.
Let f(Θ) = 1

2‖SΘ−ΘS−Q+ 1
βY‖2F . We then construct

the majorizer of the objective function in (26) at the point Θ(t)

and obtain

minimize
Θ�0

− log(det(Θ)) + 〈β∇f(Θ(t)) + Σ̂,Θ−Θ(t)〉

+
L2

2
‖Θ−Θ(t)‖2F , (27)

where ∇f(Θ) denotes the gradient of f(Θ)

∇f(Θ) = SSΘ+ΘSS− 2SΘS

+QS− SQ+
1

β
(SY −YS). (28)

Lemma 1: The optimal solution of problem (27) is [36]

Θ(t+1) =U

⎛

⎝
Λ+

√
Λ2 + 4

L2

2

⎞

⎠U�, (29)

where Λ and U contain the eigenvalues and eigenvectors of
Θ(t) − 1

L2

(
β∇f(Θ(t)) + Σ̂

)
, respectively.

Then, Q is updated by addressing the following problem

minimize
Q

β

2
‖Q− SΘ+ΘS− 1

β
Y‖2F ,

subject to ‖Q‖F ≤ δ, (30)

Algorithm 2: Inner loop for Θ update.

Input: Σ, Θ̂
(k)

, Ŝ(k+1), Q̂(k), Ŷ(k), β, δ

Outputs: Θ̂
(k+1)

, Q̂(k+1), Ŷ(k+1)

1 Initialize Θ(0) = Θ̂
(k)

, Q(0) = Q̂(k), Y(0) = Ŷ(k)

2 for t= 0 to T − 1 do

3 Update Θ(t+1) by (29);

4 Update Q(t+1) by (31);

5 Update Y(t+1) by (32);

6 end

7 Θ̂
(k+1)

=Θ(T ), Q̂(k+1) =Q(T ), Ŷ(k+1) =Y(T ).

Algorithm 3: Polynomial Graphical Lasso (PGL)

Input: Σ̂, ρ, η, β, and δ

Outputs: Θ̂ and Ŝ

1 Initialize Θ̂
(0)

= Σ̂
−1

2 Initialize Ŝ(0) by solving (6)

3 Initialize P(0), Q(0), Y(0), and Z(0) to zero
4 for k = 0 to K − 1 do

5 Update Ŝ(k+1) by running Algorithm 1;

6 Update Θ̂
(k+1)

by running Algorithm 2;

7 end

8 Θ̂= Θ̂
(K)

, Ŝ= Ŝ(K).

where the iteration subscripts from Θ(t+1) and Y(t) have been
omitted for simplicity. Similar to the case of updating P, we
update Q as

Q(t+1) = Pδ

(
SΘ−ΘS+

1

β
Y

)
. (31)

Finally, the Lagrange multiplier Y is updated as follows

Y(t+1) =Y(t) + β(SΘ−ΘS−Q), (32)

where the iteration subscripts from Θ(t+1) and Q(t+1) have
been similarly omitted for clarity.

We can also use the adaptive strategy in (22) to adjust β
during iterations, with r(t) and s(t) defined as

r(t) = SΘ(t) −Θ(t)S−Q(t),

and

s(t) = β(t)S
(
Q(t) −Q(t−1)

)
− β(t)

(
Q(t) −Q(t−1)

)
S.

A pseudocode of the steps to be performed for the update of Θ
is summarized in Algorithm 2.

D. Graph Learning Algorithm and Convergence Analysis

Leveraging the results presented in the previous two subsec-
tions, the steps to run our iterative scheme to find a solution
(Θ̂, Ŝ) to (8) are summarized in Algorithm 3.
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Before presenting the associated theoretical analysis, several
comments regarding the implementation of Algorithm 3 are
in order:

• For simplicity, the algorithm considers a fixed number of
iterations, but a prudent approach is to monitor the cost
reduction at each iteration and implement an early exit
approach if no meaningful improvement is achieved.

• The value of the hyperparameters ρ, η and δ is an input
to the algorithm. We note that η is typically set to a small
value to guarantee that the (sparsity promoting) �1 norm
plays a more prominent role. Moreover, the value of δ
should be chosen based on the quality of the estimate of
the sample covariance matrix Σ̂. The higher the number
of observations R (hence, the better the quality of Σ̂), the
smaller the value of δ. Similarly, if the number of nodes
N is high, the value of δ should be re-scaled accordingly,
so that the constraint does not become too restrictive.

