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 A B S T R A C T

Algorithms that ensure reproducible findings from large-scale, high-dimensional data are pivotal in numerous 
signal processing applications. In recent years, multivariate false discovery rate (FDR) controlling methods have 
emerged, providing guarantees even in high-dimensional settings where the number of variables surpasses the 
number of samples. However, these methods often fail to reliably control the FDR in the presence of highly 
dependent variable groups, a common characteristic in fields such as genomics and finance. To tackle this 
critical issue, we introduce a novel framework that accounts for general dependency structures. Our proposed 
dependency-aware T-Rex selector integrates hierarchical graphical models within the T-Rex framework to 
effectively harness the dependency structure among variables. Leveraging martingale theory, we prove that our 
variable penalization mechanism ensures FDR control. We further generalize the FDR-controlling framework 
by stating and proving a clear condition necessary for designing both graphical and non-graphical models that 
capture dependencies. Numerical experiments and a breast cancer survival analysis use-case demonstrate that 
the proposed method is the only one among the state-of-the-art benchmark methods that controls the FDR 
and reliably detects genes that have been previously identified to be related to breast cancer. An open-source 
implementation is available within the R package TRexSelector on CRAN.
1. Introduction

Reliably detecting as many as possible of the few relevant vari-
ables (i.e., features, biomarkers, or signals) in a large set of candidate 
variables given high-dimensional and noisy data while minimizing 
the number of false detections is required in many of today’s signal 
processing applications, e.g. [1–11]. An important use-case of this 
work consists in detecting the few genes that are truly associated 
with the survival time of patients diagnosed with a certain type of 
cancer [12–14]. The expression levels of the detected genes are then 
classified into low- and high-expressing genes, which allows cancer 
researchers to make statements such as: ‘‘The median survival time 
of breast cancer patients with a high expression of gene A and a low 
expression of gene B is 10 years higher than the survival time of patients 
with a low expression of gene A and a high expression of gene B’’. 
Such information is invaluable for the development of new therapies 
and personalized medicine [15].

However, the development and clinical trial of new drugs is costly 
and resources are limited. Therefore, it is crucial to select as many as 

I Extensive computations on the Lichtenberg High-Performance Computer of the Technische Universität Darmstadt were conducted for this research.
∗ Corresponding author.
E-mail addresses: jasin.machkour@tu-darmstadt.de (J. Machkour), michael.muma@tu-darmstadt.de (M. Muma), palomar@ust.hk (D.P. Palomar).

1 J. Machkour is supported by the LOEWE initiative (Hesse, Germany) within the emergenCITY center.
2 M. Muma is supported by the ERC Starting Grant ScReeningData (Project Number: 101042407).
3 D.P. Palomar is supported by the Hong Kong GRF 16206123 research grant.

possible of the few reproducible genes that are truly associated with 
the survival time of cancer patients while keeping the number of false 
discoveries (i.e., irrelevant genes) low. This aim is in line with false 
discovery rate (FDR) controlling methods. Such methods guarantee 
that the expected fraction of false discoveries among all discoveries 
(i.e., FDR) does not exceed a user-specified target level (e.g., 5, 10, 20%) 
while maximizing the number of selected variables.  Other approaches 
that provide reliable detection of relevant variables are multiple testing 
methods that control the conservative family-wise error rate (FWER) 
(i.e., the probability of making one or more type I errors). However, 
the FWER-metric is not considered in this work, since it is a very 
conservative metric that usually leads to many missed discoveries in 
variable selection tasks. This weakness of the FWER-metric has lead to 
the development of the more liberal FDR-metric, which usually allows 
for more discoveries while controlling a user-defined target FDR [16].

Popular FDR-controlling methods for the low-dimensional setting, 
where the number of samples 𝑛 is equal to or larger than the number of 
candidate variables 𝑝, are the Benjamini–Hochberg (BH) method [16], 
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Benjamini-Yekutielli (BY ) method [17], fixed-X knockoff method [18], 
and related approaches (e.g., [19,20]).

For the considered high-dimensional setting, where 𝑝 > 𝑛, there 
exist model-X knockoff methods [21–24] and Terminating-Random Ex-
periments (T-Rex) methods [25–31]. It has been shown that the com-
putational complexity of the T-Rex selector [25] is linear in 𝑝, which 
makes it scalable to millions of variables in a reasonable computation 
time, while the model-X knockoff method [21] is practically infeasible 
in such large-scale settings (see Fig.  1 in [25]). Unfortunately, however, 
both the model-X knockoff methods and the T-Rex methods fail to 
control the FDR reliably in the presence of groups of highly depen-
dent variables, which are characteristic for, e.g., gene expression [32], 
genomics [33], and stock returns data [34].

In order to reduce the dependencies among the candidate variables, 
pruning approaches have been used [21,22,25]. In general, pruning 
methods cluster highly dependent variables into groups, select a repre-
sentative variable for each group, and run the FDR controlling method 
on the set of representatives. This approach is suitable for genome-
wide association studies (GWAS) based on large-scale high-dimensional 
genomics data from large biobanks [35,36], where the goal is to detect 
the groups of highly correlated single nucleotide polymorphisms (SNPs) 
that are associated with a disease of interest and not the specific 
SNPs. However, pruning methods are not applicable in gene expression 
analysis and other applications where it is crucial to detect specific 
genes or other variables.

Therefore, we propose a new FDR-controlling and dependency-
aware T-Rex (T-Rex+DA) framework that provably controls the FDR 
at the user-specified target level. This is achieved and verified through 
the following theoretical contributions, numerical validations, and real 
world experiments:

(1) A hierarchical graphical model (i.e., binary tree) is incorporated 
into the T-Rex framework and is used to capture and leverage 
the dependency structure among variables to develop a variable 
penalization mechanism that allows for provable FDR control.

(2) Using martingale theory [37], we prove that the proposed ap-
proach controls the FDR (Theorem  2).

(3) We extend the proposed framework by stating and proving a 
comprehensible condition that must be satisfied for the design 
of graphical and non-graphical dependency-capturing models to 
be eligible for being incorporated into the T-Rex framework 
(Theorem  3).

(4) We develop a fully integrated optimal calibration algorithm that 
simultaneously determines the parameters of the incorporated 
graphical model and of the T-Rex framework, such that the FDR 
is controlled while maximizing the number of selected variables 
(Theorem  4).

(5) Numerical experiments and a real-world breast cancer survival 
analysis verify the theoretical results and demonstrate the prac-
tical usefulness of the proposed framework.

Organization: Section 2 briefly revisits the T-Rex selector and in-
troduces the FDR control problem. Section 3 analyzes the relative 
occurrences of correlated variables for the original T-Rex framework 
(Theorem  1), describes the proposed T-Rex+DA methodology, and 
proves our main theoretical results (Theorems  2 and 3). Section 4 de-
scribes the implementation details and theoretical properties (Theorem 
4) of the proposed T-Rex+DA calibration algorithm. Section 5 numeri-
cally verifies the theoretical FDR control results and compares the pro-
posed approach against state-of-the-art methods. Section 6 presents the 
results of an FDR-controlled breast cancer survival analysis. Section 7 
concludes the paper.

2. The T-Rex framework

In this section, the FDR and the true positive rate (TPR) are defined 
and the T-Rex framework is briefly revisited.
2 
2.1. FDR and TPR

A general setting for sparse variable selection consists of 𝑝 = 𝑝1 + 𝑝0
variables out of which 𝑝1 variables are true active variables (i.e., vari-
ables associated with a response of interest 𝒚) and 𝑝0 variables are 
null (i.e., non-active) variables. The task of sparse variable selection 
is to determine an estimator ̂ of the true active set  ⊆ {1,… , 𝑝} of 
cardinality || = 𝑝1. In this general setting, the false discovery rate 
(FDR) and the true positive rate (TPR) are defined by

FDR ∶= E
[

FDP
]

∶= E
[

|̂∖|

|̂| ∨ 1

]

and

TPR ∶= E
[

TPP
]

∶= E
[

| ∩ ̂|

|| ∨ 1

]

,

respectively, where ∨ is the maximum operator, i.e., |̂| ∨ 1 ∶=
max{|̂|, 1}. In words,

(1) the FDR is the expectation of the false discovery proportion 
(FDP), i.e., the fraction of selected null variables among all 
selected variables, and

(2) the TPR is the expectation of the true positive proportion (TPP), 
i.e., the fraction of selected true active variables among all true 
active variables.

In practice, a tradeoff between the FDR and TPR must be managed. That 
is, the TPR is maximized while not exceeding a user-specified target 
FDR level 𝛼 ∈ [0, 1], i.e., FDR ≤ 𝛼.

