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Abstract—Graph models provide efficient tools to capture
the underlying structure of data defined over networks. Many
real-world network topologies are subject to change over time.
Learning to model the dynamic interactions between entities in
such networks is known as time-varying graph learning. Current
methodology for learning such models often lacks robustness to
outliers in the data and fails to handle heavy-tailed distributions,
a common feature in many real-world datasets (e.g., financial
data). This paper addresses the problem of learning time-varying
graph models capable of efficiently representing heavy-tailed
data. Unlike traditional approaches, we incorporate graph
structures with specific spectral properties to enhance data
clustering in our model. Our proposed method, which can also
deal with noise and missing values in the data, is based on a
stochastic approach, where a non-negative vector auto-regressive
(VAR) model captures the variations in the graph and a
Student-t distribution models the signal originating from this
underlying time-varying graph. We propose an iterative method
to learn time-varying graph topologies within a semi-online
framework where only a mini-batch of data is used to update
the graph. Simulations with both synthetic and real datasets
demonstrate the efficacy of our model in analyzing heavy-tailed
data, particularly those found in financial markets.

Index Terms—Time-varying, graph learning, Laplacian matrix,
data clustering, heavy-tailed distribution, corrupted measure-
ments, financial data.

I. INTRODUCTION

GRAPH signal processing (GSP) is an interesting research
area that combines graph theory and signal processing to
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model and analyze signals defined on graph structures, which
has numerous real-world applications in social networks [2],
image processing [3], data mining, communications [4], finance
[5], and more. The process of inferring the structure of a graph
from data is known as graph learning [6]. There are generally
two types of graphs, namely undirected and directed, with each
type modeling different characteristics of data. An undirected
graph models bilateral relationships or similarities in data, while
a directed graph is commonly used to model unilateral causal
dependencies [7].

There are various approaches in the literature for modeling
signals via graphs. Many graph learning methods consider a
probabilistic model for the data, in which a graph structure
represents the statistics of the data. A foundational technique
in this domain is the Gaussian Markov Random Field (GMRF)
model [8], which assumes that the data follows a multivari-
ate Gaussian distribution. In a general GMRF, the precision
matrix encodes the conditional independence relationships be-
tween variables, thereby defining the structure of the underlying
undirected graph. Recently, there has been growing interest
in Laplacian constrained GMRFs [9], [10], [11], where the
precision matrix is specifically constrained to be the Laplacian
matrix of an undirected graph [12]. This constraint is particu-
larly desirable for modeling smooth signals on graphs, where a
higher weight between two nodes signifies a stronger similarity
between their signal values [13]. Under this framework, the
graph (the Laplacian matrix) can be inferred via maximum
likelihood (ML) or maximum a posteriori (MAP) estimation.
The Graphical LASSO (GLASSO) [14] is one of the early
works in this regard, which was later improved by introducing
structural [15], [11], [16], [17], [18] and spectral constraints
[19] into the problem of learning the graph from data. Directed
graph topologies, used for modeling directional dependencies,
can also be learned using different approaches. Some topology
identification methods are based on structural equation models
[20], while many other approaches use vector auto-regressive
(VAR) models that can be represented with directed graphs
[21], [22], [23]. There have also been some recent works that
incorporate both directed and undirected graph topologies to
model spatial and temporal correlations at the same time [24].

The methodologies mentioned above are mostly applicable
for learning static graphs. However, in many real-world applica-
tions, such as social networks or finance, the network structure
is subject to change over time. Therefore, one of the challenges
in graph learning is to learn a time-varying graph topology.
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There are several approaches in the literature for learning such
dynamic graphs [25], [26], [27], [28], [29], [30]. However, the
existing approaches lack robustness to data outliers and can-
not efficiently model heavy-tailed distributions, such as those
observed in financial data. Moreover, these models also fail
to capture graph topologies that adhere to specific structural
and spectral properties, such as k-component graphs. In this
paper, we propose a novel framework for learning time-varying
graphs that incorporates spectral and structural constraints in
the problem of inferring graph topologies. Our approach is
based on a stochastic model that can first characterize the sta-
tistical properties of heavy-tailed data and second be employed
for data clustering. We subsequently investigate the applications
of our framework for time-varying data analysis in financial
markets.

II. OVERVIEW OF EXISTING WORKS

A. Notation

In this paper, bold lower-case letters are employed for vectors
(e.g., x) and bold upper-case letters are used to denote ma-
trices (e.g., X). The operator det� represents the generalized
determinant (the product of non-zero eigenvalues of a matrix),
and 1(·) denotes the identity operator. The Hadamard (point-
wise) product and division are respectively denoted by � and
�. We also use ‖x‖p for the �p vector norm (simply omitting the
subscript for p= 2) and ‖X‖F for the matrix Frobenius norm.
The notations ‖X‖1,off and ‖X‖F,off respectively denote the �1
norm and the Frobenius norm of the off-diagonal elements of
the matrix X. The �p,q norm of a matrix is denoted with ‖X‖p,q .
We use diag(X) to denote the vector of diagonal elements
of X and Diag(x) to denote a diagonal matrix with x on its
diagonals. The graph Laplacian, the adjacency, and the degree
operators [19] are respectively denoted by A, L, and d. We
denote the ground-truth number of clusters in the data with
uppercase letter K and the rank constraint parameter of our
method with lowercase letter k.

B. Problem Statement

Assume a dynamic signal xt ∈ R
p defined over a time-

varying undirected graph structure, where each vertex of the
graph represents an element of the signal, and the edge weights
encode the (bilateral) interactions between these elements. Sup-
pose the weights of the graph vary only at specific time instants
(piece-wise constant graph). We may then segment the time
indices into frames of length Tn, where the graph weights
are assumed to remain constant within each time frame. Let
Fn denote the time indices of the n-th frame of data, where
n ∈ {1, . . . , N}. In the case of no overlap between consecutive
frames, as shown in Fig. 2, we have T =

∑N
n=1 Tn. A time-

varying undirected graph structure can subsequently be repre-
sented by G = {V, En,Wn}. Here, V = {1, . . . , p} denotes the
set of vertices (which remains fixed over time), En ⊆ {{i, j} |
i, j ∈ V} represents the time-varying set of edges (unordered
pairs of nodes connected to each other) at time frame n, andWn

is the (weighted) adjacency matrix. Each entry Wi,j(n)≥ 0

Fig. 1. Illustration of the concept of time-varying graphs.

Fig. 2. Illustration of the time frames.

of Wn denotes the weight of the edge between vertex i and
vertex j during time frame n. Alternatively, one can represent
an undirected graph by the vector of all possible edge weights

wn ∈ R
p(p−1)/2
+ . The edge weights can also be mapped to the

adjacency matrix using the adjacency operator A [19], i.e.,
Wn =Awn. Furthermore, the time-varying Laplacian matrix
can be derived as Ln =Diag(Wn1)−Wn = Lwn, where L
denotes the Laplacian operator [19].

Consider T snapshots (time measurements) of the signal ver-
tically arranged in the columns of X= [x1, . . . ,xT ] ∈ R

p×T .
Let Xn = [xt | t ∈ Fn] denote the data matrix at time frame n.

A time-varying graph learning problem can be generally
formulated as follows:

min
{Sn|n∈T }∈ΩS

∑

n∈T
f1(Sn,Σn) + f2(Sn) + f3(Sn,Sn−1),

(1)

where Sn denotes the graph matrix (Laplacian or the weighted
adjacency matrix), ΩS denotes the set of feasible graph ma-
trices, T ⊆ {1, · · · , N} denotes the set of frame indices for
which the data is available, and Σn denotes the data statistics
matrix (e.g., sample covariance matrix). Here f1(·) is a fidelity
criterion measuring how well the graph matches the statistics
of the data, f2(·) is a regularization function used to promote
properties such as sparsity, and f3(·) is a temporal consistency
term formulating the smoothness of the graph variations.

In the next part, we will discuss different choices for the
objective function proposed by current methods.

