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A B S T R A C T

We propose the Terminating-Random Experiments (T-Rex) selector, a fast variable selection method for high-
dimensional data. The T-Rex selector controls a user-defined target false discovery rate (FDR) while maximizing
the number of selected variables. This is achieved by fusing the solutions of multiple early terminated random
experiments. The experiments are conducted on a combination of the original predictors and multiple sets
of randomly generated dummy predictors. A finite sample proof based on martingale theory for the FDR
control property is provided. Numerical simulations confirm that the FDR is controlled at the target level
while allowing for high power. We prove that the dummies can be sampled from any univariate probability
distribution with finite expectation and variance. The computational complexity of the proposed method is
linear in the number of variables. The T-Rex selector outperforms state-of-the-art methods for FDR control
in numerical experiments and on a simulated genome-wide association study (GWAS), while its sequential
computation time is more than two orders of magnitude lower than that of the strongest benchmark methods.
The open source R package TRexSelector containing the implementation of the T-Rex selector is available on
CRAN.
1. Introduction and motivation

Determining the set of active signals or variables is crucial, e.g., in
detection [1–3], antenna array processing [4], distributed learning [5],
portfolio optimization [6], and robust estimation [7–11]. In this work,
we focus on genome-wide association studies (GWAS) [12], where only
a few common genetic variations called single nucleotide polymor-
phisms (SNPs) among potentially millions of candidates are associated
with a phenotype (e.g., disease) of interest [12]. To enable reproducible
discoveries, it is essential that (i) the proportion of falsely selected
variables among all selected variables is low while (ii) the propor-
tion of correctly selected variables among all true active variables is
high. The expected values of these quantities are referred to as the
false discovery rate (FDR) and the true positive rate (TPR), respec-
tively. Without FDR control, expensive functional genomics studies
and biological laboratory experiments are wasted on researching false
positives [13–16].

Establishing FDR control in high-dimensional settings is challeng-
ing and, unfortunately, established FDR-controlling methods for low-
dimensional data, e.g., [17–19], do not apply to high-dimensional
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settings. In recent years, the model-X knockoff method [20] and de-
randomized versions thereof [21,22] have been proposed. However,
they are computationally demanding. In fact, creating knockoff pre-
dictors that mimic the covariance structure of the original predictors
renders them infeasible for settings beyond a few thousand variables
(see Fig. 1). Moreover, the original derandomized knockoffs approach
controls the conservative per family error rate (PFER) and the 𝑘-family-
wise error rate (𝑘-FWER) but does not consider the less conservative
FDR metric [21]. Only the derandomized approach based on e-values
controls the FDR [22]. Nevertheless, the need for running the model-X
knockoff method multiple times renders both derandomized knock-
offs approaches practically infeasible for large-scale high-dimensional
settings.

Alternative FDR-controlling approaches that rely on conditional ran-
domization test (CRT ) 𝑝-values [20] are computationally significantly
more demanding than the model-X knockoff methods (see [20] for
a discussion), which renders them infeasible in even relatively small
settings (i.e., 𝑝 ≈ 1000 candidate variables).
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Fig. 1. The sequential computation time of the T-Rex selector is multiple orders of
magnitude lower than that of the model-X knockoff method. Note that, e.g., for 𝑝 = 5000
variables the absolute sequential computation time of the T-Rex selector for 𝑇 = 10
included dummies is only 15 s as compared to more than 5.5 h for the model-X knockoff
method. Moreover, the sequential computation time of the T-Rex selector for 5,000,000
variables is comparable to that of the model-X knockoff method for only 5000 variables.
Note that both axes are scaled logarithmically. Setup: 𝑛 = 300 (observations), 𝑝1 = 10
(true active variables), 𝐿 = 𝑝 (generated dummies), 𝐾 = 20 (random experiments),
SNR = 1, 𝑀 𝐶 = 955 (Monte Carlo replications) for 𝑝 ≤ 5000 and 𝑀 𝐶 = 100 for
𝑝 > 5000.

Related lines of research on error-controlled high-dimensional vari-
able selection are centered around stability selection methods [23,24],
data-splitting methods [25–28], and post-selection inference [29–32].