2.2. The T-Rex selector

The T-Rex selector is an FDR-controlling variable selection frame-
work. A schematic overview of the generic framework is provided in 
Fig.  1. A major characteristic of the T-Rex framework is that it conducts 
𝐾 supervised, independent, and early terminated random experiments 
based on a response vector 𝒚 ∈ R𝑛 and the enlarged predictor matrices

�̃�𝑘 =
[

𝑿
◦
𝑿𝑘

]

∈ R𝑛×(𝑝+𝐿), 𝑘 = 1,… , 𝐾,

where 𝑿 = [𝒙1 … 𝒙𝑝] ∈ R𝑛×𝑝 is the original predictor matrix containing 
the 𝑝 predictor variables and 

◦
𝑿𝑘 = [

◦
𝒙1 …

◦
𝒙𝐿] ∈ R𝑛×𝐿 is a matrix con-

taining 𝐿 dummy variables. The dummy vectors ◦𝒙𝑙 = [
◦
𝑥1,𝑙 …

◦
𝑥𝑛,𝑙]⊤, 𝑙 =

1,… , 𝐿, can be sampled independently from any univariate probability 
distribution with finite mean and variance (cf. Theorem 2 of [25]). The 
𝐾 early terminated random experiments are conducted with 𝒚 and �̃�𝑘, 
𝑘 = 1,… , 𝐾, as inputs to a forward variable selection method such 
as the LARS algorithm [38], Lasso [39], elastic net [40], or related 
methods (e.g., [8,9,41]). These forward selection methods include no 
more than one variable in each iteration.4 All 𝐾 random experiments 
are terminated independently of each other after 𝑇  dummies have 
been included along their respective selection paths. This results in 
𝐾 candidate sets 𝑘,𝐿(𝑇 ) ⊆ {1,… , 𝑝}, 𝑘 = 1,… , 𝐾, which contain the 
indices of all original variables in 𝑿 that have been selected before the 

4 Since the LARS method is used throughout this paper, variables are only 
added but never removed along the solution paths. However, as also discussed 
in [25], the T-Rex selector, as well as the proposed T-Rex+DA selector, are 
compatible with forward selection methods, such as Lasso and elastic net, where 
previously selected variables may be removed at later steps. For such methods, 
the number of currently active dummies may decrease during the selection 
process. Nonetheless, this behavior does not affect the applicability of the
T-Rex framework, because the solution paths are terminated as soon as 𝑇
dummies are included for the first time. Therefore, the termination step of 
any forward selection process is always well-defined.
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Fig. 1. Schematic overview of the T-Rex framework.
random experiments have been terminated. Using the candidate sets, 
relative occurrences are computed for each variable, i.e., 

𝛷𝑇 ,𝐿(𝑗) ∶=

⎧

⎪

⎨

⎪

⎩

1
𝐾

∑𝐾
𝑘=1 1𝑘(𝑗, 𝑇 , 𝐿), 𝑇 ≥ 1

0, 𝑇 = 0,
(1)

where 1𝑘(𝑗, 𝑇 , 𝐿) is an indicator function that takes the value one if 
the 𝑗th variable is contained in the candidate set 𝑘,𝐿(𝑇 ) and zero 
otherwise. Based on these relative occurrences, the final set of selected 
variables is given by 
̂𝐿(𝑣, 𝑇 ) ∶= {𝑗 ∶ 𝛷𝑇 ,𝐿(𝑗) > 𝑣}, (2)

i.e., all variables whose relative occurrences exceed a voting threshold 
𝑣 ∈ [0.5, 1) are selected. The extended calibration algorithm of the T-Rex
selector [25] automatically determines the triple (𝑣∗, 𝑇 ∗, 𝐿) ∈ [0.5, 1) ×
{1,… , 𝐿}×N+ such that the FDR is controlled at the user-defined target 
level 𝛼 ∈ [0, 1], i.e.,
FDR(𝑣∗, 𝑇 ∗, 𝐿) ≤ 𝛼.

The calibrated T-Rex parameters 𝑣 and 𝑇  are highlighted with a su-
perscript ‘‘∗’’ to emphasize that for any 𝐿, the parameters 𝑣∗ and 𝑇 ∗

are optimal in the sense that the FDR is controlled, while the number 
of selected variables is maximized (cf. Theorem 3 of [25]). For the 
choice of the number of dummies 𝐿, the extended calibration algorithm 
considers a tradeoff between the computer memory consumption for 
storing large dummy matrices and maximizing the number of selected 
variables. However, the FDR is always controlled for any choice of 𝐿
(cf. Theorem 1 of [25]). The extended calibration algorithm achieves 
the optimal solution (𝑣∗, 𝑇 ∗) by

(1) first terminating all random experiments after only one dummy 
has been included,

(2) computing a conservative estimator F̂DP(𝑣, 𝑇 , 𝐿) that satisfies
FDR(𝑣, 𝑇 , 𝐿) = E

[

FDP(𝑣, 𝑇 , 𝐿)
]

≤ E
[

F̂DP(𝑣, 𝑇 , 𝐿)
]

,

(3) iteratively increasing the number of included dummies 𝑇  until 
F̂DP(𝑣 = 1 − 1∕𝐾, 𝑇 , 𝐿) (i.e., the FDP estimator at the effectively 
highest voting level 𝑣 = 1 − 1∕𝐾) exceeds the target level 𝛼 for 
the first time, and

(4) returning to the solution (𝑣∗, 𝑇 ∗) of the preceding iteration 𝑇 ∗

that satisfies the equation
𝑣∗ = inf

{

𝜈 ∈ [0.5, 1) ∶ F̂DP(𝜈, 𝑇 ∗, 𝐿) ≤ 𝛼
}

,

where 𝑣∗ is the lowest feasible voting level such that F̂DP does 
not exceed the target level 𝛼.

For details on the design and properties of the conservative FDP esti-
mator F̂DP, we refer the interested reader to [25].
3 
3. Methodology and main theoretical results

In this section, the proposed FDR-controlling T-Rex+DA framework 
for general dependency structures is introduced. First, a dependency-
capturing graph model is incorporated into the T-Rex+DA framework. 
Second, we prove that the considered group design yields FDR control. 
Finally, we formulate a sufficient group design condition for graphical 
as well as non-graphical models that can be used as a guiding principle 
for other application-specific group designs.

3.1. Preliminaries

Before the proposed T-Rex+DA selector is presented and in order to 
understand why the ordinary T-Rex selector might loose the FDR con-
trol property in the presence of highly correlated variables, we establish 
an interesting relationship between the pairwise relative occurrences of 
two candidate variables and the correlation coefficient between them. 
For example, let the Lasso [39] be used to perform the forward variable 
selection in each random experiment. Within the T-Rex framework and 
for the 𝑘th random experiment, the Lasso estimator is defined by 

�̂�𝑘(𝜆𝑘(𝑇 ,𝐿)) = argmin
𝜷𝑘

1
2
‖

‖

‖

𝒚 − �̃�𝑘𝜷𝑘
‖

‖

‖

2
2 + 𝜆𝑘(𝑇 ,𝐿) ⋅ ‖𝜷𝑘‖1, (3)

where 𝜆𝑘(𝑇 ,𝐿) > 0 is the sparsity parameter that corresponds to the 
change point in the 𝑘th random experiment after 𝑇  dummies have been 
included. The predictors in 𝑿 are standardized and the response vector 
𝒚 is centered. That is, the means of the predictors and the response are 
equal to zero and the variances of the predictors are equal to one, i.e.,

1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖𝑗 = 0, 1

𝑛

𝑛
∑

𝑖=1
𝑦𝑖 = 0, 1

𝑛 − 1

𝑛
∑

𝑖=1
𝑥2𝑖𝑗 = 1,

𝑗 = 1,… , 𝑝. With these definitions in place we can formulate the 
following theorem:

Theorem 1 (Absolute Difference of Relative Occurrences). Let 𝜌𝑗,𝑗′ ∶=
𝒙⊤𝑗 𝒙𝑗′ , 𝑗, 𝑗′ ∈ {1,… , 𝑝}, be the sample correlation coefficient of the 
standardized variables 𝑗 and 𝑗′. Suppose that 𝛽𝑗,𝑘, 𝛽𝑗′ ,𝑘 ≠ 0. Then, for all 
tuples (𝑇 , 𝐿) ∈ {1,… , 𝐿} × N+ it holds that
|

|

|

𝛷𝑇 ,𝐿(𝑗) −𝛷𝑇 ,𝐿(𝑗′)
|

|

|

≤ �̄�‖𝒚‖2 ⋅
√

2(1 − 𝜌𝑗,𝑗′ ),

where �̄� ∶= 1
𝐾
∑𝐾

𝑘=1
1

𝜆𝑘(𝑇 ,𝐿)
. 