C. Related Works

The notion of time-dependent graphs has roots dating back to
the late 1990s [31] ; however, the time-varying graph learning
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methodology and concept were quite recently established. The
time-varying graphical LASSO (TVGLASSO) [26] is one of
the early works on this topic, which extends the well-known
GLASSO [14] inference method to the case of time-varying
topologies. Let Ln denote the Laplacian of a time-varying graph
at frame n. Then, the graph learning problem in this paper is
formulated as follows:

min
{Ln|Nn=1}�0

N∑

n=1

(
− Tn log det(Ln) + Tn tr(ΣnLn)

+ λ ‖Ln‖1,off

)
+ β

N∑

n=2

h(Ln − Ln−1), (2)

where Σn denotes the data statistics matrix at time frame n
(usually the sample covariance matrix) used as a similarity
criterion. Moreover, h(·) is a regularization function utilized as
a measure of the temporal smoothness of the graph variations.
The TVGLASSO, however, does not incorporate the structural
constraints of the combinatorial graph Laplacian (CGL) matrix
[11], and the learned matrices {Ln |Nn=1} are only positive defi-
nite inverse covariance (precision) matrices. Another early work
on time-varying graph topology identification is the method
in [25]. This work incorporates the Laplacian structural con-
straints by reformulating the problem in terms of the weighted
adjacency matrices {Wn |Nn=1} as follows:

min
{Wn|Nn=1}≥0

N∑

n=1

(
tr(WnZ

�
n ) + fW (Wn)

)

+ γ

N∑

n=2

h(Wn,Wn−1), (3)

where Zn denotes the distance matrix whose (i, j)-th en-
try equals the distance between signal elements i and j at
time frame n. For Euclidean distance, [Zn]i,j =

∥
∥x̃ni

− x̃nj

∥
∥,

where x̃ni
denotes the i-th row of the data matrix Xn.

Here, fW (·) is a measure of graph smoothness, and h(·)
is a regularization function for the temporal variations of
the graph weights. Specifically, fW (W) =−α1� log(W1) +
β ||W‖2F and h(Wn,Wn−1) = ‖Wn −Wn−1‖2F are used
in this paper. Another variant of the above formulation with
h(Wn,Wn−1) = ‖Wn −Wn−1‖1,1 is also considered in
[32], which is solved using a primal-dual splitting method.

In [27], the static factor graph model in [33] is generalized
to the time-varying graph factor analysis (TGFA) framework,
where the graph signal at time-stamp t is considered to have a
Gaussian distribution as follows:

xt ∼N (0,L†
n + σ2

ε I), ∀t ∈ Fn. (4)

The problem is then formulated as

min
{Ln|Nn=1}∈ΩL

N∑

n=1

(
tr(LnΣ

�
n ) + fL(Ln)

)

+ η

N∑

n=2

R(ΔLn �H), (5)

where H= I− 11�, ΔLn = Ln − Ln−1, and ΩL denotes
the set of feasible CGL Laplacian matrices, with fL(Ln) =
−α1� log(diag(Ln)) + β ‖Ln‖2F,off.

Choosing R(·) = ‖·‖1,1 to promote the sparsity of the tem-
poral variations, a formulation similar to the authors’ prior work
[32] is yielded, which is also solved via a primal-dual splitting
method. In [28], several approaches for graph learning, in-
cluding time-varying graphs, are proposed with applications in
financial markets. The problem formulation for learning time-
varying graphs in this paper is the same as that in the TV-
GLASSO method (2). However, here the structural constraints
of the Laplacian matrices {Ln|Nn=1} are incorporated into the
formulation (as in (5)), and only causal batch data (past data
samples) are used for graph learning. In [34], [35], a general
framework for time-varying topology learning is introduced
that can deal with online streaming data. Three types of mod-
els are studied in this paper, namely the time-varying Gaus-
sian graphical model (TV-GGM), the time-varying smoothness-
based model (TV-SBM), and the time-varying structural equa-
tion model (TV-SEM), where the first two apply to undirected
graphical models, and the last one is utilized for directed topol-
ogy identification. The methodology in this paper is based on a
time-varying optimization framework proposed in [36]. Here,
the general formulation for time-varying graph learning is as
follows:

L�
t = argmin

L
F (L; t) = f(L; t) + λ g(L; t), (6)

where L�
t denotes the matrix representation for the graph model

(e.g., the Laplacian matrix for an undirected graph). In this
formulation, f(·) represents a smooth, strongly convex differ-
entiable fidelity (similarity) measure, and g(·) denotes a poten-
tially non-smooth convex regularization function. For instance,
in the TV-GGM Gaussian graphical model, we have

f(L; t) =− log det(L) + tr(LΣt),

g(L; t) = g(L) = iΩL
(L) =

{
0, L ∈ ΩL

∞, L /∈ ΩL

, (7)

where ΩL = {L� 0} denotes the set of positive definite matri-
ces. In this problem, a solution is found via recursive prediction-
correction steps. In the prediction step, a quadratic second-
order approximation F̂ (L; t+ 1) of the unobserved function
F (L; t+ 1) is minimized. In the correction step, the exact
function F (L; t+ 1) is optimized by exploiting the updated
statistics of the data, with the new data sample xt being
received.

In addition to time-varying graph learning approaches for
undirected structures, there have been efforts to learn time-
varying directed topologies arising in structural equation mod-
els, including the works in [29] and [37]. Several other on-
line approaches to graph topology identification have also
been studied in the literature, e.g., [38], [39], [40], [41], [42],
[43], [44].

Most of the existing approaches for time-varying graph learn-
ing are either tailored for offline (full-batch) data, where all
the samples {1, . . . , T} are collected for topology identification
[25], [26], [27], or they deal with online streaming data, where
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TABLE I
SUMMARY OF VARIOUS BENCHMARK METHODS FOR TIME-VARYING GRAPH LEARNING IN COMPARISON TO THE PROPOSED APPROACH. THE

OBJECTIVE FUNCTION COMPRISES A TEMPORAL CONSISTENCY TERM, A GRAPH REGULARIZATION TERM, AND A DATA FIDELITY TERMS. IN THIS

CONTEXT, t REPRESENTS SAMPLES AT EACH TIME INSTANT, n DENOTES THE INDEX OF THE FRAME (MINI-BATCH), AND Fn REFERS TO THE TIME

INDICES WITHIN THE n-TH FRAME. THE LAST COLUMN REPRESENTS THE WORST-CASE ARITHMETIC COMPUTATIONAL COMPLEXITY OF THE

ALGORITHMS IN EACH ITERATION

Temporal Consistency Graph Regularization + Data Fidelity Constraints Data Complexity

TVGLASSO [26]
∑N

n=2 ‖Ln − Ln−1‖q
p,q

∑N
n=1

(
−Tn log det(Ln) + λ ‖Ln‖1,off

)

Ln � 0
X = [Xn|Nn=1] O(p3)

p, q ∈ {1, 2,∞} +
∑N

n=1 Tn tr(ΣnLn) (Full-batch)

Kalofolias et al. [25]
∑N

n=2 ‖Wn − Wn−1‖2
F

∑N
n=1

(
−α1� log(Wn1) + β ‖Wn‖2

F

)
Wn ≥ 0, Wn = W�

n , X = [Xn|Nn=1] O(p2)
+

∑N
n=1 tr(WnZ

�
n ) diag(Wn) = 0 (Full-batch)

Yamada et al. [32]
∑N

n=2 ‖Wn − Wn−1‖1,1

∑N
n=1

(
−α1� log(Wn1) + β ‖Wn‖2

F

)
Wn ≥ 0, Wn = W�

n , X = [Xn|Nn=1] O(p2)
+

∑N
n=1 tr(WnZ

�
n ) diag(Wn) = 0 (Full-batch)

TV-GGM [34] − − − − log det(Lt) + tr(LtΣt) Lt � 0 xt (Online) O(p3)

TV-SBM [35] − − − −α1� log(Wt1) + β ‖Wt‖2
F Wt ≥ 0, Wt = W�

t , xt O(p3)
+ tr ((Diag(Wt1) − Wt)Σt) diag(Wt) = 0 (Online)

Proposed ‖wn − a � wn−1‖1

− log det∗(Lwn) + β ‖wn‖0 wn ≥ 0, dwn = d, Xn = [xt, t ∈ Fn] O(p3)
+ ν+p

Tn

∑
t∈Fn

log

(

1 +
x�
t Lwnxt

ν

)

rank(Lwn) = p − k (Mini-batch)

the graph topology is updated with every new data sample xt

being acquired [29], [35]. There is also a causal (batch) ap-
proach [28] that exploits all the past data frames (e.g., 1, . . . , n)
for learning the graph at the current time frame (e.g., n). The
offline (full-batch) and causal (batch) approaches suffer from
delays and the need for large data storage, while the online
approach is slow due to the high computational costs incurred
by graph learning at every time stamp. This can make it im-
practical for real-time use unless some form of cache storage
is utilized. Additionally, online approaches may struggle to
efficiently capture the temporal consistency in the variations of
the graph weights.