In this work, we propose the Terminating-Random Experiments (T-
ex) selector, a scalable framework (see Section 2.3) that turns forward

variable selection methods into FDR-controlling methods. The T-Rex
selector fuses the solutions of 𝐾 early terminated random experiments,
in which original and dummy variables compete to be selected in a
orward variable selection process. It utilizes dummies in a fundamen-

tally different manner than existing methods (e.g., [33–35]), which are
ot designed for FDR control. The T-Rex calibration algorithm auto-
atically determines its parameters, i.e., (i) the number of generated
ummies 𝐿, (ii) the number of included dummies before terminating
he random experiments 𝑇 , and (iii) the voting level in the fusion
rocess, such that the FDR is controlled at the target level.

Our main theoretical results are summarized as follows:

1. Using martingale theory [36], we provide a finite sample FDR
control proof (Theorem 1) that applies to low- (𝑝 ≤ 𝑛) and
high-dimensional (𝑝 > 𝑛) settings.

2. We prove that, for the T-Rex selector, the dummies can be
sampled from any univariate distribution with finite mean and
variance (Theorem 2). This is a fundamentally new result, and
it does not hold for, e.g., knockoff methods [19,20] that require
mimicking the covariance structure of the predictors, which is
computationally expensive (see Figure 7 in the supplementary
materials.

3. We also prove that the proposed calibration algorithm is optimal
in the sense that it maximizes the number of selected variables
while controlling the FDR at the target level (Theorem 3).

The major advantages compared to existing methods are:

1. The computation time of the T-Rex selector is multiple orders
of magnitude lower compared to that of the current benchmark
method (see Fig. 1). Its complexity stems from the computation
of 𝐾 terminated random experiments with expected complexity
(𝑛𝑝) (see Appendix E in the supplementary materials).
2 
2. As inputs, the T-Rex selector requires only the data and the
target FDR level. The tuning of the sparsity parameter for Lasso-
type methods [37–40] is no longer required when incorporating
them into the T-Rex selector framework.

In summary the T-Rex selector is, to the best of our knowledge, the
first multivariate high-dimensional FDR-controlling method that scales
to millions of variables in a reasonable amount of computation time
(see Fig. 1), which makes it a suitable method for large-scale GWAS,
.e., our major use-case.

For other use-cases (e.g., high-dimensional survival analysis, sparse
financial index tracking), where strong dependencies among the vari-
ables (e.g., gene expression levels, stock returns) exist and common
SNP pruning or other preprocessing techniques are not applicable, the
dependency-aware T-Rex (T-Rex+DA) selector has been proposed [41].
The T-Rex+DA selector performs high-dimensional FDR-controlled vari-
ble selection in the presence of strong dependencies at the cost of a

reduced power compared to the T-Rex selector.
Moreover, the T-Rex selector has already proven to be a useful and

versatile framework for screening large-scale genomics biobanks [42],
efficient computation in big data applications [43], grouped variable
selection [44,45], Gaussian graphical models [46], sparse principal
component analysis [47], sparse financial index tracking [48], and
survival analysis [41].

The open source R software packages TRexSelector [49] and tlars
[50] contain the implementation of the proposed T-Rex selector.

Notation: Column vectors and matrices are denoted by boldface
owercase and uppercase letters, respectively. Scalars are denoted by
on-boldface lowercase or uppercase letters. With the exceptions of

and ∅, which stand for the normal distribution and the empty set,
espectively, sets are denoted by calligraphic uppercase letters, e.g., 
ith || denoting the associated cardinality. The symbols E and Var
enote the expectation and the variance operator, respectively.

Organization: The remainder of this paper is organized as follows:
Section 2 introduces the methodology of the proposed T-Rex selector.
Section 3 presents the main theoretical results regarding the properties
of the proposed method and its algorithmic details. Section 4 discusses
he results of numerical simulations while Section 5 evaluates the per-

formances of the proposed T-Rex selector and the benchmark methods
on a simulated genome-wide association study (GWAS). Section 6 con-
cludes the paper. Technical proofs, numerical verifications, additional
simulations, and other appendices are deferred to the supplementary
materials.