Proof.  The proof is deferred to Appendix. □



J. Machkour et al. Signal Processing 234 (2025) 109990 
3.2. Proposed: The dependency-aware T-Rex selector

From Theorem  1, we know that the pairwise absolute differences 
between the relative occurrences are bounded and the differences are 
zero when the corresponding variables are perfectly correlated. That 
is, even if only one of the variables from the pair of highly correlated 
variables is a true active variable, both variables might be selected. 
This is the harmful behavior that leads to the loss of the FDR control 
property in the presence of highly correlated variables. Loosely speak-
ing, if a candidate variable is highly correlated with another candidate 
variable and has a similar relative occurrence, then even high relative 
occurrences are no evidence for that variable being a true active one. 
Therefore, for such types of data, we propose to replace the ordinary 
relative occurrences of the T-Rex selector 𝛷𝑇 ,𝐿(𝑗) by the dependency-
aware relative occurrences 𝛷DA

𝑇 ,𝐿(𝑗, 𝜌thr ), 𝑗 = 1,… , 𝑝, which are defined 
as follows: 

Definition 1 (Dependency-Aware Relative Occurrences). The dependency-
aware relative occurrence of variable 𝑗 ∈ {1,… , 𝑝} is defined by 

𝛷DA
𝑇 ,𝐿(𝑗, 𝜌thr ) ∶= 𝛹𝑇 ,𝐿(𝑗, 𝜌thr ) ⋅𝛷𝑇 ,𝐿(𝑗), (4)

where

𝛹𝑇 ,𝐿(𝑗, 𝜌thr ) ∶=

⎧

⎪

⎨

⎪

⎩

1
2 − min

𝑗′∈Gr(𝑗,𝜌thr )

{

|

|

|

𝛷𝑇 ,𝐿(𝑗) −𝛷𝑇 ,𝐿(𝑗′)
|

|

|

}

, Gr(𝑗, 𝜌thr ) ≠ ∅

1∕2, Gr(𝑗, 𝜌thr ) = ∅,

with 𝛹𝑇 ,𝐿(𝑗, 𝜌thr ) ∈ [0.5, 1], is a penalty factor, 

Gr(𝑗, 𝜌thr ) ⊆ {1,… , 𝑝}∖{𝑗} (5)

is the generic definition of the group of variables that are associated 
with variable 𝑗, and 𝜌thr ∈ [0, 1] is a parameter that determines the size 
of the variable groups. 

In words, the dependency-aware relative occurrence of variable 𝑗
is designed to penalize the ordinary relative occurrence of variable 
𝑗 according to its resemblance with the relative occurrences of its 
associated group of variables Gr(𝑗, 𝜌thr ). Note that, in Section 3.3, the 
generic definition of 𝜌thr in Definition  1 will be specified as the cutoff of 
a dendrogram. That is, the value 𝜌thr determines explicitly the number 
of the disjoint variable groups in the dendrogram and, therefore, also 
implicitly the size of the variable groups.

It is important to note that in the context of the T-Rex selector [25], 
when two variables exhibit very high correlation, even very high 
relative occurrences do not provide strong evidence for any of these 
variables being active. Consequently, to maintain FDR control, the 
dependency-aware T-Rex selector conservatively avoids selecting any 
variables from such highly correlated groups of variables with almost 
identical relative occurrences. This conservative approach ensures that 
spurious selections are minimized, thereby preserving the integrity 
of FDR control. Specifically, as reflected in Eq.  (4), variables that 
fall within the same group and share identical (high or low) relative 
occurrences are assigned penalty terms of 0.5. This penalty effectively 
disqualifies these variables from selection, thereby meeting the strin-
gent criteria necessary to uphold FDR control in the presence of highly 
correlated variables.

From Definition  1, we can infer that the selected active set of the 
proposed T-Rex+DA selector is a subset of the selected active set of the 
ordinary T-Rex selector in (2): 

Corollary 1.  Let ̂𝐿(𝑣, 𝑇 ) ∶= {𝑗 ∶ 𝛷𝑇 ,𝐿(𝑗) > 𝑣} and ̂𝐿(𝑣, 𝜌thr , 𝑇 ) ∶=
{𝑗 ∶ 𝛷DA

𝑇 ,𝐿(𝑗, 𝜌thr ) > 𝑣} be the selected active sets of the ordinary T-Rex 
selector and the T-Rex+DA selector, respectively. Then, it holds that

̂ (𝑣, 𝜌 , 𝑇 ) ⊆ ̂ (𝑣, 𝑇 ).
𝐿 thr 𝐿

4 
Fig. 2. Hierarchical graphical models: The dendrogram.

Proof.  Using the definition of 𝛷DA
𝑇 ,𝐿(𝑗, 𝜌thr ) in (4), we obtain

̂𝐿(𝑣, 𝜌thr , 𝑇 ) = {𝑗 ∶ 𝛹𝑇 ,𝐿(𝑗, 𝜌thr ) ⋅𝛷𝑇 ,𝐿(𝑗) > 𝑣}

⊆ {𝑗 ∶ 𝛷𝑇 ,𝐿(𝑗) > 𝑣}

= ̂𝐿(𝑣, 𝑇 ),

where the second line follows from 𝛹𝑇 ,𝐿(𝑗, 𝜌thr ) ≤ 1. □

Loosely speaking, Corollary  1 indicates that the effect of replacing 
𝛷𝑇 ,𝐿(𝑗) by 𝛷DA

𝑇 ,𝐿(𝑗, 𝜌thr ) is that highly correlated variables, for which 
there is not sufficient evidence to decide if they are active, are removed 
from the selected active set.

In order to particularize the T-Rex+DA selector for different de-
pendency structures among the candidate variables, only the generic 
definition of the variable groups Gr(𝑗, 𝜌thr ) in (5) has to be specified. 
Therefore, this work develops a rigorous methodology for the design of 
Gr(𝑗, 𝜌thr ) such that the FDR is provably controlled at the user-defined 
target level 𝛼 while maximizing the number of selected variables and, 
thus, implicitly maximizing the TPR.

3.3. Clustering variables via hierarchical graphical models

In the following, we specify Gr(𝑗, 𝜌thr ), 𝑗 = 1,… , 𝑝, using a hierar-
chical graphical model. That is, the variables 𝒙1,… ,𝒙𝑝 are clustered 
in a recursive fashion according to some measure of distance. The 
resulting binary tree or dendrogram is a structured graph that allows for 
different distance cutoff values that partition the set of variables. Fig. 
2 depicts such a dendrogram for 𝑝 = 6 variables, where the height of 
the ‘‘⊓’’-shaped connector of any two clusters represents the distance 
of the two connected clusters. At the bottom of the dendrogram, all 
variables are considered as one-element clusters. Then, starting at the 
bottom, in each iteration the two clusters with the smallest distance are 
connected until all variables are clustered into a single cluster at the 
top. The obtained dendrogram can be evaluated at different distances 
(i.e., values on the 𝑦-axis), resulting in different variable clusters. The 𝑝
discrete distances between two consecutive cutoff levels that invoke a 
change in the clusters, are denoted by 𝛥𝜌thr,𝑢, 𝑢 = 1,… , 𝑝. For example, 
cutting off the dendrogram in Fig.  2 at a distance of

1 − 𝜌thr (𝑢c = 2) ∶= 1 −
𝑢c=2
∑

𝑢=1
𝛥𝜌thr,𝑢

= 1 − (0.1 + 0.3) = 0.6, (6)

where 𝑢c ∈ {1,… , 𝑝} is the discrete cutoff level, yields three disjoint 
variable clusters: {𝒙1,𝒙2}, {𝒙3,𝒙4,𝒙5}, and {𝒙6}. Note that 𝜌thr (𝑢c) ∶=
∑𝑢c

𝑢=1 𝛥𝜌thr,𝑢 is the sum of the discrete increments 𝛥𝜌thr,𝑢 of the dendro-
gram, as depicted in Fig.  2.

With this generic description of hierarchical graphical models in 
place, we can specify the generic definition of the variable groups in (5) 
in a recursive fashion: 
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Definition 2 (Hierarchical Group Design). The 𝑗th variable group fol-
lowing a hierarchical graphical model (i.e., binary tree/dendrogram) is 
defined by 

Gr(𝑗, 𝜌thr (𝑢c)) ∶=
{

𝑗′ ∈ {1,… , 𝑝}∖{𝑗} ∶ dist𝑢c−1(𝑗, 𝑗
′) ∈ [1−𝜌thr (𝑢c), 1−𝜌thr (𝑢c−1)]

}

,

(7)

where dist𝑢c−1(𝑗, 𝑗′) is a still to be specified measure of distance between 
the groups Gr(𝑗, 𝜌thr (𝑢c − 1)) and Gr(𝑗′, 𝜌thr (𝑢c − 1)). 

In this recursive definition of the variable groups, we consider 
𝜌thr (𝑢c) to be a variable that can be optimized and, therefore, include 
it in Gr(𝑗, 𝜌thr (𝑢c)) as a second argument. Note that the hierarchical 
clustering as depicted in Fig.  2 follows a bottom-up approach and the 
group design in Definition  2 is defined top-down. As we move down the 
dendrogram, the variable groups become more numerous but smaller, 
resulting in less stringent penalty factors when the variable groups are 
non-empty. That is, our approach combines bottom-up clustering with 
a top-down loosening of the penalty factors.

Remark 1.  The following three distance measures are frequently used 
in hierarchical graphical models [42]:
1. Single linkage:
dist𝑢c (𝑔, ℎ) ∶= min

𝑔′ ∈ Gr(𝑔, 𝜌thr (𝑢c))
ℎ′ ∈ Gr(ℎ, 𝜌thr (𝑢c))

1 − |𝜌𝑔′ ,ℎ′ |,

2. Complete linkage:
dist𝑢c (𝑔, ℎ) ∶= max

𝑔′ ∈ Gr(𝑔, 𝜌thr (𝑢c))
ℎ′ ∈ Gr(ℎ, 𝜌thr (𝑢c))

1 − |𝜌𝑔′ ,ℎ′ |,

3. Average linkage:

dist𝑢c (𝑔, ℎ) ∶=

∑

𝑔′ ∈
Gr(𝑔, 𝜌thr (𝑢c))

∑

ℎ′ ∈
Gr(ℎ, 𝜌thr (𝑢c))

(

1 − |𝜌𝑔′ ,ℎ′ |
)

|Gr(𝑔, 𝜌thr (𝑢c))| ⋅ |Gr(ℎ, 𝜌thr (𝑢c))|
.