• The update of S poses the primary computational chal-
lenge, mainly due to the complex nature of its estimation.
In contrast to Θ, which is primarily estimated from the
data matrix Σ̂, the estimation of S relies on its interplay
with Θ through the relaxed commutativity constraint. This
indirect relationship adds to the complexity of the estima-
tion, as it does not directly benefit from data-driven in-
sights, often necessitating greater precision in solving the
corresponding subproblem. Furthermore, the constraints
imposed on S are substantially more complex than those
on Θ, thereby increasing the computational load to obtain
a solution that lies within the feasible set. To alleviate
the computational demand, we may employ a relatively
loose stopping criterion for the Θ subproblem, which can
expedite convergence without significantly affecting the
quality of the solution.

To establish the theoretical convergence of Algorithm 3, we
begin by introducing several definitions and (mild) assumptions
pertinent to Problem (8).

Let f(Θ,S) denote the objective function and X the feasible
set of Problem (8), respectively. We define (Θ̄, S̄) as a block
coordinatewise minimizer of Problem (8) if:

f(Θ̄, S̄)≤ f(Θ, S̄), ∀Θ ∈ X̄Θ, (33)

and

f(Θ̄, S̄)≤ f(Θ̄,S), ∀S ∈ X̄S, (34)

where X̄Θ = {Θ ∈ R
N×N | (Θ, S̄) ∈ X}, and X̄S = {S ∈

R
N×N | (Θ̄,S) ∈ X}.
Furthermore, we introduce the following assumptions for our

analysis:
Assumption 1: The parameter δ in Problem (8) is sufficiently

large to ensure that the feasible set of the subproblem (10) is
nonempty at every iteration.

We require Assumption 1 because the intersection S ∩ {S ∈
R

N×N |, ‖ΘS− SΘ‖F ≤ δ} may otherwise be empty, imply-
ing that the feasible set of subproblem (10) could be nonex-
istent. However, Assumption 1 is relatively mild, as we can
always choose a sufficiently large δ to ensure that the feasible
set of subproblem (10) remains nonempty at every iteration.

Given Assumption 1, our algorithm is guaranteed to find a
minimizer of subproblem (10) throughout its iterations. Addi-
tionally, the feasibility of subproblem (23) is inherently assured.

Assumption 2: The matrix Σ̂ in Problem (8) is positive
definite.

Assumption 2, which requires all the eigenvalues to be
nonzero, guarantees that subproblem (23) is well defined. With-
out this assumption, the objective function in (23) may fail
to achieve a finite minimum value. In cases where Assump-
tion 2 may not hold, incorporating a norm regularizer for Θ
would bound the solution, thereby ensuring the existence of a
minimizer.

Theorem 1: Let
{(

Θ̂
(k)

, Ŝ(k)
)}

k∈N
be a sequence generated

by Algorithm 3. Under Assumptions 1 and 2, every limit point

of
{(

Θ̂
(k)

, Ŝ(k)
)}

k∈N
is a block coordinatewise minimizer of

Problem (8).
The proof of Theorem 1 is deferred to Appendix C. This the-

orem asserts the subsequence convergence of our algorithm to a
block coordinatewise minimizer of Problem (8). When the block
coordinatewise minimizer lies within the interior of the feasible
set, it becomes a stationary point. The theorem’s assertions
are significant both theoretically and practically. As discussed
earlier in the paper, GMRFs are a particular case of Gaussian
graph-stationary processes. Taking this into account, we can
always initialize our algorithm using the solution estimated by
GL (which is optimal for GMRF) and then, run iteratively the
updates over Θ and S in Algorithm 3, to get an (enhanced)
coordinatewise minimum estimate. Other approaches to im-
prove the coordinate-wise estimation involve initializing S with
the solution provided by (6), as described in Algorithm 3, or
using the S associated with the precision matrix (Σ̂

−1
), which

may avoid the additional runtime complexity introduced by
GSR initialization.

Regarding the computational complexity, it is important to
note that solving the proposed graph inference problem using a
standard convex solver, such as CVX, results in a computational
complexity of O(N7). This complexity becomes infeasible in
many practical scenarios when the number of nodes N is large.
In contrast, our approach significantly reduces the computa-
tional costs and provides a more scalable solution by leverag-
ing linearized ADMM to solve the optimization problems in
(11) and (24). For (11), the computational cost per iteration
is dominated by O(N3) matrix multiplications and the Dyk-
stra projection, which has a cost of O

(
N2 log(N) log(1/ε)

)
.

For (24), the key operations include matrix multiplications,
eigenvalue decomposition, and updating the dual variable, with
an overall per-iteration complexity of O(N3). Both problems
share a worst-case convergence rate of O(1/k) [37], meaning
that achieving an ε-accurate solution requires O(1/ε) iterations.
Consequently, the total computational complexity for solving
(11) is O

((
N3 +N2 log(N) log(1/ε)

)
1
ε

)
, while for (24), it is

O
(
N3 1

ε

)
.