2. The T-Rex selector

This section introduces the proposed T-Rex selector. First, some
forward variable selection methods that are used within the T-Rex
selector are briefly revisited and a mathematical formulation of the FDR
and TPR is given. Then, the underlying methodology is described and
the optimization problem of calibrating the T-Rex selector to perform
FDR control at the target level is formulated.

2.1. High-dimensional variable selection methods

The T-Rex selector framework is versatile in the sense that it can
ncorporate many different forward selection algorithms. In this paper,
e will focus on Lasso-type methods [37,39,40,51] and especially the
ARS algorithm [38]. Although, in general, the FDR control proof of the
-Rex selector (see Section 3.1) does not assume a linear relationship

between the explanatory variables and the response variable, we will
introduce the linear regression model because it is required by the high-
dimensional forward variable selection methods that are considered in
this paper.

The linear regression model is defined by
𝒚 = 𝑿 𝜷 + 𝝐, (1)
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Fig. 2. Illustration of the general concept of active variables, selected active variables, null variables, and selected null variables. Note that active variables and null variables are
also commonly referred to as true active variables and true null variables, respectively, to clearly distinguish them from the selected active and the selected null variables.
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where 𝑿 = [𝒙1 𝒙2 … 𝒙𝑝] with 𝒙𝑗 ∈ R𝑛, 𝑗 = 1,… , 𝑝, is the fixed
redictor matrix containing 𝑝 predictors and 𝑛 observations, 𝒚 ∈ R𝑛 is
he response vector, 𝜷 ∈ R𝑝 is the parameter vector, and 𝝐 ∼  (𝟎, 𝜎2𝑰),
ith 𝑰 being the identity matrix, is an additive Gaussian noise vector
ith standard deviation 𝜎. Variables whose associated coefficients in 𝜷
re non-zero (zero) are called actives or active variables (nulls or null
ariables).

To obtain a sparse estimate 𝜷̂ of 𝜷, sparsity-inducing methods, such
as the Lasso [37] and related methods [38–40,51], can be used. The
asso solution is defined by

𝜷̂(𝜆) = ar g min
𝜷

1
2
‖𝒚 −𝑿 𝜷‖22 + 𝜆‖𝜷‖1, (2)

where 𝜆 > 0 is a tuning parameter that controls the sparsity of 𝜷̂.
hroughout this paper, we will use the closely related LARS algo-

rithm [38] as a forward variable selection method to conduct the
random experiments of the T-Rex selector. The solution path of the
asso over 𝜆 is efficiently computed by applying a slightly modified
ARS algorithm.1 That is, instead of adding one variable at a time
ased on the highest correlation with the current residual, the Lasso
odification requires the removal of previously added variables when

he associated coefficients change their sign [38]. However, removed
variables can enter the solution path again in later steps. Since the
solution paths are terminated early by the T-Rex selector, there are very
few or no zero crossings along these paths. Thus, in most cases, the
Lasso in (2) and the LARS algorithm produce very similar or identical
solution paths when used with the T-Rex selector.

2.2. FDR and TPR

Before providing a mathematical formulation of the FDR and the
TPR, we first illustrate the concepts of ‘active variables’, ‘selected active
variables’, ‘null variables’, ‘selected null variables’. Consider a GWAS

ith SNPs as predictors and a disease of interest as the response vari-
able 𝑌 . Active variables are the SNPs truly associated with the disease,

hile null variables are the SNPs not associated with the disease.
elected active variables are the associated SNPs chosen by the variable

selection method, and selected null variables are the unassociated SNPs
chosen by the variable selection method. For example, if SNPs 𝑋1 and
𝑋2 are truly associated with the disease and SNPs 𝑋3 and 𝑋4 are not,

1 An alternative approach to obtain the solution path of the Lasso is to apply
he pathwise coordinate descent algorithm [52]. However, this approach is not
 forward variable selection method and, therefore, not applicable within the
T-Rex selector framework.
3 
selecting 𝑋1 and 𝑋3 means 𝑋1 is a selected active variable and 𝑋3 is a
selected null variable. The general concept of active variables, selected
active variables, null variables, and selected null variables is illustrated
n Fig. 2.