Remark 2.  Note that, for all 𝑢c ∈ {1,… , 𝑝}, it holds that
Gr(𝑗1, 𝜌thr (𝑢c)) ∩ Gr(𝑗2, 𝜌thr (𝑢c))

=

{

∅, ∄ 𝑗 ∈ {1,… , 𝑝} ∶ 𝑗1, 𝑗2 ∈ Gr(𝑗, 𝜌thr (𝑢c))
Gr(𝑗1, 𝜌thr (𝑢c)) ∪ Gr(𝑗2, 𝜌thr (𝑢c)), otherwise,

i.e., any arbitrary pair of groups among the obtained 𝑝 groups
Gr(𝑗, 𝜌thr (𝑢c)), 𝑗 = 1,… , 𝑝, are disjoint if and only if there exist no two 
variables 𝑗1 and 𝑗2 that belong to the same group and identical other-
wise. Loosely speaking, due to the binary tree structure of hierarchical 
graphical models, there exist no ‘‘overlapping’’ variable groups. 

3.4. Preliminaries for the FDR control theorem

The preliminaries and technical tools presented in this section draw 
upon the established methodologies and derivations detailed in [25]. 
By leveraging these foundational techniques, we aim to address the 
intricacies introduced by dependent variables, thereby extending the 
applicability of these tools to the proposed dependency-aware T-Rex 
selector.

Based on the recursive definition of the variable groups in (7), we 
can formulate the FDR, TPR, and the conservative FDP estimator F̂DP. 
For this purpose, let
𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∶=

|

|

|

̂ 0(𝑣, 𝜌thr (𝑢c))
|

|

|

∶= |{null 𝑗 ∶ 𝛷DA (𝑗, 𝜌 (𝑢 )) > 𝑣}|,
|

|

𝑇 ,𝐿 thr c |

|

5 
𝑆𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∶=
|

|

|

̂ 1(𝑣, 𝜌thr (𝑢c))
|

|

|

∶= |

|

|

{active 𝑗 ∶ 𝛷DA
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)) > 𝑣}||

|

,

𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∶=
|

|

|

̂(𝑣, 𝜌thr (𝑢c))
|

|

|

∶= |

|

|

{𝑗 ∶ 𝛷DA
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)) > 𝑣}||

|

, (8)

be the number of selected null variables, the number of selected ac-
tive variables, and the total number of selected variables, respec-
tively. Note that the expressions ̂ 0(𝑣, 𝜌thr (𝑢c)), ̂ 1(𝑣, 𝜌thr (𝑢c)), and 
̂(𝑣, 𝜌thr (𝑢c)) are shortcuts (i.e., 𝐿 and 𝑇  are dropped) of the expressions 
̂ 0

𝐿(𝑣, 𝜌thr (𝑢c), 𝑇 ), ̂ 1
𝐿(𝑣, 𝜌thr (𝑢c), 𝑇 ), and ̂𝐿(𝑣, 𝜌thr (𝑢c), 𝑇 ), respectively.

Definition 3 (Dependency-Aware FDP and FDR). The dependency-aware 
FDR is defined as the expectation of the dependency-aware FDP, i.e.,

FDR(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ∶= E
[

FDP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿)
]

∶= E
[ 𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))
𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∨ 1

]

.

Definition 4 (Dependency-Aware TPP and TPR). The dependency-aware 
TPR is defined as the expectation of the dependency-aware TPP, i.e.,

TPR(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ∶= E
[

TPP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿)
]

∶= E
[𝑆𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

𝑝1 ∨ 1

]

.

From Definition  3, we know that in order to design a dependency-
aware and conservative FDP estimator, we only need to design a 
dependency-aware estimator of the number of selected null variables 
𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)), since the total number of selected variables
𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) is observable. For this purpose, we plug the dependency-
aware relative occurrences from Definition  1 and the group design from 
Definition  2 into the ordinary T-Rex estimator of 𝑉𝑇 ,𝐿(𝑣) in [25], which 
yields the dependency-aware estimator of the number of selected null 
variables 

𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∶=
∑

𝑗∈̂(𝑣,𝜌thr (𝑢c))

(

1 −𝛷DA
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c))

)

+ 𝑉 ′
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)),

(9)

where

𝑉 ′
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∶=

𝑇
∑

𝑡=1

𝑝 −
∑𝑝

𝑞=1 𝛷
DA
𝑡,𝐿 (𝑞, 𝜌thr (𝑢c))

𝐿 − (𝑡 − 1)
⋅

∑

𝑗∈̂(𝑣,𝜌thr (𝑢c))
𝛥𝛷DA

𝑡,𝐿 (𝑗, 𝜌thr (𝑢c))

∑

𝑗∈̂(0.5,𝜌thr (𝑢c))
𝛥𝛷DA

𝑡,𝐿 (𝑗, 𝜌thr (𝑢c))
(10)

and 𝛥𝛷DA
𝑡,𝐿 (𝑗, 𝜌thr ) ∶= 𝛷DA

𝑡,𝐿 (𝑗, 𝜌thr ) − 𝛷DA
𝑡−1,𝐿(𝑗, 𝜌thr ) is the increase in 

the dependency-aware relative occurrence from step 𝑡 − 1 to 𝑡. The 
expressions in (9) and (10) are derived along the lines of the ordinary 
estimator of 𝑉𝑇 ,𝐿(𝑣) in [25] except that the ordinary relative occur-
rences have been replaced by the proposed dependency-aware relative 
occurrences in Definition  1. Thus, for more details on the derivation 
of (9) and (10), we refer the interested reader to [25].

Finally, the conservative estimator of the FDP is defined as follows: 

Definition 5 (Dependency-Aware FDP estimator). The dependency-aware 
FDP estimator is defined by

F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ∶=
𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∨ 1
.

With all preliminary definitions in place, the overarching goal of 
this paper, i.e., maximizing the number of selected variables while 
controlling the FDR at the target level 𝛼, is formulated as follows:
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max
𝑣,𝜌thr (𝑢c),𝑇

𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

subject to F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼. (11

 In Section 3.5, we prove that satisfying the condition of the optimiza-
tion problem in Eq.  (11)ields FDR control and in Section 4, we propose 
an efficient algorithm to solve Eq.  (11)nd prove that it yields an optimal 
solution.

3.5. Dependency-aware FDR control

In this section, using martingale theory [37] we state and prove that 
controlling F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) at the target level 𝛼 (i.e., the condition 
in the optimization problem in Eq.  (11) guarantees FDR control. The 
required technical Lemmas  1, 2, and 3 are deferred to Appendix. 

Theorem 2 (Dependency-Aware FDR control). For all quadruples
(𝑇 ,𝐿, 𝜌thr (𝑢c), 𝑣) ∈ {1,… , 𝐿}×N+×[0, 1]×[0.5, 1) that satisfy the equation 

𝑣 = inf
{

𝜈 ∈ [0.5, 1) ∶ F̂DP(𝜈, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼
}

, (12)

and as 𝐾 → ∞, the T-Rex+DA selector with Gr(𝑗, 𝜌thr (𝑢c)) from Definition 
2 controls the FDR at any fixed target level 𝛼 ∈ [0, 1], i.e.,
FDR(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼.

Proof.  Rewriting the expression for the FDP in Definition  3, we obtain

FDP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) =
𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∨ 1

=
𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∨ 1
⋅
𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

≤ 𝛼 ⋅
𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

≤ 𝛼 ⋅
𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

𝑉 ′
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))

=∶ 𝛼 ⋅𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)),

where the inequality in the third line follows from the condition in (12) 
that all considered quadruples (𝑇 , 𝐿, 𝜌thr (𝑢c), 𝑣) must satisfy. Taking the 
expectation of the FDP, we obtain
FDR(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼 ⋅ E

[

𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))
]

and, thus, it remains to prove that E[𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))] ≤ 1. Since 
{𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))}𝑣∈  is a backward-running super-martingale, as stated 
in Lemma  1, and (12) is a stopping time that is adapted to the filtration 
𝑣 in Lemma  1 (i.e., 𝑣 is 𝑣-measurable), we can apply Doob’s optional 
stopping theorem to obtain an upper bound for E[𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))], i.e., 

E
[

𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))
]

≤ E
[

𝐻𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))
]

. (13)

Defining

𝛹+
𝑡,𝐿(𝑗, 𝜌thr (𝑢c)) ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2 − min 𝑗′∈

Gr(𝑗,𝜌thr (𝑢c ))

{

|

|

|

𝛷𝑇 ,𝐿(𝑗) −𝛷𝑇 ,𝐿(𝑗′)
|

|

|

}

,
Gr(𝑗, 𝜌thr (𝑢c))

≠ ∅

1,
Gr(𝑗, 𝜌thr (𝑢c))

= ∅

≥

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2 − min 𝑗′∈

Gr(𝑗,𝜌thr (𝑢c ))

{

|

|

|

𝛷𝑇 ,𝐿(𝑗) −𝛷𝑇 ,𝐿(𝑗′)
|

|

|

}

,
Gr(𝑗, 𝜌thr (𝑢c))

≠ ∅

1∕2,
Gr(𝑗, 𝜌thr (𝑢c))

= ∅
.