V. NUMERICAL EXPERIMENTS

This section evaluates quantitatively the performance of
PGL. Since PGL can be understood as a generalization of the
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Fig. 1. Graph estimation error nme(S∗, Ŝ) vs. number of samples R for different graph learning approaches (PGL, GL, and GSR) and simulations setups.
Specifically, the six lines reported in each subplot correspond to the combination of (a) 3 different graph learning methods and 2 different covariance setups
(SSEM and Poly) for a noise-free scenario; (b) 3 different graph learning schemes and 2 noise levels σ ∈ {0.05, 0.2} for a Poly setup; and (c) 3 graph
generation models and 2 covariance models (SSEM and Poly) for the PGL algorithm in a noise-free scenario.

widely adopted GL (with Θ being any polynomial in S), in
most test cases, we will test both algorithms. Similarly, we
also test the learning performance of GSR [13], which assumes
stationarity but not Gaussianity. The performance results ob-
tained from both synthetic and real-data experiments are sum-
marized in Figs. 1–4. Unless otherwise stated, to assess the
quality of the estimated GSO, we use the normalized mean error
between the estimated and true S. Mathematically, this entails
computing1

nme(S∗, Ŝ) =
‖S∗ − Ŝ‖2F
‖S∗‖2F

, (35)

where Ŝ and S∗ represent the estimated and true S respec-
tively. Moreover, for the synthetic experiments we test the
graph learning algorithms over 100 realizations of random
graphs {Gi}100i=1 and report the average normalized mean error
1

100

∑100
i=1 nme(S∗

i , Ŝi).
If not specified otherwise, in our synthetic experiments, we

consider graphs with N = 20 nodes generated using the Erdös-
Rényi (ER) model with a link probability of p= 0.1. Regarding
the generation of the graph signals, three different setups for the
covariance matrices have been studied. For the setup referred
to as “Poly”, the covariance matrix Σ is generated as a ran-
dom polynomial of the GSO of the form Σ= (

∑L−1
l=0 hlS

l)2,
where hl are random coefficients drawn from a normalized
zero-mean Gaussian distribution, and the square operator guar-
antees matrix Σ to be positive definite. The setup referred to
as “SSEM” constructs the covariance matrices following the
sparse structural equation model [38] for graph signal gener-
ation as Σ= (I− S)2, where S is selected to ensure that Σ
is positive definite. The setup referred to as “MRF” constructs
the covariance matrices following the assumptions made by GL
as Σ= (μI+ νS)−1, where μ is some positive number large

1Results for other recovery metrics (including accuracy and F1 score)
as well as additional simulations can be found both in our conference
precursor [1] and in our online repository https://github.com/andreibuciulea/
GaussSt_TopoID. The reported experiments have been run in a MSI GL65
Leopard laptop with the following specifications: CPU: Intel Core i7-10750H
(6 cores, 2.6 GHz base clock), RAM: 32 GB, GPU: NVIDIA GeForce GTX
2060.

enough to assure that Σ−1 is positive definite and ν is some
positive random number.

A. Test Case 1: Estimation Error Versus Number of
Samples for Multiple Synthetic Scenarios

In this first test case, we employ synthetic scenarios for
testing the performance of our approach in terms of nme(S∗, Ŝ)
vs. R and also compare the results with other methods from
the literature. The different scenarios considered are detailed
below.

Error vs. number of samples for different graph learning
methods and signal models. The results of the experiment
depicted in Fig. 1(a), compare the nme(S∗, Ŝ) (y-axis) of vari-
ous algorithms with respect to the number of available samples
R (x-axis). Moreover, we consider SSEM and Poly setups for
data generation. The results shown in Fig. 1(a) reveal that:
i) PGL outperforms its competitors, ii) the error decreases as
R increases, and iii) estimation is more accurate for SSEM
than for Poly. Next, we discuss these three main findings in
greater detail. All algorithms do a better job estimating the
graph for the SSEM model. Since Θ for SSEM is a specific
second-order polynomial in S it can be seen as a particular
case of Poly, and consequently, a scenario from which the
graph structure is easier to estimate. Indeed, while GL fails to
estimate the graph for the Poly model, it is able to estimate
some of the links for the SSEM. However, the estimation error
of GL is quite large and does not change with the number of
samples R, demonstrating that the poor performance is due to a
model mismatch. This will be further confirmed in Section V-B,
where we simulate a GMRF data generation setup that aligns
perfectly with the assumptions made by GL. Regarding PGL
and GSR, we observe that the error decreases almost linearly
with the number of samples R. Perhaps more importantly, we
also observe that, as R increases, the gap between PGL and
GSR diminishes. For example, while for the Poly case GSR
needs 10 times more samples than PGL to achieve an error
of 10−1, GSR only needs 3 times more samples than PGL to
achieve an error of 10−3. This illustrates that, as expected, the
gains associated with assuming Gaussianity are stronger when