The FDR and TPR are expressed mathematically as follows: Given
the index set of the active variables  ⊆ {1,… , 𝑝}, where 𝑝 is the
umber of candidate variables, and the index set of the selected active
ariables ̂ ⊆ {1,… , 𝑝}, the FDR and the TPR are defined by

FDR ∶= E
[

|̂∖|

1 ∨ |̂|

]

and TPR ∶= E
[

| ∩ ̂|

1 ∨ ||

]

, (3)

respectively, where | ⋅ | denotes the cardinality operator and the symbol
∨ stands for the maximum operator, i.e., 𝑎 ∨ 𝑏 = max{𝑎, 𝑏}, 𝑎, 𝑏 ∈ R.2

Note that, throughout this work, 𝑝1 and 𝑝0 denote the number of
active variables and the number of null variables, respectively. Thus,
the number of candidate variables 𝑝 is the sum of 𝑝1 and 𝑝0. Also, note
that by definition the FDR and the TPR are zero when |̂| = 0 and
𝑝1 ∶= || = 0, respectively. While the FDR and the TPR of an oracle
variable selection procedure are 0% and 100%, respectively, in practice,
a tradeoff must be accomplished.

2.3. The T-Rex selector: Methodology

The general methodology underpinning the T-Rex selector consists
of several steps that are illustrated in Fig. 3. In the following, we will
introduce the framework and the notation, which will be crucial for
understanding why the T-Rex selector efficiently controls the FDR at
the target level:

tep1: Generate 𝐾 > 1 dummy matrices
◦
𝑿𝑘, 𝑘 = 1,… , 𝐾, each

containing 𝐿 ≥ 1 dummy predictors that are sampled from a
standard normal distribution.

tep2: Append each dummy matrix to the original predictor matrix 𝑿,
resulting in the enlarged predictor matrices

𝑿̃𝑘 ∶=
[

𝑿
◦
𝑿𝑘

]

=
[

𝒙1 … 𝒙𝑝
◦𝒙𝑘,1 … ◦𝒙𝑘,𝐿

]

, 𝑘 = 1,… , 𝐾 ,
where ◦𝒙𝑘,1,… , ◦𝒙𝑘,𝐿 are the dummies (see Fig. 4).

2 Throughout this paper, the original definition of the FDR in [17] is
used. Other definitions of the FDR, such as the positive FDR [53], exist.
The interested reader is referred to both papers for discussions on different
potential definitions of the FDR.
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Fig. 3. Simplified overview of the T-Rex selector framework: For each random experiment 𝑘 ∈ {1,… , 𝐾}, the T-Rex selector generates a dummy matrix
◦
𝑿𝑘 containing 𝐿 dummies

nd appends it to 𝑿 to obtain the enlarged predictor matrix 𝑿̃𝑘 =
[

𝑿
◦
𝑿𝑘

]

. With 𝑿̃𝑘 and the response 𝒚 as inputs, a forward variable selection method is applied to obtain the
candidate sets 1,𝐿(𝑇 ),… ,𝐾 ,𝐿(𝑇 ), where 𝑇 is iteratively increased from one until F̂DP (i.e., an estimate of the proportion of false discoveries among all selected variables that is
determined by the calibration process) exceeds the target FDR level 𝛼 ∈ [0, 1]. Finally, a fusion procedure determines the selected active set ̂𝐿(𝑣∗ , 𝑇 ∗) for which the calibration
procedure provides the optimal parameters 𝑣∗ and 𝑇 ∗, such that the FDR is controlled at the target level 𝛼 while maximizing the number of selected variables.
Fig. 4. The enlarged predictor matrices 𝑿̃𝑘, 𝑘 = 1,… , 𝐾, replace the original predictor matrix 𝑿 in each random experiment within the T-Rex selector framework. They contain
he original and the dummy predictors. The index set of the active variables and the index set of the null variables are denoted by  and , respectively. The number of active
ariables and the number of null variables are denoted by 𝑝1 ∶= || and 𝑝0 ∶= ||, respectively.
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tep3: Apply a forward variable selection procedure to {