= 𝛹 (𝑗, 𝜌 (𝑢 )),
𝑡,𝐿 thr c
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(𝑡, 𝐿) ∈ {1,… , 𝑇 } × N+, 𝐻𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)) can be upper bounded as 
follows:

𝐻𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)) =
𝑉𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))

𝑉 ′
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))

≤
𝑉 +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))

𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))

=∶ 𝐻+
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)). (14)

The inequality in the second line follows from
(i) 𝑉 +

𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) (15)

∶= |{null 𝑗 ∶ 𝛹+
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)) ⋅𝛷𝑇 ,𝐿(𝑗) > 𝑣}|

≥ |{null 𝑗 ∶ 𝛹𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)) ⋅𝛷𝑇 ,𝐿(𝑗) > 𝑣}|

= 𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)),

(ii) 𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)) (16)

∶=
𝑇
∑

𝑡=1

𝑝 −
∑𝑝

𝑞=1 𝛹
+
𝑡,𝐿(𝑞, 𝜌thr (𝑢c)) ⋅𝛷𝑡,𝐿(𝑞)

𝐿 − (𝑡 − 1)

≤
𝑇
∑

𝑡=1

𝑝 −
∑𝑝

𝑞=1 𝛹𝑡,𝐿(𝑞, 𝜌thr (𝑢c)) ⋅𝛷𝑡,𝐿(𝑞)

𝐿 − (𝑡 − 1)

= 𝑉 ′
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)).

Next, we show that 𝐻+
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)) is monotonically increasing in 

𝜌thr (𝑢c), i.e.,

𝐻+
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c + 1)) =

𝑉 +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c + 1))

𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c + 1))

≥
𝑉 +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))

𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))

= 𝐻+
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)), (17)

where the inequality in the second line follows from Lemmas  2 and
3. Combining these preliminaries and noting that 𝛹+

𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)) = 1
yields

𝑉𝑇 ,𝐿(0.5) ∶= |{null 𝑗 ∶ 𝛷𝑇 ,𝐿(𝑗) > 0.5}|,

𝑉 ′
𝑇 ,𝐿(0.5) ∶=

𝑇
∑

𝑡=1

𝑝 −
∑𝑝

𝑞=1 𝛷𝑡,𝐿(𝑞)

𝐿 − (𝑡 − 1)
,

𝐻𝑇 ,𝐿(0.5) ∶=
𝑉𝑇 ,𝐿(0.5)

𝑉 ′
𝑇 ,𝐿(0.5)

, (18)

i.e., the counterparts of the dependency-aware expressions
𝑉 +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)), 𝑉 ′ +

𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)), and 𝐻+
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)), respectively, 

we finally obtain
E
[

𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))
]

≤ E
[

𝐻𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))
]

≤ E
[

𝐻+
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c))

]

≤ E
[

𝐻+
𝑇 ,𝐿(0.5, 𝜌thr (𝑝))

]

= E
[

𝐻+
𝑇 ,𝐿(0.5, 1)

]

= E
[

𝐻𝑇 ,𝐿(0.5)
]

≤ 1, (19)

where the first inequality is the same as in (13), the second and third 
inequalities follow from (14) and (17), respectively, and the equation 
in the fourth line follows from (6) (i.e., 𝜌thr (𝑝) =

∑𝑝
𝑢=1 𝛥𝜌thr,𝑢 = 1). The 

equation in the fifth line is a consequence of the following: For 𝜌thr (𝑝) =
1, we have Gr(𝑗, 1) = ∅ for all 𝑗 ∈ {1,… , 𝑝}, and, therefore, it holds that 
𝛹+
𝑡,𝐿(𝑗, 1) = 1 for all 𝑗 ∈ {1,… , 𝑝}. Thus, 𝐻+

𝑇 ,𝐿(0.5, 1) boils down to its 
ordinary counterpart 𝐻𝑇 ,𝐿(0.5) in (18), i.e., 𝐻+

𝑇 ,𝐿(0.5, 1) = 𝐻𝑇 ,𝐿(0.5). 
The proof of Inequality (19) requires 𝐾 → ∞. It is omitted because it 
is exactly as in the proof of Theorem 1 (FDR control) in [25]. □
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Fig. 3. Illustration of the group design principle for dependency-aware FDR control in 
Theorem  3.

Remark 3.  The condition 𝐾 → ∞ in Theorem  2 is required to use 
the law of large numbers in the proof of the FDR control property (for 
details, see [25]). This condition ensures that the average behavior 
of the random variable, which follows the negative hypergeometric 
distribution and models the number of included null variables before 
terminating the random experiments, stabilizes. It has already been 
shown that this convergence to the mean of the negative hypergeo-
metric distribution is very fast, i.e., the mean stabilization has already 
been verified for 𝐾 = 20 in Appendices G and J of [25]. We have 
added further verifications in Figure 11, deferred to Appendix C in the 
supplementary materials, for 𝐾 = 5, 20, 300, demonstrating that there is 
no substantial improvement beyond 𝐾 = 20 random experiments. 

3.6. General group design principle

The T-Rex+DA selector is not only suitable for the considered binary 
tree graphs or dendrograms but also for various other dependency 
models. In fact, a closer look at Lemmas  2 and 3, which are essential for 
the proof of Theorem  2 (dependency-aware FDR control), reveals that 
the following general design principle for the groups Gr(𝑗, 𝜌thr ) can be 
derived from Lemmas  2 and 3: 

Theorem 3 (Group Design Principle). Consider the generic definition of the 
variable groups in Definition  1, i.e., Gr(𝑗, 𝜌thr ) ∈ {1,… , 𝑝}∖{𝑗}, 𝑗 = 1,… , 𝑝, 
𝜌thr ∈ [0, 1]. If any 𝜌1, 𝜌2 ∈ [0, 1], 𝜌2 > 𝜌1, satisfy
Gr(𝑗, 𝜌2) ⊆ Gr(𝑗, 𝜌1), 𝑗 = 1,… , 𝑝,

then the T-Rex+DA selector controls the FDR at the target level 𝛼 ∈ [0, 1]. 

Proof.  The FDR control property in Theorem  2 holds if Lemmas  2 and 3 
hold. Lemmas  2 and 3 hold for any definition of Gr(𝑗, 𝜌thr ) that satisfies 
the group design principle in Theorem  3. □

Loosely speaking, Theorem  3 states that the cardinalities of any 
variable group 𝑗 must be monotonically decreasing in 𝜌thr and follow 
the subset structure illustrated in Fig.  3. Thus, any dependency model 
(e.g., graph models, time series models, equicorrelated models, etc.) 
that follows the design principle in Theorem  3 can be incorporated into 
the T-Rex+DA selector. This property makes the T-Rex+DA selector a 
versatile method that can cope with various dependency models.

4. Optimal dependency-aware T-Rex algorithm

In this section, we propose an efficient calibration algorithm and 
prove that it yields an optimal solution of Eq.  (11) That is, it op-
timally calibrates the parameters 𝑣, 𝜌thr (𝑢c), and 𝑇  of the proposed
T-Rex+DA selector, such that the FDR is controlled at the target level 
while maximizing the number of selected variables. The pseudocode 
of the proposed T-Rex+DA calibration algorithm is given in Algorithm 
7 
Algorithm 1 Extended T-Rex+DA Calibration.

1. Input: 𝛼 ∈ [0, 1], 𝑿, 𝒚, 𝐾, �̃�, �̃�thr , 𝐿max, 𝑇max. 

2. Set 𝐿 = 𝑝, 𝑇 = 1. 

3. While F̂DP(𝑣 = �̃�, 𝜌thr (𝑢c) = �̃�thr , 𝑇 , 𝐿) > 𝛼 and 𝐿 ≤ 𝐿max do: 

Set 𝐿 ← 𝐿 + 𝑝.

4. Set 𝛥𝑣= 1
𝐾
, F̂DP(𝑣 = 1 − 𝛥𝑣, 𝜌thr (𝑢c) = �̃�thr , 𝑇 , 𝐿) = 0. 

5. While F̂DP(𝑣 = 1 − 𝛥𝑣, 𝜌thr (𝑢c) = �̃�thr , 𝑇 , 𝐿) ≤ 𝛼 and 𝑇 ≤ 𝑇max do:

5.1. For 𝑣 = 0.5, 0.5 + 𝛥𝑣, 0.5 + 2 ⋅ 𝛥𝑣,… , 1 − 𝛥𝑣 do:

5.1.1. For 𝑢c = 1,… , 𝑝 do:

i. Compute F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) as in Defini-
tion 5.

ii. If F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼

Compute ̂𝐿(𝑣, 𝜌thr (𝑢c), 𝑇 ) as in (20).

Else

Set ̂𝐿(𝑣, 𝜌thr (𝑢c), 𝑇 ) = ∅.

5.2. Set 𝑇 ← 𝑇 + 1.

6. Solve

max
𝑣′ ,𝜌thr (𝑢′c),𝑇 ′

|

|

|

̂𝐿(𝑣′, 𝜌thr (𝑢′c), 𝑇
′)||
|

subject to𝑇 ′ ∈ {1,… , 𝑇 − 1}

𝑢′c ∈ {1,… , 𝑝}

𝑣′ ∈ {0.5, 0.5 + 𝛥𝑣, 0.5 + 2𝛥𝑣,… , 1 − 𝛥𝑣}

and let (𝑣∗, 𝜌thr (𝑢∗c ), 𝑇 ∗) be a solution. 