https://github.com/andreibuciulea/GaussSt_TopoID
https://github.com/andreibuciulea/GaussSt_TopoID
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Fig. 2. Graph estimation error nme(S∗, Ŝ) vs. number of samples R for
data generated according to a GMRF. We consider three different graph
learning schemes (PGL, GL, and GSR) and two levels of additive white noise
(σ ∈ {0.05, 0.2}), giving rise to the six lines in the figure.

the number of observations R is small, vanishing as R grows
very large.

Error vs. number of samples for noisy observations. Next,
we assess the performance of the graph learning algorithms
in the presence of additive white Gaussian observation noise.
The results are shown in Fig. 1(b). As in the previous test
case, we report nme(S∗, Ŝ) vs R for PGL, GL and GSR. The
difference here is that we consider only the more intricate signal
generation model (Poly) and two normalized noise levels (σ =
0.05, σ = 0.2). The main observations in this case are: i) PGL
outperforms GSR and GL when R is large, ii) the error for
PGL and GSR decreases as R increases, while the one for GL
is flat and close to 1, iii) the estimation performance for PGL
and GSR worsens as the noise level σ increases, deteriorating
noticeably with respect to the setup in Fig. 1(a), and iv) the gap
between PGL and GSR grows. The findings in i) and ii) are
consistent with those found in the previous test case. Finding
iii) is expected and common in all graph learning approaches.
Finally, the larger gap between PGL and GSR as R increases, as
observed in finding iv), highlights the benefits of employing a
more sophisticated model as PGL. By jointly considering (AS1)
and (AS2), PGL is better equipped to handle challenging sce-
narios such as polynomial covariances and observation noise.
While this increased sophistication introduces greater complex-
ity to the problem, it also enables PGL to achieve signifi-
cantly improved results compared to GSR, particularly when R
is large.

Error vs. number of samples for different graph models.
This test case considers network models other than ER. In par-
ticular, three different types of graphs are considered: 1) Small
World (SW) graphs with mean node degree 4 and rewiring
probability 0.15; 2) Stochastic block model (SBM) graphs with
4 clusters, and intra and inter-cluster edge probability of 0.8
and 0.05, respectively; and 3) Barabási-Albert (BA) graphs with
2 edges to attach at every step. As in the first test case, we
consider two types of signal generation models: SSEM and
Poly. Fig. 1(c) reports the error vs. the number of samples for
the six combinations considered (3 types of graphs and 2 types

of signal generation models). The results show that there is a
significant difference in performance between SW, SBM, and
BA, which is part due to the sparsity level present in each
graph. One of the assumptions codified in our model is that the
graph is sparse, and, as a result, our algorithm does a better
job estimating BA (the one with the lowest average degree)
than SBM and SW (the one with the highest average degree).
Finally, we also note that the estimation error achieved with
SSEM consistently outperforms that of the Poly setup. These
findings align with the results shown in Fig. 1(a) for ER graphs
and support the theoretical discussion, which identified SSEM
as a specific instance of Poly. Furthermore, the results obtained
when comparing the different approaches across various graph
types are consistent with those presented for ER graphs. Ad-
ditional details about these results are available in the code
repository.

B. Test Case 2: Noisy GMRF Graph Signals

In this test case, the goal is to assess the behavior of PGL
for GMRF observations, which is the setup that motivated the
development of the GL algorithm.

Estimation error considering noisy GMFR signals. In this
experiment, we replicate the scenario from Fig. 1(b), utilizing a
GMFR model to generate the signals. The performance of PGL,
GL and GSR for two different noise levels, σ ∈ {0.05, 0.2},
is depicted in Fig. 2. The main observations are: i) across all
considered approaches, increasing the noise level σ leads to a
deterioration in terms of nme(S∗, Ŝ); ii) GSR always performs
worse than PGL, providing very poor results when R< 104;
and iii) GL outperforms PGL when the number of observations
R is small. Findings i) and ii) are unsurprising and consis-
tent with the behavior observed in the previous experiments,
showcasing the benefits of considering the log-likelihood reg-
ularization in the optimization run by PGL. Regarding iii), GL
outperforming PGL is expected, since the latter needs to “learn”
the particular polynomial between Θ and S.