This challenge can be addressed by proposing a semi-online
(mini-batch) approach in which the graph is updated using only
the data samples from a single time frame. The length of the
data frame Tn can then be adjusted based on how dynamic
the desired graph topology is assumed to be, depending on the
application.

The existing time-varying graph learning methods are also
designed for Gaussian data, and they cannot efficiently deal
with heavy-tailed data or data with outliers, which are very
common in real-world applications, e.g., financial markets [45].
Hence, these methods cannot be applied to learning time-
varying topologies of markets in finance. They cannot either
learn graphs with specific spectral properties that can be used
for clustering, e.g., k-component graphs, which are very appli-
cable in unsupervised machine learning (data mining) [46].

Another issue with the current approaches is that they utilize
a simple subtractive model for the graph variations, where the
difference wn −wn−1 is assumed to be smooth. However, in
many real cases, this model is not sufficient and a multiplicative
factor a as wn − a�wn−1 may be required to better model the
variations.

Another drawback of the existing methods is that they rely
on complete statistics of the data, while in many real-world
applications (such as sensor networks), there may be missing
entries in the data (due to sensor failure) or the data may be
contaminated with noise (due to measurement errors). This

issue has been addressed for static graph learning (e.g., [33],
[47]) by adopting a joint signal and graph learning approach
in which an additional signal denoising/imputation step is per-
formed. However, this has not been well addressed for learning
time-varying graphs.

In the following section, we address these issues by propos-
ing a robust predictive approach to learning time-varying graphs
with specific properties that apply to heavy-tailed data.

D. Contributions

Our contributions can be summarized as follows:
• We propose a probabilistic framework to model the sig-

nal and the weights of the graph in time-varying scenar-
ios. Specifically, we utilize a non-negative vector auto-
regressive (VAR) model to capture the temporal variations
in the weights of the graph. Our method is based on MAP
estimation of the graph model in a semi-online approach
in which the graph is only updated within frames, where
the frame length can be adjusted to achieve the optimal
balance between complexity and dynamics.

• We consider a heavy-tailed Student-t distribution for the
signal characterized by the Laplacian matrix of a time-
varying graph. This distribution can efficiently model data
with outliers (e.g., financial data) and it can also handle
Gaussian data by choosing the parameter ν large enough.
Our method is also robust to measurement noise and miss-
ing data.

• We incorporate spectral and structural constraints into the
problem of learning time-varying graphs. Our method can
be used to learn k-component graphs applied to data clus-
tering. We achieve this by imposing constraints on the
node degrees and the rank of the Laplacian matrix.

• We propose an iterative method with proof of convergence,
to solve the problem using the alternating direction method
of multipliers (ADMM), where a majorization of the orig-
inal function is optimized in each subproblem. Numerical
results demonstrate that our proposed method outperforms
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some state-of-the-art algorithms for learning time-varying
graph models, specifically from heavy-tailed data.

III. PROPOSED APPROACH

A. Model and Problem Formulation

In contrast to the deterministic approaches for time-varying
graph learning, we propose a probabilistic framework to address
the problem of learning a time-varying graph. To this end,
we employ a non-negative VAR equation to characterize the
variations in the edge weights of the graph as follows:

wn = (a�wn−1 + εn)+ , n= 1, . . . , N, (8)

where the positive part function (·)+ is used to ensure the
weights remain non-negative. Here, a ∈ R

p(p−1)/2
+ models the

VAR coefficients vector assumed to have an exponential prior
and εn is a zero-mean temporally and spatially white innovation
process with the Laplace distribution. The choice of the Laplace
distribution for the innovations and the exponential distribution
for a is justified for promoting sparsity in the graph weights.
Then, we have:

p(a) = λp(p−1)/2 exp
(
−λa�1

)
, λ > 0,

p(εn) =
1

(2σε)p
exp

(

−‖εn‖1
σε

)

. (9)

We also adopt a stochastic model for the signal, presuming
that xt for t ∈ Fn follows a Laplacian heavy-tailed multivariate
Student-t distribution, as follows:

p(xt|wn)∝ det∗(Lwn)
1/2

(

1 +
x�
t Lwnxt

ν

)−(ν+p)/2

,

t ∈ Fn, ν > 2.
(10)

Choosing the Student-t distribution for modeling heavy-
tailed data, particularly in financial contexts, is extensively sup-
ported in the literature [45]. Now, suppose we have corrupted
measurements of the signal, i.e., some samples are missing, and
there is also some noise. Therefore, the measurements yt are
modeled as

yt =mt � (xt + nt), t ∈ {1, . . . , T},
Y =M� (X+N), (11)

where mt is a given sampling mask vector with binary elements
(zeros correspond to missing samples), � denotes the point-
wise Hadamard product, and nt is a zero-mean i.i.d. Gaussian
noise vector with distribution nt ∼N (0, σ2

nI). We also have
Y = [yt |Tt=1], M= [mt |Tt=1], and N= [nt |Tt=1].

To estimate the time-varying graph weights wn, we employ
a maximum a posteriori (MAP) estimation through a semi-
online (mini-batch) approach, where only a single data frame
is utilized for graph learning.

Let Yn = [yt| t ∈ Fn] =Mn � (Xn +Nn) denote the ma-
trix of the corrupted signal samples (observations) at the time
frame n. For inference of wn, the VAR model parameters, a,
and the original (clean) signal xt, in a semi-online fashion, data
collection is limited to the n-th time frame, i.e., we only utilize

Yn. In this scenario, we may need to await the availability of
Tn data samples in time frame n. Nonetheless, this approach
can also be adapted for online inference by setting Tn = 1. The
problem can then be expressed as follows:

min
wn≥0, a≥0,Xn

− log p(wn,a,Xn|wn−1,Yn,Mn)

s.t. wn ∈ Ωw
(12)

where − log p(wn,a,Xn|wn−1,Yn,Mn) =− log p(Xn|wn)
− log p(Yn|Xn,Mn) − log p(wn|wn−1,a) − log p(a) +
const and Ωw represents the set of equality constraints
that define the feasible region of the desired graph
weights. In particular, we assume that the underlying
graph structure is k connected and that the degrees of the
vertices are fixed and equal to a constant vector d, i.e.,
Ωw = {w| rank(Lw) = p− k, dw = d}, where d represents
the degree operator, mapping the vector of edge weights to
the vertex degrees [48]. The rank constraint ensures that the
graph is k-component, as the number of zero eigenvalues of
the Laplacian matrix of an undirected graph is equal to the
number of disjoint components of the graph. Hence, for a
graph with k components, the Laplacian matrix is of rank
p− k. This constraint helps learn multi-component graphs for
efficient representation of data with inherent cluster structure,
where each graph component represents one data cluster. This
also provides more flexibility (degree of freedom) in graph
modeling, since our model can also be used for connected
graph learning by setting k = 1. The degree constraint dw = d
also controls the distribution of the edge weights of the graph
and helps avoid isolated nodes. Assume the (non-negative)
weights of edges from node i represent the probabilities
with which node i is connected to other nodes. In this case
the degree constraint with d= 1 ensures the sum of these
probabilities is equal to one.

Proposition 1: Let wn−1 in (12) be replaced by an estimate
of the graph weights from the previous time frame, denoted as
ŵn−1. By expanding the posterior probability for MAP estima-
tion and simplifying, we obtain the following formulation for
learning the time-varying graph:

min
wn≥0, a≥0,Xn

1
Tnσ2

n
||Yn −Mn �Xn‖2F − log det ∗(Lwn)

+ ν+p
Tn

∑

t∈Fn

log
(
1 +

x�
t Lwnxt

ν

)

+α ‖wn − a� ŵn−1‖1 + β ‖wn‖0 + γa�1
s.t. wn ∈ Ωw

(13)

where α= 2
Tnσε

, β = 2 log σε

Tn
, and γ = 2λ

Tn
.

Proof: See appendix A.

B. Solution

The non-convex formulation of problem (13), coupled with
the interleaved equality constraints on wn, renders it chal-
lenging to solve. Nevertheless, taking advantage of split-
ting techniques in convex optimization, particularly ADMM
[49], a promising approach to address this problem can
be devised. We begin by reformulating the problem, intro-
ducing the auxiliary variables Ln = Lwn and un =wn −
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a� ŵn−1. We further incorporate an additional penalty
function tr

(
LwnVnV

�
n

)
with Vn ∈ R

p×k, V�
nVn = I to

more effectively control the rank of Lwn. Thus, the problem
formulation becomes:

min

wn≥0, a≥0,

Xn,un,Ln,Vn

f(wn,Xn,a,un,Ln,Vn)

� − log det ∗(Ln) + α ‖un‖1 + β ‖wn‖0
+ ν+p

Tn

∑

t∈Fn

log
(
1 +

x�
t Lwnxt

ν

)

+ 1
Tnσ2

n
‖Yn −Mn �Xn‖2F + γa�1

+ η tr
(
LwnVnV

�
n

)

s.t. Ln = Lwn,un =wn − a� ŵn−1,

dwn = d, rank(Ln) = p− k,V�
nVn = I.