𝑿̃𝑘, 𝒚
}

, 𝑘 =
1,… , 𝐾. For each random experiment, terminate the forward
selection process after 𝑇 ≥ 1 dummy variables are included. This
results in the candidate active sets 𝑘,𝐿(𝑇 ), 𝑘 = 1,… , 𝐾. After
terminating the forward selection process remove all dummies
from the candidate active sets.3

tep4: Iteratively increase 𝑇 and carry out Step3: until F̂DP exceeds the
target FDR level 𝛼 ∈ [0, 1]. F̂DP is a conservative estimator of the
false discovery proportion (FDP), i.e., the proportion of false dis-
coveries among all selected variables. The relationship between
the FDP and the FDR is that the FDR is the expected value of the
FDP, i.e., FDR = E[FDP]. FDR control is achieved by calibrating
the T-Rex selector such that F̂DP does not exceed the target FDR
level 𝛼. Therefore, as depicted in Fig. 3, we cannot increase 𝑇
further once F̂DP exceeds 𝛼. The mathematical expression and
the details of F̂DP are deferred to Section 3. Also, the calibration
process for determining F̂DP and the optimal values 𝑣∗ and 𝑇 ∗

such that the FDR is controlled at the target level 𝛼 ∈ [0, 1]
while maximizing the number of selected variables is derived in
Section 3.

tep5: Fuse the candidate active sets to determine the estimate of the
active set ̂𝐿(𝑣∗, 𝑇 ∗). The fusion step is based on the relative
occurrence of the original variables:

Definition 1 (Relative Occurrence). Let 𝐾 ∈ N+ ⧵ {1} be the number
f random experiments, 𝐿 ∈ N+ the number of dummies, and

∈ {1,… , 𝐿} the number of included dummies after which the

3 Since we use the LARS method throughout this paper, variables can
nly be included but not dropped along the solution paths. Nevertheless, the
-Rex selector can also incorporate forward selection methods that remove
ome previously included variables from the candidate set along the solution
ath (e.g., Lasso). For such methods, the number of currently active dummies
an decrease along the solution path. However, because the solution paths

are terminated after 𝑇 dummies are included for the first time, there is no

ambiguity regarding the step in which the forward selection process ends.

4 
forward variable selection process in each random experiment is ter-
minated. The relative occurrence of variable 𝑗 ∈ {1,… , 𝑝} is defined
by

𝛷𝑇 ,𝐿(𝑗) ∶=
⎧

⎪

⎨

⎪

⎩

1
𝐾

𝐾
∑

𝑘=1
1𝑘(𝑗 , 𝑇 , 𝐿), 𝑇 ≥ 1

0, 𝑇 = 0,
where 1𝑘(𝑗 , 𝑇 , 𝐿) is the indicator function for which

1𝑘(𝑗 , 𝑇 , 𝐿) =
{

1, 𝑗 ∈ 𝑘,𝐿(𝑇 )
0, otherwise.

All variables whose relative occurrences at 𝑇 = 𝑇 ∗ exceed the voting
evel 𝑣∗ ∈ [0.5, 1) are selected and the estimator of the active set is
efined by

̂𝐿(𝑣∗, 𝑇 ∗) ∶= {𝑗 ∶ 𝛷𝑇 ∗ ,𝐿(𝑗) > 𝑣∗}. (4)

The details of how the calibration process determines 𝑇 ∗ and 𝑣∗

uch that, for any choice of 𝐿, the T-Rex selector controls the FDR at
the target level while maximizing the number of selected variables are
deferred to Section 3.3. Moreover, an extension to the calibration pro-
cess to jointly determine 𝑇 ∗, 𝑣∗, and 𝐿 is also proposed in Section 3.3.
The number of random experiments 𝐾 is not subject to optimization.

owever, choosing 𝐾 ≥ 20 provides excellent empirical results and we
never observed notable improvements for 𝐾 ≥ 100.4

An example that helps in developing an intuition for the three main
ngredients of the T-Rex selector, which are (i) sampling dummies from

a univariate distribution, (ii) early terminating the solution paths of

4 Instead of fixing the number of random experiments, it could be increased
ntil the relative occurrences 𝛷𝑇 ,𝐿(𝑗), 𝑗 = 1,… , 𝑝, converge. However, since
 significant reduction of computation time is achieved by executing the
ndependent random experiments in parallel on multicore computers or high-

performance clusters, fixing 𝐾 to a multiple of the number of available CPUs

is preferable.
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the random experiments, and (iii) fusing the candidate sets based on
relative occurrences, is deferred to Appendix B in the supplementary
materials.