However, as the value of R increases, the error in PGL gradu-
ally decreases, while the error in GL remains relatively constant,
leading to PGL outperforming GL for large values of R. This
behavior is more surprising and can be attributed to the fact
that GL focuses on learning the precision matrix Θ, while PGL
balances the accuracy in terms of both the precision Θ and the
graph S. Since the reported error focuses on the estimation S,
the values of the diagonal of Θ are not relevant for nme(S∗, Ŝ)
and this can explain that GL, which is a maximum likelihood
estimate for Θ, does not yield the minimum nme(S∗, Ŝ).

C. Test Case 3: Computational Complexity

Here, we compare the runtime obtained by the efficient im-
plementation of our PGL scheme provided in Algorithm 3 and
a generic block-coordinate alternating minimization algorithm
that uses CVX [39], the most common off-the-shelf solver for
convex problems.

Computational complexity and estimation error. The ob-
jective of this experiment is to evaluate the running time and
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TABLE I
VALUES OF THE RUNNING TIME AND NME(S∗, Ŝ) FOR TWO DIFFERENT IMPLEMENTATIONS OF PGL: ONE USING AN OFF-THE-SHELF CONVEX SOLVER

(PGL-CVX) AND THE OTHER ONE USING THE EFFICIENT METHOD IN ALGORITHM 3 (PGL-ALG.3). THE RESULTS ARE SHOWN FOR DIFFERENT GRAPH

SIZES N AND − INDICATES THAT THE RUNNING TIME WAS MORE THAN 2 HOURS

Alg. \ N 20 30 40 50 60 70 80 Metric

PGL-CVX 2.37 · 101 3.88 · 101 1.29 · 102 1.11 · 103 3.13 · 103 —- —- Time (s)
PGL-Alg. 3 2.49 · 100 2.72 · 100 2.88 · 100 3.81 · 100 4.45 · 100 5.86 · 100 6.75 · 100

PGL-CVX 7.98 · 10−4 3.12 · 10−3 1.35 · 10−2 2.59 · 10−2 9.16 · 10−2 —- —-
nme(S∗, Ŝ)

PGL-Alg. 3 4.66 · 10−4 1.30 · 10−3 2.18 · 10−3 5.07 · 10−3 1.59 · 10−2 1.43 · 10−1 7.94 · 10−1

estimation error for different versions of our algorithm as the
number of nodes increases. In particular, the experiment focuses
on the Poly setup, utilizing R= 106 graph signals, and averages
the results over 50 graph realizations. Table I lists the elapsed
time required to obtain the graph and precision estimates
for problems with different numbers of nodes N using two
algorithms: 1) solving the optimization in (8) with a block coor-
dinate approach where the minimization over Θ given S and the
minimization over S given Θ are run using CVX (this algorithm
is labeled as PGL-CVX) and 2) employing the efficient scheme
outlined in Algorithm 3 (this choice is labeled as PGL-Alg. 3).
To guarantee that the results are comparable, the nme(S∗, Ŝ) is
also reported. Examining the listed running times, we observe
that as the number of nodes increases, both solvers require more
time to estimate the graph, with the number of variables scaling
with N2. More importantly, there exists a noticeable difference
between PGL-CVX and PGL-Alg. 3. Not only is the latter faster
for small graphs, but the performance gap grows significantly
as N increases. Note that the results for graphs with more
than N = 60 nodes are not reported for PGL-CVX, since the
computation time exceeded two hours. In terms of nme(S∗, Ŝ),
our approach yields results that are comparable to (and even
slightly better than) those of PGL-CVX. These results align
with the discussion in Section IV regarding the computational
complexity of our method, confirming that, relative to a generic
solver, our approach significantly reduces computational costs
and provides a more scalable solution, especially for large
graphs.

D. Test Case 4: Real Data Scenarios

Finally, we compare different graph learning algorithms (in-
cluding PGL) in the context of two different graph-aware ap-
plications. Both applications are related to financial data, which
was collected from Yahoo! Finance2. The details and results are
provided next.