(14)

Hence, the augmented Lagrangian for this problem yields as
follows:

Lρ(wn,Xn,a,un,Ln,Vn,Φn,μn, zn)

= f(wn,Xn,a,un,Ln,Vn)

+
ρ

2
‖Lwn − Ln‖2F + 〈Lwn − Ln,Φn〉

+
ρ

2
‖un −wn + a� ŵn−1‖2 + 〈un −wn + a� ŵn−1,μn〉

+
ρ

2
‖dwn − d‖2 + 〈dwn − d, zn〉. (15)

Now, employing ADMM, we derive an iterative solution con-
sisting of six update steps for the primal variables wn, Xn,
a, un, Ln and Vn, along with three update steps for the dual
variables Φn, μn and zn.

Ln-update step
The subproblem associated with the update step of L pos-

sesses a closed-form solution given by:

Ll+1
n = argmin
Ln
0, rank(Ln)= p−k

− log det∗(Ln)+
ρ

2

∥
∥
∥
∥Ln − Lwl

n − 1

ρ
Φl

n

∥
∥
∥
∥

2

F

=
1

2
Ul

(

Γl +

(

Γl2 +
4

ρ
I

)1/2
)

Ul�. (16)

Here, Γl is a diagonal matrix comprising only the largest
p− k eigenvalues of Lwl

n +Φl
n/ρ, with their corresponding

eigenvectors contained in Ul ∈ R
p×(p−k).

wn-update step
The subproblem related to the update step of w is expressed

as follows:

wl+1
n = argmin

wn≥0

p+ ν

Tn

∑

t∈Fn

log

(

1 +
xl�
t Lwn x

l
t

ν

)

+ β ‖wn‖0

+
ρ

2

∥
∥
∥
∥Lwn − Ll

n +
1

ρ
Φl

n

∥
∥
∥
∥

2

F

+
ρ

2

∥
∥
∥
∥u

l
n −wn + al � ŵn−1 +

1

ρ
μl

n

∥
∥
∥
∥

2

+
ρ

2

∥
∥
∥
∥dwn − d+

1

ρ
zln

∥
∥
∥
∥

2

+ η tr
(
LwnV

l
nV

l�
n

)
.

(17)

To address this challenging problem, we employ the ma-
jorization minimization (MM) technique [50] to minimize a
surrogate majorization function of the original cost. First, using
the inequality log(x)≤ x− 1, ∀x > 0, we obtain:

log

(

1 +
xl�
t Lwn x

l
t

ν

)

≤ log

(

1 +
xl�
t Lwl

n x
l
t

ν

)

+
xl�
t Lwn x

l
t + ν

xl�
t Lwl

n x
l
t + ν

− 1

=

〈

wn,L∗
(

xl
tx

l�
t

xl�
t Lwl

n x
l
t + ν

)〉

+ c0(w
l
n). (18)

Here, wl
n represents a fixed point, selected as the solution from

the previous iteration and c0(·) is a constant function. We can
also define a majorization function for the term ‖Lwn‖2F +

‖dwn‖2 =w�
nHwn as

w�
nHwn ≤w�

nHwn + (wn −wl
n)

�(ζI−H)(wn −wl
n)

= ζ
∥
∥wn −wl

n

∥
∥2 + 2〈wn,Hwl

n〉+ c1(w
l
n), (19)

where H= L∗L+ d∗d and ζ ≥ λmax(H) = 4p− 2 [19]. Us-
ing the proposed majorization functions (upper-bounds) in (18)
and (19) with ζ = 4p− 2, the update step for wn would be
simplified as follows:

wl+1
n = argmin

wn≥0

ρ(4p− 1)

2

∥
∥wn − clw

∥
∥2 + β ||wn‖0

= 1(clw > cth)� clw, (20)

where cth =
√

2β
ρ(4p−1)1 and

clw =

(

1− ρ

ρ(4p− 1)

)

wl
n − 1

ρ(4p− 1)
(awl + bwl) ,

awl = L∗
(
S̃l +Φl

n + ρ
(
Lwl

n − Ll+1
n

)
+ ηVl

nV
l�
n

)
,

bwl =−μl
n − ρ

(
ul
n + al � ŵn−1

)
+ d∗

(
zln − ρ

(
d− dwl

n

))
,

S̃l =
p+ ν

Tn

∑

t∈Fn

xl
tx

l�
t

xl�
t Lwl

nx
l
t + ν

. (21)

In the equation above, L∗ and d∗ represent the adjoints of the
Laplacian and the degree operators, as defined in [19].

un-update step
The subproblem associated with to the update step of un

admits a closed-form solution given by:

ul+1
n = argmin

un

ρ

2

∥
∥
∥
∥un −wl+1

n + al � ŵn−1 +
1

ρ
μl

n

∥
∥
∥
∥

2

+ α ‖un‖1
= Sα

ρ

(

wl+1
n − al � ŵn−1 −

1

ρ
μl

n

)

, (22)

where S denotes the soft-thresholding operator [51].
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Xn-update step
The update step for Xn is obtained by solving the following

problem:

Xl+1
n = {xl+1

t |t∈Fn
}= argmin

{xt|t∈Fn}

∑

t∈Fn

fxt
(xt)

fxt
(xt) =

1

Tnσ2
n

‖yt −mt � xt‖2

+
p+ ν

Tn
log

(

1 +
x�
t Lwl+1

n xt

ν

)

. (23)

This can be decomposed into smaller problems for each xt as
follows:

xl+1
t = argmin

xt

fxt
(xt), t ∈ Fn. (24)

To find a closed-form solution to this problem, we replace
fxt

(xt) with a majorization function as proposed by the fol-
lowing proposition.

Proposition 2: Let τ ≥ 1
σ2
n
+ p+ν

xl�
t Lwl+1

n xl
t+ν

λmax(Lwl+1
n ).

Define the function

fS
xt
(xt,x0) =

τ

Tn

∥
∥
∥
∥xt − x0 +

Qtx0 − ct
τ

∥
∥
∥
∥

2

+ C(x0), (25)

where

Qt =
1

σ2
n

Diag(mt) +
p+ ν

xl�
t Lwl+1

n xl
t + ν

Lwl+1
n ,

ct =
1

σ2
n

yt. (26)

Here, x0 and C(x0) are constants. Then, fS
xt
(xt,x0) serves as

a majorization function for fxt
(xt), satisfying the inequality

fxt
(xt)≤ fS

xt
(xt,x0), ∀x0.

Proof: See appendix B.
By applying this proposition with x0 = xl

t in the context of a
majorization-minimization framework, we formulate and solve
the following problem for the update step of xt:

xl+1
t = argmin

xt

fS
xt
(xt,x

l
t)

= xl
t −

1

τ

(

Qtx
l
t −

1

σ2
n

yt

)

. (27)

a-update step
The VAR parameters vector a can also be updated using the

following closed-form solution:

al+1 = argmin
a≥0

ρ

2

∥
∥a� ŵn−1 − f l

∥
∥2 + γa�1

= S γ

ρŵ◦2
n−1

(
(f l)+ � ŵn−1

)
� 1(ŵn−1 > 0), (28)

where f l =wl+1
n − ul+1

n − 1
ρμ

l
n.

Vn-update step
Next, we have the update formula for Vn as follows:

Vl+1
n = argmin

Vn∈Rp×k,V�
n Vn=I

tr
(
Lwl+1

n VnV
�
n

)
=Ql+1

n [:, 1 : k].

(29)

Algorithm 1: Proposed k-TVGL algorithm for k-component
time-varying graph learning from heavy-tailed data

Here, Ql+1
n [:, 1 : k] denotes the set of eigenvectors of Lwl+1

n

corresponding to the first k eigenvalues, sorted in ascending
order.