7. Output: (𝑣∗, 𝜌thr (𝑢∗c ), 𝑇 ∗, 𝐿) and ̂𝐿(𝑣∗, 𝜌thr (𝑢∗c ), 𝑇
∗). 

1. An open source implementation of the proposed calibration algo-
rithm for the T-Rex+DA selector is available within the R packages 
‘TRexSelector’ [43] and ‘tlars’ [44] on CRAN.

First, some hyperparameters, which are relevant for managing the 
tradeoff between achieving a high TPR, the memory consumption, and 
computation time but have no influence on the FDR control property of 
the proposed method, are set. Throughout this paper, the hyperparam-
eters are chosen based on the suggestions in [25] as follows: �̃� = 0.75, 
�̃�thr = 𝜌thr (⌊0.75 ⋅ 𝑝⌉), 𝐿max = 10𝑝, 𝑇max = ⌈𝑛∕2⌉, where ⌊⋅⌉ and ⌈⋅⌉
denote rounding towards the nearest integer and the nearest higher 
integer, respectively. Moreover, it was shown for various applications 
and in extensive simulations that there are no improvements for 𝐾 > 20
random experiments [25–27] and, therefore, we set 𝐾 = 20.

The algorithm proceeds as follows: It takes the user-defined target 
FDR, the original predictor matrix 𝑿, and the response vector 𝒚 as 
inputs. Then, it determines 𝐿 via a loop that adds 𝑝 dummies in each 
iteration until F̂DP(𝑣 = �̃�, 𝜌thr (𝑢c) = �̃�thr , 𝑇 = 1, 𝐿) falls below the 
target FDR level 𝛼 at a reference point (𝑣, 𝜌 (𝑢 ), 𝑇 ) = (�̃�, �̃� , 1) or 
thr c thr
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𝐿 reaches the maximum allowed value 𝐿max. This guarantees that the 
FDR is controlled as tightly as possible at the target FDR level 𝛼 while 
ensuring that the TPR is as high as possible. Supposing that there exists 
no �̃�′thr ≠ �̃�thr that satisfies F̂DP(𝑣 = 1−𝛥𝑣, 𝜌thr (𝑢c) = �̃�′thr , 𝑇 , 𝐿) < F̂DP(𝑣 =
1 − 𝛥𝑣, 𝜌thr (𝑢c) = �̃�thr , 𝑇 , 𝐿), the algorithm proceeds by increasing the 
number of included dummies 𝑇  at a reference point (𝑣, 𝜌thr (𝑢c)) =
(1 − 𝛥𝑣, �̃�thr ), where 𝛥𝑣 = 1∕𝐾, until F̂DP(𝑣 = 1 − 𝛥𝑣, 𝜌thr (𝑢c) = �̃�thr , 𝑇 , 𝐿)
exceeds the target level 𝛼 or reaches the maximum allowed number of 
included dummies 𝑇max. Fixing the optimized parameters 𝐿, 𝑇  and the 
corresponding FDR-controlled variable sets, the algorithm then deter-
mines the optimal values of 𝑣 and 𝜌thr (𝑢c) that maximize the number 
of selected variables by solving the optimization problem in 6. Finally, 
the obtained solution (𝑣∗, 𝜌thr (𝑢∗c ), 𝑇 ∗, 𝐿) yields the FDR-controlled set 
of selected variables 
̂𝐿(𝑣∗, 𝜌thr (𝑢∗c ), 𝑇

∗) =
{

𝑗 ∶ 𝛷DA
𝑇 ∗ ,𝐿(𝑗, 𝜌thr (𝑢

∗
c )) > 𝑣∗

}

. (20)

Supposing that the dendrogram for the hierarchical group design 
in Definition  2 is pre-computed, the computational complexity of the
T-Rex+DA selector in Algorithm 1 stems from the computation of 𝐾
early terminated random experiments with expected complexity (𝑛𝑝), 
which is the same complexity as that of the ordinary T-Rex selector 
in [25]. The computational complexity of the dendrogram depends on 
the algorithm and linkage type that is used to compute it (see [42] for 
an overview).

In the following, we state and prove that Algorithm 1 yields an 
optimal solution of Eq.  (11)

Theorem 4 (Optimal Dependency-Aware Calibration). Suppose that 𝐿, as 
obtained by Algorithm 1, is fixed. Then, any triple (𝑣∗, 𝜌thr (𝑢∗c ), 𝑇 ∗) of a 
quadruple (𝑣∗, 𝜌thr (𝑢∗c ), 𝑇 ∗, 𝐿), as obtained by Algorithm 1, is an optimal 
solution of Eq.  (11)

Proof.  From Eq.  (8), it follows that for all quadruples (𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿)
that satisfy F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼, the objective functions in Step 6 
of Algorithm 1 and in the optimization problem in Eq.  (11)re equal, 
i.e., |̂𝐿(𝑣′, 𝜌thr (𝑢′c), 𝑇

′)| = 𝑅𝑇 ′ ,𝐿(𝑣′, 𝜌thr (𝑢′c)). Therefore, and since all 
attainable values of 𝑢c are considered in Step 6 of Algorithm 1, it 
suffices to show that for fixed 𝜌thr (𝑢c) and 𝐿, the set of feasible tuples 
(𝑣, 𝑇 ) of Eq.  (11)s a subset of or equal to the set of feasible tuples 
obtained by Algorithm 1. Since, ceteris paribus, F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) is 
monotonically decreasing in 𝑣, and monotonically increasing in 𝑇  [25], 
for 𝑇 = 𝑇f in, F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) attains its minimum value at (𝑣, 𝑇 ) =
(1 − 𝛥𝑣, 𝑇f in), where 𝑇f in ∈ {1,… , 𝐿} is implicitly defined through the 
inequalities

F̂DP(1 − 𝛥𝑣, 𝜌thr (𝑢c), 𝑇f in, 𝐿) ≤ 𝛼

and

F̂DP(1 − 𝛥𝑣, 𝜌thr (𝑢c), 𝑇f in + 1, 𝐿) > 𝛼.

Thus, the feasible set of the optimization problem in Eq.  (11)s given by
{

(𝑣, 𝑇 ) ∶ F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼} = {(𝑣, 𝑇 ) ∶ 𝑣 ∈ [0.5, 1 − 𝛥𝑣],

𝑇 ∈ {1,… , 𝑇f in},

F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼
}

.

(21)

Since 𝛥𝑣 = 1∕𝐾, the upper endpoint of the interval [0.5, 1 − 𝛥𝑣]
asymptotically (i.e., 𝐾 → ∞) coincides with the supremum of the 
interval [0.5, 1). That is, the set in (21) contains all feasible solutions 
of Eq.  (11) However, since the 𝑣-grid in Algorithm 1 is, as in [25], 
adapted to 𝐾, all values of 𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) that are attained by off-
grid solutions can also be attained by on-grid solutions. Thus, instead 
of (21) only the following fully discrete feasible set of Eq.  (11)eeds to 
be considered:
{

(𝑣, 𝑇 ) ∶ 𝑣 ∈ {0.5, 0.5 + 𝛥𝑣, 0.5 + 2𝛥𝑣,… , 1 − 𝛥𝑣},
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𝑇 ∈ {1,… , 𝑇f in},

F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼
}

. (22)

Since the ‘‘while’’-loop in Step 5 of Algorithm 1 is terminated when 
𝑇 = 𝑇f in + 1, the feasible set of the optimization problem in Step 6 of 
Algorithm 1 is given by
{

(𝑣, 𝑇 ) ∶ 𝑣 ∈ {0.5, 0.5 + 𝛥𝑣, 0.5 + 2𝛥𝑣,… , 1 − 𝛥𝑣},

𝑇 ∈ {1,… , 𝑇f in}

F̂DP(𝑣, 𝜌thr (𝑢c), 𝑇 , 𝐿) ≤ 𝛼
}

,

which is equal to (22). □

Remark 4.  Note that in contrast to Theorem  2, where 𝐾 → ∞ is 
required to prove that the FDR (i.e., the expected value of the FDP) 
does not exceed the user-specified target FDR level 𝛼, Theorem  4 does 
not require 𝐾 → ∞ because the condition F̂DP ≤ 𝛼 in Eq.  (11)nly states 
that the conservative FDP estimator (and not its expected value) must 
not exceed 𝛼. Therefore, 𝐾 → ∞ is not a necessary condition to prove 
the optimality of Algorithm 1.

5. Numerical experiments

In this section, we verify the FDR control property of the proposed
T-Rex+DA selector via numerical experiments and compare its per-
formance against three state-of-the-art methods for high-dimensional 
data, i.e., model-X knockoff [21], model-X knockoff+ [21], and T-Rex
selector [25].