Stock graph-based clustering from returns. For this real-data
experiment, we tested our graph learning algorithm on finan-
cial data and further performed a clustering task. Specifically,
40 companies from 4 different sectors of the S&P 500 were
selected (10 companies from each sector) and the market data
(log returns) of each company in the period 2010-2015 was re-
trieved. This gives rise to a data matrix of size X ∈ R

40×1510. In
this application, as in many others dealing with graph learning,

2https://finance.yahoo.com/

Fig. 3. The experiment considers 40 companies of the S & P 500 from
4 different sectors, using as nodal signals the daily returns in the period
2010-2015. Four different graph learning schemes are considered: correlation
networks (Corr), PGL, GL and GSR. After learning the graph, a spectral
clustering method is implemented. The figure shows the normalized node
clustering error (fraction of wrongly clustering nodes) as the percentage of
available signals to learn the graph increases.

we do not have access to the ground truth graph. Hence, we
cannot quantify the quality of the estimated network directly
by using a metric like nme or F1 score. As a result, we need
to assess the quality of the estimated graph indirectly, using the
graph as input for an ulterior task. In this experiment, we use the
graph to estimate the community each company belongs to in
an unsupervised manner. More specifically, we implement the
following pipeline: 1) estimate several graphs from a subset of
the available graph signals, 2) use spectral clustering to group
the nodes into 4 communities (as many as sectors were se-
lected), and 3) compute the ratio of incorrectly clustered nodes.
To obtain more reliable results, we averaged the clustering
errors over 50 realizations in which the subset of graph signals
was chosen uniformly at random. The vertical axis of Fig. 3

represents the normalized clustering error 1
50

∑50
i=1

N(i)
w

N which
is computed as the average of the fraction between the number
of wrongly clustered nodes Nw and the total number of nodes
N over 50 graph realizations. The horizontal axis of Fig. 3
represents the percentages of graph signals used to estimate Ŝ.
Results are provided for 4 graph learning approaches: PGL, GL,
GSR, and “Corr”, which estimates the graph as a thresholded
version of the correlation matrix. The idea is that companies
from the same sector have stronger ties among them and, as
a result, when running a graph-based clustering method, the 4
sectors should arise. Based on the results presented in Fig. 3, it

https://finance.yahoo.com/
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Fig. 4. This experiment learns the graph connecting the 7 FAAMUNG
stocks using as signals the closing price from July 2019 to May 2020. Three
different graph learning methods are used (PGL, GL, and GSR) and a different
graph is learned for every day (using the signals of the previous 30 days).
Subplot (a) shows the value of the algebraic connectivity (λ2) associated with
each one of the 200× 3 estimated graphs. Subplot (b) shows the value of
the portfolio for 4 different investment strategies, 3 of which are based on the
algebraic connectivity estimated in the subplot (a).

can be observed that PGL outperforms the other alternatives and
additionally, as the number of available signals increases, the
clustering error for PGL drops significantly. The superiority of
PGL may indicate that considering more complex relationships
among stocks (beyond the simple correlations considered in
“Corr” or the partial correlations considered in GL) is a better
model to understand the dependencies between log-returns in
the stock market. On the other hand, GSR shows high clustering
error with a limited number of samples, but it improves as
the number of available samples increases. This observation
aligns with our earlier discussion in Section III, where we
highlighted that this particular model offers greater generality
but necessitates a substantial number of samples to accurately
estimate the graph.

Learning sequential graphs for investing. This experiment
deals with a different real-world problem and dataset. We still
look at stocks, but consider now the close price of the 7 FAA-
MUNG3 companies from Jul 2019 to May 2020. The goal is to
design an investment strategy to maximize the benefits using as
input a graph describing the relationships among the companies.
Inspired by the approach in [40], we first build a graph, analyze
its connectivity and then, invest (or not) in a stock according
to the graph connectivity. To be more specific, we use the
close price to estimate multiple 7× 7 adjacency matrices. We
estimate a total of 200 matrices, where each adjacency matrix
(graph) is estimated in a rolling window fashion. The window
consists of 30 consecutive days and for each graph estimation,
we shift the window one day at a time. These graph estimations
help to visualize how the graph topology changes during this
time period. The finding in [40] is that big changes in the graph
connectivity indicate opportunities to invest. To that end, we

3Facebook, Amazon, Apple, Microsoft, Uber, Netflix, and Google.