Update step for the dual variables

Finally, we have the update step for the dual variables as
follows:

Φl+1
n =Φl

n + ρ
(
Lwl+1

n − Ll+1
n

)
,

μl+1
n = μl

n + ρ
(
ul+1
n −wl+1

n + al+1 � ŵn−1

)
,

zl+1
n = zln + ρ

(
dwl+1

n − d
)
. (30)

The proposed method, called k-component time-varying graph
learning (k-TVGL), is summarized in Algorithm 1, with Theo-
rem 1 establishing its convergence. The code for this algorithm
is available as an open source repository at https://github.com/
javaheriamirhossein/k-tvgraph.

Theorem 1: The sequence of the augmented Lagrangian{
Lρ

(
Ll
n,w

l
n,u

l
n,X

l
n,a

l,Vl
n,Φ

l
n,μ

l
n, z

l
n

)}
generated by Al-

gorithm 1 converges for any sufficiently large ρ. At the limit
point, the equality constraints Ln = Lwn, un =wn − a�
ŵn−1, and dwn = d are also satisfied, i.e.,

lim
l→+∞

∥
∥Lwl

n − Ll
n

∥
∥
F
= 0

lim
l→+∞

∥
∥dwl

n − d
∥
∥= 0

lim
l→+∞

∥
∥ul

n −wl
n + al � ŵn−1

∥
∥= 0. (31)

Proof: See the supplementary notes.

C. Computational Complexity

The update step for wn involves the computation of S̃, which
has a complexity of O(Tnp

2). Given this, the complexity of
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Fig. 3. Visualization of the edge weights of the learned graphs at different time frames, with frames of length Tn = 200 (top) and Tn = 100 (bottom). the
horizontal axis shows the time frame index and the vertical axis represents the edge index of the graph.

the closed-form solution in (20) would be O(p2). This also
holds for the update of un via (22). However, the update steps
in (16) and (29) require eigenvalue decomposition of p× p
matrices, which is generally O(p3) complex. Hence, the over-
all complexity of the proposed algorithm is O(p3 + Tnp

2).
While this may indicate that the proposed method may not
be scalable to very large graphs, it is intrinsic to every graph-
based clustering method that deals with the eigenvectors of the
graph Laplacian.

IV. NUMERICAL RESULTS

In this section, we present the numerical results of the pro-
posed algorithm, comparing it to several state-of-the-art meth-
ods for time-varying graph learning across different scenarios.
First, we evaluate the performance of our algorithm in learning
a time-varying graph topology through a simulated experiment
using synthetic data. Subsequently, we explore the application
of this methodology in financial market analysis, focusing on
data clustering and portfolio design. The results are detailed in
the following two subsections.

A. Synthetic Data

For synthetic data generation, we consider p= 100 and T =
1000. We divide the T time-stamps into equal frames (windows)
of length Tn (with no overlap), where the graph is assumed to
be constant during each time frame. Let Fn denote the time
indices in frame n. Random samples of the signal in each frame
are generated via xt =

(
L†
n

)1/2
ηt, ηt ∼ St(0, I, ν), t ∈

Fn, where L†
n represents the pseudo-inverse of the Laplacian

matrix at time frame n and St denotes the Student-t distribution
with zero mean and identity covariance matrix. To model the

temporal variations of the graph weights, we use the equa-
tion wn = (a�wn−1 + εn)+ , n ∈ {1, . . . , N}. Here, a is
sampled from an exponential distribution and εn is sampled
from a normal distribution, where N denotes the number of
time frames. The initial values for the graph weights w0 (and
subsequently the Laplacian matrix L0) are sampled from the
Stochastic Block Model, where the nodes are partitioned into
K = 4 clusters (blocks) with random intra-cluster and inter-
cluster edges (with probabilities pintra = 0.7 and pinter = 0.3
respectively).

We construct the original data matrix X by concatenating the
vectors xt column-wise, covering the range from t= 1 to t= T .
Following this, we normalize the data matrix such that each row
is centered and scaled by its standard deviation. Next, we create
a random binary sampling matrix M defined by the sampling
rate parameter SR, along with the observation noise matrix N,
which consists of i.i.d. Gaussian random entries with zero mean
and variance σ2

n. The observation matrix is then formed as Y =
M� (X+N).

We then introduce the matrices Y and M as inputs to
the time-varying graph learning algorithms. We compare our
method with several benchmark algorithms, including the
TV-GGM [34] and the TV-SBM [35] methods, for online
time-varying graph learning under Gaussian graphical and
smoothness-based models. Additionally, we include the time-
varying graph learning method in [28], the online graph learning
algorithm by Saboksayr et al. [41], and the time-varying version
of the GSP Toolbox1 graph learning method by Kalofolias et al.
[25] in our comparison.

To evaluate the performance of these algorithms in terms of
learning accuracy, we utilize the relative error (RelErr) and the

1https://epfl-lts2.github.io/gspbox-html/
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TABLE II
AVERAGE SINGLE-FRAME PERFORMANCE OF THE GRAPH LEARNING METHODS FOR TIME-VARYING TOPOLOGY IDENTIFICATION AT DIFFERENT

SAMPLING RATES SR AND FIXED NOISE LEVEL σn = 0 (THE VALUES REPRESENT THE MEAN ± STANDARD DEVIATION OF THE AVERAGE

PERFORMANCE OVER ALL DATA FRAMES FOR 20 RANDOM TRIALS WITH FRAME LENGTH Tn = 200)

SR = 1 SR = 0.8 SR = 0.6
F-score ↑ RelErr ↓ Time (s) ↓ F-score ↑ RelErr ↓ Time (s) ↓ F-score ↑ RelErr ↓ Time (s) ↓

Kalofolias et al. [25] 0.61 ± 0.02 0.38 ± 0.01 0.02 ± 0.00 0.55 ± 0.01 0.43 ± 0.01 0.02 ± 0.00 0.49 ± 0.01 0.45 ± 0.01 0.02 ± 0.00
Cardoso et al. [28] 0.43 ± 0.00 0.34 ± 0.00 0.21 ± 0.10 0.36 ± 0.01 0.36 ± 0.04 0.24 ± 0.14 0.30 ± 0.00 0.37 ± 0.02 0.17 ± 0.02

TV-SBM [35] 0.55 ± 0.01 0.39 ± 0.02 61.98 ± 0.27 0.51 ± 0.01 0.40 ± 0.02 61.82 ± 0.19 0.43 ± 0.01 0.43 ± 0.01 61.91 ± 0.18
TV-GGM [34] 0.31 ± 0.01 0.37 ± 0.00 0.71 ± 0.01 0.30 ± 0.01 0.38 ± 0.01 0.72 ± 0.03 0.28 ± 0.01 0.39 ± 0.02 0.72 ± 0.02

Saboksayr et al. [41] 0.37 ± 0.01 0.46 ± 0.03 0.25 ± 0.01 0.34 ± 0.01 0.48 ± 0.01 0.25 ± 0.02 0.32 ± 0.00 0.49 ± 0.02 0.24 ± 0.01
Proposed (Alg. 1) 0.69 ± 0.01 0.31 ± 0.01 0.18 ± 0.00 0.65 ± 0.01 0.31 ± 0.00 0.18 ± 0.00 0.56 ± 0.00 0.32 ± 0.00 0.19 ± 0.02

TABLE III
AVERAGE SINGLE-FRAME PERFORMANCE OF THE GRAPH LEARNING METHODS FOR TIME-VARYING TOPOLOGY IDENTIFICATION AT DIFFERENT NOISE

LEVELS σn AND FIXED SAMPLING RATE SR = 1 (THE VALUES REPRESENT THE MEAN ± STANDARD DEVIATION OF THE AVERAGE PERFORMANCE

OVER ALL DATA FRAMES FOR 20 RANDOM TRIALS WITH FRAME LENGTH Tn = 200)

σn = 0.3 σn = 0.5 σn = 1
F-score ↑ RelErr ↓ Time (s) ↓ F-score ↑ RelErr ↓ Time (s) ↓ F-score ↑ RelErr ↓ Time (s) ↓

Kalofolias et al. [25] 0.59 ± 0.01 0.37 ± 0.02 0.02 ± 0.00 0.53 ± 0.01 0.37 ± 0.00 0.02 ± 0.01 0.45 ± 0.00 0.38 ± 0.01 0.02 ± 0.01
Cardoso et al. [28] 0.43 ± 0.00 0.34 ± 0.02 0.16 ± 0.02 0.43 ± 0.01 0.34 ± 0.01 0.19 ± 0.05 0.40 ± 0.01 0.37 ± 0.02 0.22 ± 0.01