We consider a high-dimensional setting with 𝑝 = 500 variables and 
𝑛 = 150 samples and generate the predictor matrix 𝑿 from a zero 
mean multivariate Gaussian distribution with an 𝑀 block diagonal 
correlation matrix, where each block is a 𝑄 × 𝑄 toeplitz correlation 
matrix, i.e.,

Σ =

⎡

⎢

⎢

⎢

⎢

⎣

Σ1 𝟎 … 𝟎
𝟎 ⋱ ⋮
⋮ Σ𝑀 𝟎
𝟎 … 𝟎 𝟎

⎤

⎥

⎥

⎥

⎥

⎦

, Σ𝑚 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 𝜌 𝜌2 ⋯ 𝜌𝑄−1

𝜌 1 𝜌 ⋯ 𝜌𝑄−2

𝜌2 𝜌 1 ⋯ 𝜌𝑄−3

⋮ ⋮ ⋮ ⋱ ⋮
𝜌𝑄−1 𝜌𝑄−2 𝜌𝑄−3 … 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

That is, each block mimics a dependency structure that is often present 
in biomedical data (e.g., gene expression [32] and genomics data [33]) 
and may lead to the breakdown of the FDR control property of existing 
methods. The response vector 𝒚 is generated from the linear model 
𝒚 = 𝑿𝜷 + 𝝐, where 𝜷 = [𝛽1 … 𝛽𝑝]⊤ ∈ R𝑝 is the sparse true coefficient 
vector and 𝜖 ∼  (𝟎, 𝜎2𝑰) is an additive noise vector with variance 
𝜎2 and identity matrix 𝑰 . The variance 𝜎2 is set such that the signal-
to-noise ratio SNR = Var[𝑿𝜷]∕𝜎2 has the desired value. In the base 
setting, we set the parameters as follows: SNR = 2, 𝜌 = 0.7, 𝑄 = 5, 
𝑀 = 5, 𝛼 = 0.2. The coefficient vector 𝜷 is generated such that the 𝑚th 
block consists of one true active variable with coefficient value one, 
while the remaining variables are nulls with coefficient value zero. In 
the numerical experiments, all parameters except for one parameter of 
the base setting are varied. That is, ceteris paribus, SNR, 𝜌, group size 
𝑄, number of groups 𝑀 , and target FDR 𝛼 are varied.

The results in Figs.  4 and 5 are averaged over 955 Monte Carlo 
replications.5 For the performance comparison, we consider the aver-
aged FDP and TPP (in %) which are estimates of the FDR and TPR. 
We observe that only the proposed T-Rex+DA selector with a binary 
tree group model (T-Rex+DA+BT ) reliably controls the FDR over all 
values of SNR, 𝜌, 𝑄, 𝑀 , and 𝛼, while the benchmarks lose the FDR 
control property, especially in the practically important case where 
groups of highly correlated variables are present in the data. It is 

5 The uneven number of Monte Carlo replications was chosen to run the 
simulations efficiently and in parallel on the Lichtenberg High-Performance 
Computer of the Technische Universität Darmstadt.
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Fig. 4. Only the proposed T-Rex+DA selector with a binary tree group model (T-Rex+DA+BT ) reliably controls the FDR in all settings while achieving a reasonably high TPR. In 
Figure (c), we see that with increasing correlations among the variables in a group, the benchmark methods exhibit an alarming increase in FDR.
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Fig. 5. The proposed T-Rex+DA selector reliably controls the FDR in all settings while achieving a reasonably high TPR in harsh high correlation settings. We observe that with 
increasing correlations among the variables in a group, the benchmark methods do not control the FDR for almost any choice of target FDR.
remarkable that the frequently used model-X knockoff method exceeds 
the target FDR level in all scenarios by far. Note that achieving a 
higher TPR without controlling the FDR is undesirable, since it leads 
to reporting false discoveries, which need to be avoided in order to 
alleviate the unfortunately still ongoing reproducibility crisis in many 
scientific fields [45].

As discussed in Section 3.2, the conservative nature of the proposed 
dependency-aware T-Rex selector results in a smaller set of selected 
variables as compared to the original T-Rex selector [25], particu-
larly in the presence of highly correlated groups. This conservative 
behavior directly impacts the observed FDR in the simulations, which 
may appear far from the desired level because the method prioritizes 
10 
maintaining control over spurious discoveries. In such cases, variables 
from highly correlated groups are penalized, effectively reducing false 
discoveries and maintaining the FDR control guarantees. That is, the 
observed FDR deviation is a result of the stringent penalty mecha-
nism employed to preserve control in challenging high-dependency 
scenarios.

The results of two additional simulation setups, where

(1) the 𝑝-dimensional samples of the predictor matrix (i.e., rows 
of 𝑿) are sampled from a zero-mean multivariate heavy-tailed 
Student-𝑡 distribution with covariance matrix Σ and 3 degrees 
of freedom,
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Fig. 6. Number of selected genes in the TCGA breast cancer survival analysis study.
(2) the noise vector 𝝐 is sampled from a heavy-tailed Student-𝑡
distribution with 3 degrees of freedom,

are deferred to Appendix C in the supplementary materials. These 
additional simulations verify the theoretical results and show that only 
the proposed T-Rex+DA selector reliably controls the FDR in these 
heavy-tailed settings.

6. Breast cancer survival analysis

To illustrate the practical usefulness of the proposed T-Rex+DA
selector in large-scale high-dimensional settings, we demonstrate the 
performance of the proposed method via a breast cancer survival 
analysis using gene expression and survival time data from the open 
source resource The Cancer Genome Atlas (TCGA) [12,46]. In order 
to detect the genes that are truly associated with the survival time 
of breast cancer patients, we conduct an FDR-controlled breast cancer 
survival analysis.

6.1. TCGA breast cancer data

The gene expression levels are derived from the RNA-sequencing 
(RNA-seq) count data. The raw RNA-seq count data matrix 𝑿 ∈ R𝑛×𝑝

contains 𝑛 = 1,095 samples (i.e., breast cancer patients) and 𝑝 = 19,962
protein coding genes. After two standard preprocessing steps, which are 
removing all genes with extremely low expression levels (i.e., where the 
sum of the RNA-seq counts is less than 10) and performing a standard 
variance stabilizing transformation on the count data using the DESeq2 
software [47], 𝑝 = 19,405 candidate genes are left. The response vector 
𝒚 ∈ R𝑛 contains the log-transformed survival times of the patients. 
After removing missing and uninformative entries (i.e., entries with 
a survival time of zero days) from 𝒚, 𝑛 = 1,072 samples are left. 
During the study, the event (i.e., death) occurred for only 149 patients, 
while 923 patients were either still alive after the end of the study or 
dropped out of the study. That is, the survival times of 923 patients 
are right censored. This is dealt with by treating these entries in 𝒚 as 
missing data and imputing them using the well-known Buckley-James 
estimator [48].
11 
6.2. Methods and results

As benchmark methods, we consider the Cox proportional hazards
Lasso and elastic net [49], which are specifically designed for censored 
survival data, and the ordinary T-Rex selector [25]. The elastic net 
Cox model requires the tuning of two parameters, i.e., a sparsity 
parameter 𝜆 and a mixture parameter 𝛾 ∈ [0, 1] that balances a convex 
combination of the 𝓁1- and 𝓁2-norm regularization terms. Here, 𝛾 = 1
sets the 𝓁2 regularization term to zero and yields the Lasso solution. 
As suggested in [49], we evaluate a range of values for 𝛾 and, for each 
fixed 𝛾, we perform 10-fold cross-validation to choose 𝜆. We consider, 
as suggested by the authors, the 𝜆-value that achieves the maximum C-
index and the 𝜆-value that deviates by one standard error (1se criterion) 
from the maximum C-index to obtain a sparser solution. Due to the 
high computational complexity of the model-X knockoff method (see, 
e.g., Fig.  1 in [25]), it is practically infeasible in this large-scale high-
dimensional setting. Therefore, we cannot consider it in this survival 
analysis.

Fig.  6 shows the number of selected genes for different target 
FDR levels (in %) and different values of 𝛾. First, we observe that 
the ordinary T-Rex method selected more genes than the proposed 
dependency-aware T-Rex selector. In accordance with Corollary  1, all 
genes that were selected by the proposed method were also selected by 
the more liberal ordinary T-Rex selector. In contrast, the regularized 
Cox methods did not provide consistent results for many values of 𝛾
because many genes that were selected by the more conservative 1se 
criterion do not appear in the selected set of the more liberal maximum 
C-index criterion. Moreover, it seems that many choices of 𝛾 lead to a 
very high number of selected genes, which raises some suspicion with 
respect to reproducibility because only 149 non-censored data points 
are usually not sufficient to reliably detect thousands of genes. By 
contrast, all three genes that were selected by the proposed method 
at a target FDR level of 20% (i.e., ‘ITM2A’, ‘SCGB2A1’, ‘RYR2’) have 
been previously identified to be related to breast cancer [50–52].