keep track of the algebraic connectivity value, which is the sec-
ond smallest eigenvalue (λ2) of the estimated Laplacian matrix.
The lower the value, the less connected the graph is and, as a
result, the easier breaking the graph into multiple components
is. Fig. 4(a) shows the value of λ2 for each of the 200 considered
graphs (each associated with a 30-day period). Then, using the
approach in [40] we invest only if λ2 is below a fixed threshold.
We learn the graph using 3 methods (GL, GSR, and PGL)
and, for each of them, we select the best possible threshold
(the one that maximizes the benefits). Correlation was not used
here due to its poor performance. The results of applying the
graph-connectivity-based investment strategy to the graphs esti-
mated with each of the algorithms are shown in Fig. 4(b). The
purple line labeled as “Strategy I” is used as a baseline and
involves investing the initial amount evenly across the stocks
of seven companies. All holdings are sold daily, and the full
amount is reinvested in the same manner. In contrast, the graph-
based strategies operate by investing the initial amount, selling
all holdings whenever λ2 exceeds a predefined threshold, and
reinvesting the money when λ2 falls below the threshold again.
By analyzing the results obtained, we can observe that: i) the
graph-based strategies outperform (gain more money than) the
baseline; ii) the strategies based on GL and GSR provide similar
gains; and iii) the strategy based on PGL yields the highest
gains. This provides additional validation for the graph learning
methodology proposed in this paper.

VI. CONCLUSION

This paper has introduced PGL, a novel scheme for learning
a graph from nodal signals, with our key contribution being
the modeling of the signals as Gaussian and stationary on the
graph. This approach opens the door to a graph learning formu-
lation that leverages the advantages of GL (needing a relatively
small number of signals to get a good estimation of the graph
structure) while encompassing a more comprehensive model
(because it handles cases where the precision matrix can be
any polynomial form of the sought graph). Given the increased
complexity and nonconvex nature of the resulting optimization
problem, we have developed a low-complexity algorithm that
alternates between estimating the graph and precision matrices
and have characterized its convergence to a block coordinate-
wise minimum. To assess its efficacy, we have conducted nu-
merical simulations comparing PGL with various alternatives,
using both synthetic and real data. The results have showcased
the benefits of our approach, motivating the adoption and fur-
ther investigation of the proposed graph learning methodology.

APPENDIX A
COMPUTATIONS OF PROJECTIONS

We present the details about how to compute the projections
PSA

and PSB
.

The computation of PSA
is straightforward as follows:

PSA
(A) =

(
A+A�)/2. (36)



BUCIULEA et al.: POLYNOMIAL GRAPHICAL LASSO: LEARNING EDGES FROM GAUSSIAN GRAPH-STATIONARY SIGNALS 1165

The projection PSB
is defined as the minimizer of the opti-

mization problem as follows:

PSB
(A) := argmin

X∈SB

1

2
‖X−A‖2F . (37)

To compute the projection PSB
, we solve Problem (37) row by

row. For the j-th row, we solve the following problem,

minimize
x∈RN

1

2
‖x− a‖2,

subject to x�1≥ 1, xj = 0, x\j ≥ 0, (38)

where a ∈ R
N contains all entries of the j-th row of A, xj

denotes the j-th entry of x, and x\j ∈ R
N−1 contains all entries

of x except the j-th one.
Let x̂ denote the optimal solution of Problem (38). Propo-

sition 1 below, proved in Appendix B, presents the optimal
solution of Problem (38).

Proposition 1: The optimal solution x̂ to Problem (38) can
be obtained as follows:

• If
∑

i�=j max(ai, 0)≥ 1, then x̂j=0, and x̂i=max(ai, 0),
for i �= j.

• If
∑

i�=j max(ai, 0)< 1, then x̂j = 0, and x̂i =
max(ai + φ, 0), for i �= j, where φ satisfies∑

i�=j max(ai + φ, 0) = 1.
Several efficient approaches have been developed to tackle

the piecewise linear equation
∑

i�=j max(ai + φ, 0) = 1.
Among these, the sorting-based method described in [41] is
noteworthy. Central to this method is the sorting of the vector
a, which constitutes the most computationally intensive step,
generally necessitating O(N logN) operations.

APPENDIX B
PROOF OF PROPOSITION 1

Proof: The Lagrangian of the optimization in (38) is

L(x, u,v) =
1

2
‖x− a‖2 − u

(
x�1− 1

)
− 〈v\j , x\j〉+ vjxj ,

where u ∈ R and v ∈ R
N are KKT multipliers. Let (x̂, û, v̂) be

the primal and dual optimal point. Then (x̂, û, v̂) must satisfy
the KKT system:

x̂i − ai − û− v̂i = 0, for i �= j; (39)

x̂j − aj − û+ v̂j = 0; (40)

x̂i ≥ 0, v̂i ≥ 0, v̂ix̂i = 0, for i �= j; (41)

x̂j = 0, û≥ 0, x̂T1≥ 1; (42)

û
(
x̂T1− 1

)
= 0; (43)

Therefore, for any i �= j, it holds that x̂i = ai + û+ v̂i. Then
we obtain the following results:

• If ai + û < 0, then v̂i =−(ai + û) and x̂i = 0, following
from the fact that v̂ix̂i = 0 and x̂i ≥ 0.