TV-SBM [35] 0.54 ± 0.01 0.38 ± 0.01 61.94 ± 0.09 0.52 ± 0.01 0.39 ± 0.01 61.96 ± 0.10 0.42 ± 0.01 0.43 ± 0.01 61.97 ± 0.13
TV-GGM [34] 0.29 ± 0.00 0.38 ± 0.04 0.72 ± 0.03 0.29 ± 0.01 0.49 ± 0.15 0.72 ± 0.02 0.27 ± 0.01 0.70 ± 0.24 0.72 ± 0.04

Saboksayr et al. [41] 0.35 ± 0.00 0.44 ± 0.02 0.25 ± 0.00 0.32 ± 0.01 0.45 ± 0.01 0.25 ± 0.01 0.30 ± 0.00 0.47 ± 0.02 0.25 ± 0.01
Proposed (Alg. 1) 0.65 ± 0.01 0.32 ± 0.02 0.18 ± 0.00 0.58 ± 0.01 0.33 ± 0.01 0.18 ± 0.01 0.47 ± 0.01 0.35 ± 0.02 0.18 ± 0.01

F-score criteria. Let L∗
n ∈ R

p×p be the ground-truth Laplacian
at frame n, and L̂n ∈ R

p×p be the estimated one. We scale
both matrices so that tr(L̂n) = tr(L∗

n) = p. We also apply a
threshold to the estimated Laplacian to nullify the smallest 1%
of the weights. The relative error and the F-score measures are
then defined as follows:

RelErr =
‖L∗

n − L̂n‖F
‖L∗

n‖F
, F-score =

2TP
2TP + FP + FN

.

In the above equations, TP, FP, and FN respectively denote
the number of correctly identified connections in the original
graph, the number of connections falsely identified in the esti-
mated graph (not present in the original one), and the number
of connections from the original graph that are missing in the
estimated one.

1) Robust Graph Learning: We first evaluate our proposed
method against the benchmark for time-varying graph learning
using clean synthetic data. Visual representations of the time-
varying graph weights across each time frame (for 400 edges)
learned using different algorithms are shown in Fig. 3. In these
figures, the horizontal axis represents the frame index n, and
the vertical axis represents the index of the graph’s edges. The
top row shows the results for frame lengths of Tn = 200, while
the bottom row shows the results for Tn = 100. As observed
in Fig. 3, the time-varying weights of the graph learned using
the proposed method align more closely with the ground-truth
graph weights.

Next, we introduce noise and missing samples to the data
to evaluate the robustness of the time-varying graph learning
methods. Tables II and III present the single-frame perfor-
mance of the algorithms averaged over all time frames (with
fixed length Tn = 200) for varying data sampling rates and
noise levels, respectively. The values in these tables report the

mean ± standard deviation of the average frame performance
for 20 random trials of this experiment for three performance
metrics, including F-score (classification accuracy), relative
error (reconstruction quality), and runtime in seconds (compu-
tational complexity). As shown in Tables II and III, the pro-
posed method achieves superior performance in time-varying
graph learning from corrupted data (containing noise and miss-
ing values). While not the most computationally efficient ap-
proach, its computational complexity remains comparable to
several baseline methods. We will discuss this in more detail in
part IV-A3.

2) Hyperparameter Selection: In this part, we examine the
sensitivity of the proposed algorithm to the choice of the hyper-
parameters. Figs. 4–6, demonstrate the F-score performance
of the proposed method in Alg. 1 versus different values of
the hyper-parameters d, ρ, σe, γ and k. The error-bar plots in
these figures are obtained by averaging the F-score performance
results over 20 trials of random experiments with synthetically
generated dataset (with p= 100 rows and T = 1000 columns).
The proposed method, as shown in these figures, demonstrates
lower sensitivity to the choice of γ compared to other hyper-
parameters, which exhibit a more significant impact on perfor-
mance. Based on these results, we choose the optimal hyper-
parameter values that maximize the F-score as d= 1, ρ= 1,
σε = 10, ν = 3, and γ = 10. The value of k, however, is de-
termined by the number of clusters in the data. The synthetic
data used in our experiment, is sampled from a stochastic block
model with K = 4 clusters and hence, k = 4 is the optimal
choice in this case.

3) Run-Time Complexity: Fig. 7 depicts the run-time of
our proposed method compared to the benchmark for different
number of nodes. These results are obtained using MATLAB
on a PC with an Intel® Core™ i7-12700K processor and 16
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Fig. 4. Sensitivity of the proposed method to the parameters d (left) and ρ
(right).

Fig. 5. Sensitivity of the proposed method to the parameters σe (left) and
γ (right).

GB DDR4 RAM. Based on this figure and the computational
complexity analysis given in Section III-C, the complexity of
our proposed approach (which is O(p3 + Tnp

2)) more rapidly
increases with the number of nodes compared to some baseline
methods with a complexity of O(p2) (e.g., Kalofolias et al.).
To be able to learn k-component graphs, we directly deal with
the eigenvalues and the eigenvectors of the Laplacian in each
iteration, the computation of which is costly (O(p3)) and affects
the complexity of our developed algorithm. Compared to the
baseline, we also have an additional step corresponding to the
reconstruction of the data matrix X in our algorithm (making
it robust to missing samples and noise), which in turn adds to
this complexity. Thus, the application of the proposed method
can be limited for large-scale networks. However, for financial
markets, e.g., SP500 index, the number of assets in the network
is not very large (e.g., 500) and the proposed approach can
still be applied to infer the clusters and how entities in each
cluster interact with each other (as we will see in the next part).
Additionally, for clean and complete data, the signal reconstruc-
tion step (X-update step) is unnecessary and can be removed.
This will lead to reduction in complexity as shown in Fig. 7
which compares the run-time of the proposed method with and
without the X-update step (the latter is labeled as ‘Proposed
(no X-update)’). In conclusion, we obtain a more illustrative
and more robust graph representation for the data compared to
the traditional methods for time-varying learning with the cost
of more computational complexity. By the way, we can always
control the complexity of our method by adjusting the frame
length parameter Tn (updating frequency). Nevertheless, our
method is still faster than some baseline algorithms for online
time-varying graph learning.

Fig. 6. Sensitivity of the proposed method to the parameters k (left) and ν
(right).

Fig. 7. Average single-frame run-time of the proposed method (for frame
length Tn = 200) compared to the benchmark for different number of
nodes, p.

B. Real Data

In this section, we utilize real-world data from financial mar-
kets, particularly the log-returns of the stocks in the S&P500
index. For this experiment, we select a subset of 100 stocks,
categorized into K = 8 sectors (clusters), including “Utilities”,
“Real State”, “Materials”, “Industrials”, “Health Care”, “Finan-
cials”, “Energy”, and “Consumer Staples”. The ground-truth
labels of the sectors are determined by the GICS classification
standard2. We subsequently compute the log-return of these
stocks over a 1000-day period spanning from January 2016
to January 2020. Following this, we construct the matrix X ∈
R

p×T with p= 100 (number of stocks) and T = 1000 (number
of days). We then partition data into non-overlapping frames
of length Tn = 200, resulting in N = 5 data frames. Next, we
evaluate the effectiveness of our method for two different appli-
cations: stock classification or clustering and portfolio design.
For the clustering task, we employ several criteria to evalu-
ate performance, including accuracy (ACC), purity [54], the
modularity (MOD) [55], and the adjusted Rand index (ARI)
[56]. Both accuracy and purity are calculated by determining
the ratio of the true-positive (correctly classified) labels (TP) to
p. However, there is a distinction between these two metrics: in
accuracy, we consider the best ordering of the labels assigned to
the inferred clusters (among all K! permutations), whereas in

2https://www.msci.com/our-solutions/indexes/gics
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Fig. 8. The K-component graphs learned from a sample experiment with financial data corresponding to the log-returns of 100 stocks in the S&P 500
index (comprising K = 8 sectors). the graphs are shown for the last data frame (with length Tn = 200).

purity, the label of each cluster is assumed to be the ground-
truth label of the majority of the nodes in that cluster. The
modularity is also a measure that evaluates how disjoint the
nodes with different labels are (the higher the value, the more
disjoint they are). The ARI is another metric used to evaluate the
similarity between the true labels and the cluster labels. Here,
the parameter ν in the proposed method is obtained by fitting
a multivariate Student-t distribution to each data frame (using
the fitHeavyTail R-package3).