7. Conclusion

The dependency-aware T-Rex selector has been proposed. In con-
trast to existing methods, it reliably controls the FDR in the presence 
of groups of highly correlated variables in the data. A real world 
TCGA breast cancer survival analysis showed that the proposed method 
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selects genes that have been previously identified to be related to 
breast cancer. Thus, the T-Rex+DA selector is a promising tool for 
making reproducible discoveries in biomedical applications. Moreover, 
the derived group design principle allows to easily adapt the method 
to various application-specific dependency-structures, which opens the 
door to other fields that require large-scale high-dimensional variable 
selection with FDR-control guarantees. In fact, the group design princi-
ple was already successfully applied as a guiding principle in adapting 
the proposed T-Rex+DA selector for FDR-controlled sparse financial 
index tracking [34,53].
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Appendix. Proofs and technical lemmas

A.1. Proof of Theorem  1

Proof.  Note that for any 𝛽𝑗,𝑘 ≠ 0, the indicator function in (1) can be 
written as follows: 
1𝑘(𝑗, 𝑇 , 𝐿) =

|

|

|

sign
(

𝛽𝑗,𝑘
)

|

|

|

, 𝑗 = 1,… , 𝑝. (23)

Thus, we can rewrite the left-hand side of the inequality in Theorem  1 
as follows:
|

|

|

𝛷𝑇 ,𝐿(𝑗) −𝛷𝑇 ,𝐿(𝑗′)
|

|

|

‖𝒚‖2

= 1
‖𝒚‖2 ⋅𝐾

|

|

|

|

|

𝐾
∑

𝑘=1

(

1𝑘(𝑗, 𝑇 , 𝐿) − 1𝑘(𝑗′, 𝑇 , 𝐿)
)

|

|

|

|

|

≤ 1
‖𝒚‖2 ⋅𝐾

𝐾
∑

𝑘=1

|

|

|

1𝑘(𝑗, 𝑇 , 𝐿) − 1𝑘(𝑗′, 𝑇 , 𝐿)
|

|

|

= 1
‖𝒚‖2 ⋅𝐾

𝐾
∑

𝑘=1

|

|

|

|

|

|

|

sign
(

𝛽𝑗,𝑘
)

|

|

|

− |

|

|

sign
(

𝛽𝑗′ ,𝑘
)

|

|

|

|

|

|

|

≤
√

2(1 − 𝜌𝑗,𝑗′ ) ⋅
1
𝐾

𝐾
∑

𝑘=1

1
𝜆𝑘(𝑇 ,𝐿)

⋅
‖�̂�𝑘‖2
‖𝒚‖2

≤
√

2(1 − 𝜌𝑗,𝑗′ ) ⋅ �̄�,

where �̄� = 1
𝐾
∑𝐾

𝑘=1
1

𝜆𝑘(𝑇 ,𝐿)
. The equation in the second line follows from 

the definition of the relative occurrences in (1), the inequality in the 
third line is a consequence of the triangle inequality, the equation in the 
fourth line follows from (23), and the inequality in the fifth line follows 
from Lemma 4, which is deferred to Appendix B in the supplementary 
materials. The inequality in the last line holds since �̂�𝑘 is by definition 
the minimizer of (25) and, therefore,

(

𝜷𝑘 = �̂�𝑘, 𝜆𝑘(𝑇 ,𝐿)
)

≤ 
(

𝜷𝑘 = 𝟎, 𝜆𝑘(𝑇 ,𝐿)
)

and, equivalently,
1
‖�̂� ‖

2 + 𝜆 (𝑇 , 𝐿)‖�̂� ‖ ≤ 1
‖𝒚‖2,
2 𝑘 2 𝑘 𝑘 1 2 2

12 
which yields ‖�̂�𝑘‖2 ≤ ‖𝒚‖2. Finally, we obtain
|

|

|

𝛷𝑇 ,𝐿(𝑗) −𝛷𝑇 ,𝐿(𝑗′)
|

|

|

≤ �̄�‖𝒚‖2 ⋅
√

2(1 − 𝜌𝑗,𝑗′ ).

 □

A.2. Technical lemmas

Lemma 1.  Define  ∶= {𝛷DA
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)) ≥ 0.5, 𝑗 = 1,… , 𝑝}∖{1}. Let

𝑣 ∶= 𝜎
({

𝑉𝑇 ,𝐿(𝑢, 𝜌thr (𝑢c))𝑢≥𝑣
}

,
{

𝑉 ′
𝑇 ,𝐿(𝑢, 𝜌thr (𝑢c))𝑢≥𝑣

})

be a backward-filtration with respect to 𝑣. Then, for all triples (𝑇 ,𝐿, 𝜌thr (𝑢c))
∈ {1,… , 𝐿} × N+ × [0, 1], {𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))}𝑣∈  is a backward-running 
super-martingale with respect to 𝑣. That is,
E
[

𝐻𝑇 ,𝐿(𝑣 − 𝜖∗𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c))) ∣ 𝑣
]

≥ 𝐻𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)),

where 𝑣 ∈ [0.5, 1) and
𝜖∗𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) ∶= inf

{

𝜖 ∈ (0, 𝑣) ∶ 𝑅𝑇 ,𝐿(𝑣 − 𝜖, 𝜌thr (𝑢c)) − 𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) = 1
}

with the convention that 𝜖∗𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) = 0 if the infimum does not exist. 

Proof.  The proof of Lemma  1 follows along the lines of the proof of 
Lemma 5 in [25] and by replacing the expressions of 𝛷𝑡,𝐿(𝑗), 𝑉𝑇 ,𝐿(𝑣), 
and 𝑅𝑇 ,𝐿(𝑣) by the expressions of their dependency-aware extensions 
𝛷DA

𝑡,𝐿 (𝑗, 𝜌thr (𝑢c)), 𝑉𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)), and 𝑅𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)), respectively. □

Lemma 2.  Let 𝑉 +
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) be as in (15). For all triples (𝑇 ,𝐿, 𝑣) ∈

{1,… , 𝐿} × N+ × [0.5, 1), 𝑉 +
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) is monotonically increasing in 

𝜌thr (𝑢c), i.e., for any 𝑢c ∈ {1,… , 𝑝 − 1}, it holds that
𝑉 +
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c + 1)) ≥ 𝑉 +

𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)).

Proof.  Using the definition of 𝑉 +
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)) in (15), we obtain

𝑉 +
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c + 1))

= |

|

|

{

null 𝑗 ∶ 𝛹+
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c + 1)) ⋅𝛷𝑇 ,𝐿(𝑗) > 𝑣

}

|

|

|

≥ |

|

|

{

null 𝑗 ∶ 𝛹+
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)) ⋅𝛷𝑇 ,𝐿(𝑗) > 𝑣

}

|

|

|

= 𝑉 +
𝑇 ,𝐿(𝑣, 𝜌thr (𝑢c)).

The inequality in the third line follows from
𝛹+
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c + 1)) ≥ 𝛹+

𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)),

which is a consequence of the following two cases:
(i) Gr(𝑗, 𝜌thr (𝑢c)) = ∅ ∶

𝛹+
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c + 1)) = 1 = 𝛹+

𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)),

(ii) Gr(𝑗, 𝜌thr (𝑢c)) ≠ ∅ ∶

𝛹+
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c + 1))

=
[

2 − min
𝑗′∈Gr(𝑗,𝜌thr (𝑢c+1))

{

|

|

|

𝛷𝑡,𝐿(𝑗) −𝛷𝑡,𝐿(𝑗′)
|

|

|

}

]−1

≥
[

2 − min
𝑗′∈Gr(𝑗,𝜌thr (𝑢c))

{

|

|

|

𝛷𝑡,𝐿(𝑗) −𝛷𝑡,𝐿(𝑗′)
|

|

|

}

]−1

= 𝛹+
𝑇 ,𝐿(𝑗, 𝜌thr (𝑢c)).

In (ii), the inequality in the third line follows from the fact that, for 
any 𝑢c ∈ {1,… , 𝑝 − 1}, it holds that
Gr(𝑗, 𝜌thr (𝑢c + 1)) ⊆ Gr(𝑗, 𝜌thr (𝑢c)), 𝑗 = 1,… , 𝑝,

and, therefore,
min

𝑗′∈Gr(𝑗,𝜌thr (𝑢c+1))

{

|

|

|

𝛷𝑡,𝐿(𝑗)−𝛷𝑡,𝐿(𝑗′)
|

|

|

}

≥ min
𝑗′∈Gr(𝑗,𝜌thr (𝑢c))

{

|

|

|

𝛷𝑡,𝐿(𝑗)−𝛷𝑡,𝐿(𝑗′)
|

|

|

}

.

 □
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Lemma 3.  Let 𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)) be as in (16). For all tuples (𝑇 ,𝐿) ∈

{1,… , 𝐿} × N+, 𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)) is monotonically decreasing in 𝜌thr (𝑢c), 

i.e., for any 𝑢c ∈ {1,… , 𝑝 − 1}, it holds that
𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c + 1)) ≤ 𝑉 ′ +

𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)).

Proof.  Using Eq. (10), we obtain
𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c + 1))

=
𝑇
∑

𝑡=1

𝑝 −
∑𝑝

𝑞=1 𝛹
+
𝑡,𝐿(𝑞, 𝜌thr (𝑢c + 1)) ⋅𝛷𝑡,𝐿(𝑞)

𝐿 − (𝑡 − 1)

≤
𝑇
∑

𝑡=1

𝑝 −
∑𝑝

𝑞=1 𝛹
+
𝑡,𝐿(𝑞, 𝜌thr (𝑢c)) ⋅𝛷𝑡,𝐿(𝑞)

𝐿 − (𝑡 − 1)

= 𝑉 ′ +
𝑇 ,𝐿(0.5, 𝜌thr (𝑢c)),

where the inequality in the third line follows from
𝛹+
𝑡,𝐿(𝑞, 𝜌thr (𝑢c + 1)) ≥ 𝛹+

𝑡,𝐿(𝑞, 𝜌thr (𝑢c)),

which was shown to hold within the proof of Lemma  2. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.sigpro.2025.109990.

Data availability

The data/code used in this work is publicly available.
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