• If ai + û≥ 0, then v̂i = 0. This can be obtained as follows:
if x̂i = 0, then v̂i =−(ai + û)≤ 0. Since v̂i ≥ 0, one has
v̂i = 0; On the other hand, if x̂i �= 0, then v̂i = 0, following
from the fact that v̂ix̂i = 0. As a result, we get x̂i = ai + û.

Overall, we obtain that

x̂j = 0, and x̂i =max(ai + û, 0), ∀ i �= j. (44)

On the other hand, x̂ and û satisfy that x̂T1≥ 1, û≥ 0,
and û

(
x̂T1− 1

)
= 0. To this end, we can obtain the following

results:
• If

∑
i�=j max(ai, 0)≥ 1, then û= 0, indicating that x̂i =

max(ai, 0), for any i �= j.
• If

∑
i�=j max(ai, 0)< 1, then û �= 0. This is because û=

0 will result in x̂�1< 1, which does not satisfy the KKT
system. Together with the KKT condition that û

(
x̂T1−

1
)
= 0, one has x̂�1= 1. Therefore, one obtains that, for

any i �= j, x̂i =max(ai + û, 0), where û is chosen such
that

∑
i�=j max(ai + û, 0) = 1.

We note that the φ in Proposition 1 is exactly the dual optimal
point û.

APPENDIX C
PROOF OF THEOREM 1

Proof: The convergence result stated in Theorem 1 is
based on the framework established by Theorem 2.3 in [42]. To
demonstrate the validity of Theorem 1, it suffices to establish
that the conditions and assumptions of Theorem 2.3 are satisfied
in our context. Our approach to block updates aligns with the
procedure delineated in equation (1.3a) of [42].

We first verify the conditions the requisite conditions of The-
orem 2.3 in [42] are met. Specifically, Theorem 2.3 stipulates
that the objective function, along with the feasible set of the
optimization problem, should exhibit block multiconvexity. For
Problem (8), the objective function f is convex with respect to
each of the blocks Θ and S when the other block is fixed, a
property that defines block multiconvexity as per [42]. More-
over, the function f is strongly convex with respect to both Θ
and S.

The feasibility constraints of Problem (8) form a set X that
satisfies the criteria for block multiconvexity as defined in [42].
This is due to the convexity of the individual set maps XΘ and
XS. The set map XΘ is defined as

XΘ = {Θ ∈ R
N×N |Θ	 0, ‖ΘS− SΘ‖F ≤ δ} (45)

for some given S, and similarly, the set map XS is defined as

XS = {S ∈ R
N×N |S ∈ S, ‖ΘS− SΘ‖F ≤ δ} (46)

for some given Θ. Consequently, the optimization subproblems
with respect to Θ and S in Problem (8) are convex.

We now validate the assumptions required by Theorem 2.3 in
[42] within the context of our setting. Specifically, it is required
that the objective function f is bounded below over the feasible
set X , that is, inf(Θ,S)∈X f(Θ,S)>−∞. This is indeed the
case here, because the term ρ‖S‖1 + η

2‖S‖2F is nonnegative.
Additionally, the function − log(det(Θ)) + tr(Σ̂Θ) attains a
finite infimum when Σ̂ is positive definite under Assumption 2.
To see this, first observe that det(Θ)≤ ‖Θ‖N2 , where ‖Θ‖2
is the largest eigenvalue of Θ. Consequently, − log det(Θ)≥
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−N log(‖Θ‖2). Further, since tr(Σ̂Θ)≥ γtr(Θ)≥ γ‖Θ‖2,
with γ > 0 being the smallest eigenvalue of Σ̂, we obtain

− log det(Θ) + tr(Σ̂Θ)≥−N log(‖Θ‖2) + γ‖Θ‖2, (47)

which indeed has a finite minimum. Thus, we conclude that
inf(Θ,S)∈X − log det(Θ) + tr(Σ̂Θ)>−∞.

Furthermore, the existence of block coordinatewise minimiz-
ers is assured by the compactness of the feasible set. More-
over, Theorem 2.3 in [42] stipulates that set maps change
continuously during iterations. Referring to (45) and (46), it
is clear that the only constraint that changes through iterations
is ‖ΘS− SΘ‖F ≤ δ, while the other constraints, Θ	 0 and
S ∈ S , remain constant. Given that ‖ΘS− SΘ‖F is a continu-
ous function with respect to both Θ and S, the set maps indeed
change continuously, satisfying the theorem’s conditions.

These verifications above have demonstrated that the
conditions and assumptions of Theorem 2.3 are satisfied in our
context, completing the proof.
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