1) Multi-Component Graph Clustering: For clustering the
data into K = 8 clusters, we first learn K-component graphs
where each component represents one data cluster. To this end,
we use our proposed method along with several existing bench-
mark algorithms for multi-component graph learning (which
are static methods). These algorithms include the constrained
Laplacian rank (CLR) method [52], the SGLA method4 [19],
the Fingraph algorithm5 [48], and the method proposed by
Javaheri et al. [53] for balanced clustering. Notably, the latter
two methods are tailored for heavy-tailed data. For these bench-
mark algorithms, which are all designed for offline static graph
learning, we provide the static graph learned from each data
frame as the initial guess for graph learning in the next frame,
i.e., w0

n+1 = ŵn.

3https://CRAN.R-project.org/package=fitHeavyTail
4https://CRAN.R-project.org/package=spectralGraphTopology
5https://CRAN.R-project.org/package=fingraph

TABLE IV
CLUSTERING PERFORMANCE OF THE GRAPHS SHOWN IN FIG. [8]. THE

VALUES ARE REPORTED FOR THE LAST DATA FRAME (WITH Tn = 200).
THE TIME COLUMN DISPLAYS THE TOTAL RUNTIME FOR EACH METHOD

ACC ↑ Purity ↑ MOD ↑ ARI ↑ Time (s) ↓
CLR [52] 0.56 0.67 0.23 0.33 1.53

SGLA [19] 0.27 0.29 0.27 0.01 1.21
Fingraph [48] 0.49 0.53 0.47 0.21 2.38

Javaheri et al. [53] 0.61 0.69 0.38 0.32 2.70
Proposed (k = 8) 0.69 0.78 0.62 0.58 2.14

Fig. 8 illustrates the graphs learned from the last frame of data
(n=N = 5). The colors of the nodes (stocks) indicate their
respective ground-truth clusters (sector indices), while labels
adjacent to certain nodes denote the misclassified stocks.

The clustering performance corresponding to these methods
as well as the runtime of the algorithms is summarized in Ta-
ble IV. The results indicate that the time-varying graph learned
using the proposed algorithm (Alg. 1) exhibits better cluster-
ing performance by taking advantage of the graph temporal
variations, compared to the static methods for graph learning.
As expected, the performance of the proposed time-varying
clustering method is improved through time-evolution as shown
in Fig. 9. This is also visually depicted in Fig. 10, where the
clustering performance is plotted against the frame number,
illustrating its improvement over time. We then evaluate the
performance of our proposed method for different choices of
the frame length, namely Tn = 100, Tn = 200, Tn = 500, and
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Fig. 9. The time evolution of the graphs learned from a sample experiment with S&P500 data via the proposed method for the frame length of Tn = 200.
Colors represent the inferred clusters (K = 8).

Fig. 10. Clustering performance of the graphs learned from a sample
S&P500 dataset using our proposed method versus the frame number. The
first few graphs are shown in Fig. 9.

TABLE V
CLUSTERING PERFORMANCE OF THE PROPOSED METHOD ON SAMPLE

S&P500 DATASET FOR DIFFERENT CHOICES OF THE FRAME LENGTH Tn.
(THE VALUES ARE REPORTED FOR THE LAST DATA FRAME)

ACC ↑ Purity ↑ MOD ↑ ARI ↑ Delay (days) ↓
Tn = 100 0.68 0.72 0.59 0.53 100
Tn = 200 0.69 0.78 0.62 0.58 200
Tn = 500 0.71 0.84 0.60 0.67 500
Tn = 1000 0.79 0.89 0.59 0.75 1000

Tn = 1000. The results are given in Table V, where the last
column represents the number of days we have to wait to update
the graph learned form financial data. As illustrated in the table,
the accuracy of the clustering improves as the frame length
increases, due to the availability of more data samples and
more accurate statistical estimates. However, this also requires
access to more data and introduces larger delay. Therefore,
depending on the application, a trade-off between delay and
accuracy should be considered.

2) Spectral Graph Clustering: We then consider graph-
based clustering based on unconstrained graph structures (with
no Laplacian rank constraints). For this we use spectral graph
clustering in combination with time-varying graph learning
methods to cluster the stock data. We compare our method with
benchmark algorithms for time-varying graph learning, includ-
ing the methods proposed by Natali et al. (TV-GGM, TV-SBM)
[34], [35] for online time-varying graph topology identification

TABLE VI
CLUSTERING PERFORMANCE COMPARISON BETWEEN THE PROPOSED

METHOD AND THE BENCHMARK ALGORITHMS FOR LEARNING

TIME-VARYING GRAPHS, WHERE K-MEANS IS EMPLOYED FOR SPECTRAL

CLUSTERING (THE RESULTS ARE REPORTED FOR LAST FRAME OF A

SAMPLE S&P500 DATASET WITH FRAME LENGTH Tn = 200). THE TIME

COLUMN DISPLAYS THE TOTAL RUNTIME FOR EACH METHOD

ACC ↑ Purity ↑ MOD ↑ ARI ↑ Time (s) ↓
Proposed (k = 1) 0.63 0.73 0.58 0.52 2.02

Kalofolias et al. [25] 0.57 0.67 0.59 0.16 0.18
Cardoso et. al [28] 0.47 0.49 0.36 0.41 1.45

TV-GGM [34] 0.29 0.31 0 0.08 6.76
TV-SBM [35] 0.61 0.63 0.58 0.36 522.58

Saboksayr et al. [41] 0.41 0.44 0.44 0.12 2.26

under the Gaussian graphical model, the time-varying graph
learning method proposed by Cardoso et al. [28], the online
time-varying graph topology inference method by Saboksayr
et al. [41], and the time-varying graph learning algorithm by
Kalofolias et al. [25]. These methods are not applicable for
learning K-component graphs (based on which we can cluster
the data). Therefore, we utilize the spectral clustering approach
[57] for node classification. Specifically, we apply K-means
clustering [58] to the rows of the matrix formed by the eigenvec-
tors of the inferred Laplacian corresponding to the K smallest
eigenvalues. Table VI presents the performance comparison
of the proposed method with benchmark time-varying graph
learning algorithms for clustering financial (S&P 500) data.
Here, the frame length is fixed at Tn = 200 for all methods,
and the reported values represent the clustering performance
on the last frame of the data (n=N ). This table presents the
results of our proposed method for the connected graph case
with k = 1 (without Laplacian rank constraint). A comparison
of Tables IV and VI reveals that our proposed method’s multi-
component graph structure version (with k = 8) achieves supe-
rior clustering performance. This improvement highlights the
significance of rank (spectral) constraint in enhancing the clus-
tering performance. In both clustering approaches, the proposed
method is also shown to outperform the baseline, attributed to
its capability to learn graphs from heavy-tailed data.

3) Multiple Random Experiments: To have a more com-
prehensive evaluation of our proposed method’s performance,
we conduct multiple randomized simulations across diverse
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Fig. 11. Average single-frame performance of the proposed method for
different datasets compared to the baseline K-component graph learning
methods (for Tn = 200 and K = 8).

Fig. 12. Average single-frame clustering performance of the proposed
method (with k = 1) compared to the baseline time-varying graph learning
methods for different datasets. Here, the frame length is Tn = 200 and we
apply spectral graph clustering on the learned graphs.

datasets and report averaged results. Specifically, we select
20 random datasets of S&P 500 log-returns (from 2014-01-
01 to 2024-01-01), each containing p= 100 randomly cho-
sen stocks over T = 1000 day periods, partitioned into non-
overlapping frames. We evaluate mean clustering performance
against benchmarks across all frames. Figs. 11–14 present the
average single-frame performance measures of clustering with
error bars showing mean values (central markers) and standard
deviations (vertical bars). These results conclusively demon-
strate the superiority of the proposed method for dynamic
heavy-tailed data clustering compared to the baseline.

4) Portfolio Design: Next, we explore the application of our
time-varying graph learning method for investment portfolio
design. We consider a dynamic portfolio design strategy based
on maximizing the ratio of the portfolio return over the port-
folio graph smoothness. Let Ln denote the time-varying graph
learned by the proposed method (Algorithm 1) given the n-th
data frame. Let un denote the portfolio weights at time frame
n and assume the expected value (mean) and the covariance
matrix of the stock returns for the n-th data frame are given as
μ̂n and Σ̂n. Here, we use Student-t robust estimators for μ̂n

and Σ̂n (using the fitHeavyTail R-package similar to the
previous part). The Maximum Sharpe Ratio Portfolio (MSRP)

Fig. 13. Average single-frame clustering performance of the proposed
method with k = 1 (via spectral graph clustering) and k = 8 (via multi-
component graph clustering). Here the frame length is Tn = 200.

Fig. 14. Average single-frame clustering performance of the proposed
method (with k = 1) versus the frame length. for different datasets. Here,
we have used spectral graph clustering on the learned graph.

design scheme aims at maximizing the Sharpe ratio (S) [59]
defined as the ratio of the portfolio expected return over the
volatility, i.e., S =

μ̂�
n un

u�
n Σ̂nun

. Using the Schaible transform [60],
the dynamic MSRP optimization problem can be reformulated
as:

u�
MSRP,n = argmin

un≥0, μ̂�
n un=1

u�
n Σ̂nun (32)

where u�
MSRP,n denotes the optimal MSRP weights at time

frame n. Inspired by the notion of the Sharpe ratio, we propose
the Graph-based Ratio (GR) as

GR � μ̂�
nun√

u�
nLnun

.

To maximize this ratio, we design a portfolio referred to as the
Maximum Time-Varying Graph Ratio Portfolio (MTVGRP).
The problem for this portfolio design is stated as follows:

u�
MTVGRP,n = argmin

un≥0, μ̂�
n un=1

u�
nLnun (33)

Consider the returns of 50 randomly chosen stocks from
the S&P500 index over the period 2010-12-01 to 2018-12-
01. From this dataset, we select 100 different subsets (time
intervals), each of length T = 504 days, with different start-
ing time indices. Each dataset is partitioned into frames of
length Tn = 200 days with 180 days overlap. We then design
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Fig. 15. Sharpe ratio (left) and the maximum draw-down (right) perfor-
mance of the proposed MTVGRP portfolio compared to the market index,
the MSRP, and the EWP portfolios. The barplots on the top represent the
mean values of Sharpe ratio (left) and maximum drawdown (right) and the
boxplots on the bottom depict the distribution of these performance measures.

TABLE VII
AVERAGE BACKTESTING RESULTS OF THE PROPOSED MTVGRP

PORTFOLIO COMPARED TO THE MSRP AND THE EWP PORTFOLIOS

Ann.
Return
↑

Ann.
Volatil-
ity ↓

Sharpe
Ratio ↑

Max
Draw-
down ↓

MTVGRP (Proposed) 0.14 0.11 1.31 0.08
MSRP 0.13 0.14 1.00 0.11

EWP (Uniform) 0.13 0.11 1.25 0.08

dynamic portfolios (with re-optimization frequency of 20 days)
based on our proposed MTVGRP scheme, and evaluate the
performance using the portfolio backtest6 package in R. We
compare our design scheme with the dynamic MSRP portfolio
and the Equally Weighted Portfolio (EWP). The weights for
the MSRP are obtained by solving (32) and the EWP weights
are given as u�

EWP,n = 1/p. Table VII shows the results of this
backtest in terms of different performance criteria, including
the Sharpe ratio, the annualized return, the annualized volatility,
and the maximum drawdown. From this table, it is implied that
the proposed method delivers better performance through the
(dynamic) time-varying graph-based portfolio design scheme.
This is also evident in Fig. 15 where the Sharpe ratio and
the maximum drawdown of the portfolios in Table VII are
compared with the market index.

V. CONCLUSION

This paper explores the problem of learning time-varying
graphs specifically designed for heavy-tailed data. We propose
a novel approach for time-varying graph learning that is tailored

6https://CRAN.R-project.org/package=portfolioBacktest

to infer graph-structured models capable of effectively captur-
ing heavy-tailed distributions. Our proposed approach employs
a probabilistic model to formulate the problem of learning time-
varying graphs. We also incorporate spectral constraints into the
problem, enabling us to learn multi-component graphs suitable
for clustering. We present a solution based on a maximum-a-
posteriori estimation framework using a semi-online strategy,
wherein a single data frame is utilized to update the graph. To
demonstrate the effectiveness and robustness of our method in
graphical modeling of time-varying heavy-tailed data, partic-
ularly within financial markets, we conduct numerical experi-
ments using both synthetic and real datasets.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: The MAP estimation rule can be expressed as
follows:

min
wn≥0, a≥0,Xn

− log p(wn,a,Xn|wn−1,Yn,Mn)

=− log p(Yn|Xn,Mn)− log p(Xn|wn)
− log p(wn|wn−1,a)− log p(a) + const

s.t. wn ∈ Ωw.

Now, given the Gaussian distribution of the measurement
noise, we may write:

p(Yn|Xn,Mn) =
∏

t∈Fn

p(yt|xt,mt)

= C0 exp

(

− 1

2σ2
n

‖Yn −Mn �Xn‖2F
)

,

where C0 is a constant. Moreover, assuming the Student-t dis-
tribution in (10) for the data given the underlying graph model,
we have:

p(X|wn) =
∏

t∈Fn

p(xt|wn)

= C1

∏

t∈Fn

det∗(Lwn)

(

1 +
x�
t Lwnxt

ν

)−(ν+p)/2

.

with C1 being another constant.
Now, let vn = a�wn−1 ≥ 0. Then, we may write:

p(wn|wn−1,a) = p(wn|vn) =
∏

i

p(wn(i)|vn(i)).

Using the non-negative VAR equation wn(i) =
(vn(i) + εn(i))+, we have:

p(wn(i)|vn(i)) =
{
P[εn(i) = wn(i)− vn(i)] wn(i)> 0
P[εn(i)≤−vn(i)] wn(i) = 0

Assuming i.i.d. Laplace distribution for the elements of εn as
in (9), we get:

p(wn(i)|vn(i)) =

⎧
⎨

⎩

1
2σε

exp
(
− |wn(i)−vn(i)|

σε

)
wn(i)> 0

1
2 exp

(
−vn(i)

σε

)
wn(i) = 0

=
1

2σ
1(wn(i)>0)
ε

exp

(

−|wn(i)− vn(i)|
σε

)

.
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Hence, we obtain:

p(wn|wn−1,a)=
1

2p
1

σ
‖wn‖0
ε

exp

(

− 1

σε
‖wn − a�wn−1‖1

)

.

Finally, plugging these probabilities in (12), also considering
exponential distribution for the VAR parameters a as in (9), we
can obtain (13) after simplification.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: Let g(xt) = log

(

1 +
x�
t Lwl+1

n xt

ν

)

. Then, using

the inequality log(x)≤ x− 1, ∀x > 0, we have:

g(xt) = log

(

1 +
x�
t Lwl+1

n xt

ν

)

≤ log

(

1 +
xl�
t Lwl+1

n xl
t

ν

)

+
x�
t Lwl+1

n xt + ν

xl�
t Lwl+1

n xl
t + ν

− 1

= g(xl
t)− 1 + x�

t

Lwl+1
n

xl�
t Lwl+1

n xl
t + ν

xt

+
ν

xl�
t Lwl+1

n xl
t + ν

=
1

xl�
t Lwl+1

n xl
t + ν

x�
t Lwl+1

n xt + h(xl
t),

where h(xl
t) is a constant. Then, we may write:

fxt
(xt) =

1

Tnσ2
n

‖Diag(mt)xt − yt‖2 +
p+ ν

Tn
g(xt)

≤ 1

Tn

(
x�
t Qtxt − 2c�t xt

)
+ r(xl

t),

with Qt and ct given in (26) and r(xl
t) =

p+ν
Tn

h(xl
t) +

‖yt‖2

Tnσ2
n

.
Now, for τ > λmax(Qt), we may propose another majorization
function as follows:

fx(xt)≤
1

Tn

(
x�
t Qtxt + (xt − xl

t)
�(τI−Qt)(xt − xl

t)

− 2c�t xt

)
+ r(xl

t)

=
τ

Tn

∥
∥
∥
∥xt − xl

t +
Qtx

l
t − ct
τ

∥
∥
∥
∥

2

+ C(xl
t),

where C(xl
t) is a constant. To find τ > λmax(Qt), we write:

λmax(Qt) = λmax

(
1

σ2
n

Diag(mt)+
p+ ν

x
l�
t Lwl+1

n xl
t + ν

Lwl+1
n

)

≤ 1

σ2
n

λmax (Diag(mt)) +
(p+ ν)λmax

(
Lwl+1

n

)

xl�
t Lwl+1

n xl
t + ν

=
1

σ2
n

+
p+ ν

xl�
t Lwl+1

n xl
t + ν

λmax

(
Lwl+1

n

)
,

where we applied Weyl’s inequality [61] in the
first expression. Hence, it suffices to choose τ ≥
1
σ2
n
+ p+ν

xl�
t Lwl+1

n xl
t+ν

λmax

(
Lwl+1

n

)
.
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