2.4. Problem statement

We formulate an optimization problem that maximizes the number
f selected true positives and simultaneously controls the FDR at the
arget level. We start with some remarks on notation followed by
efinitions of the FDR and the TPR, which particularize the generic
efinitions in (3) for the T-Rex selector. For better readability, from
ow on, the arguments 𝑇 and 𝐿 of the estimator of the active set are
ropped, i.e., ̂(𝑣) ∶= ̂𝐿(𝑣, 𝑇 ), except when referring specifically to
he set in (4) for which the values 𝑣∗ and 𝑇 ∗ result from the calibration
hat will be discussed in Section 3. Note that ‘‘included candidates’’

refers to the variables picked (and not dropped) along the solution path
of each random experiment. ‘‘Selected variables’’ refers to the variables
whose relative occurrences exceed the voting level 𝑣 ∈ [0.5, 1).

Definition 2 (𝑉𝑇 ,𝐿(𝑣), 𝑆𝑇 ,𝐿(𝑣) and 𝑅𝑇 ,𝐿(𝑣)). The number of selected null
variables 𝑉𝑇 ,𝐿(𝑣), the number of selected active variables 𝑆𝑇 ,𝐿(𝑣), and
he number of selected variables 𝑅𝑇 ,𝐿(𝑣) are defined, respectively, by

𝑉𝑇 ,𝐿(𝑣) ∶= |

|

|

̂ 0(𝑣)||
|

∶= |

|

|

{null 𝑗 ∶ 𝛷𝑇 ,𝐿(𝑗) > 𝑣}||
|

,

𝑆𝑇 ,𝐿(𝑣) ∶= |

|

|

̂ 1(𝑣)||
|

∶= |

|

|

{active 𝑗 ∶ 𝛷𝑇 ,𝐿(𝑗) > 𝑣}||
|

, and

𝑅𝑇 ,𝐿(𝑣) ∶= 𝑉𝑇 ,𝐿(𝑣) + 𝑆𝑇 ,𝐿(𝑣) = |

|

|

̂(𝑣)||
|

.

The FDR and TPR expressions in (3) are rewritten using Definition 2
as follows:

Definition 3 (FDP and FDR). The false discovery proportion (FDP) is
defined by

FDP(𝑣, 𝑇 , 𝐿) ∶= 𝑉𝑇 ,𝐿(𝑣)
𝑅𝑇 ,𝐿(𝑣) ∨ 1

and the FDR is defined by

FDR(𝑣, 𝑇 , 𝐿) ∶= E
[

FDP(𝑣, 𝑇 , 𝐿)],
where the expectation is taken with respect to the noise in (1).

Definition 4 (TPP and TPR). The true positive proportion (TPP) is
efined by

TPP(𝑣, 𝑇 , 𝐿) ∶= 𝑆𝑇 ,𝐿(𝑣)
𝑝1 ∨ 1

and the TPR is defined by

TPR(𝑣, 𝑇 , 𝐿) ∶= E
[

TPP(𝑣, 𝑇 , 𝐿)],
where the expectation is taken with respect to the noise in (1).

Remark 1. Note that if 𝑅𝑇 ,𝐿(𝑣) is equal to zero, then 𝑉𝑇 ,𝐿(𝑣) is zero as
well. In this case, the denominator in the expression for the FDP is set
to one and, thus, the FDP becomes zero. This is a reasonable solution
to the ‘‘0∕0’’ case, because when no variables are selected there exist
no false discoveries. Similarly, when there exist no true active variables
among the candidates, i.e. 𝑝1 = 𝑆𝑇 ,𝐿(𝑣) = 0, the TPP equals zero.

A major result of this work is to determine 𝑇 ∗ and 𝑣∗, such that,
for any fixed 𝐿 ∈ N+, the T-Rex selector maximizes TPR(𝑣, 𝑇 , 𝐿) while
provably controlling FDR(𝑣, 𝑇 , 𝐿) at any given target level 𝛼 ∈ [0, 1].
In practice, this amounts to finding the solution of the optimization
problem

max TPP(𝑣, 𝑇 , 𝐿) s.t. F̂DP(𝑣, 𝑇 , 𝐿) ≤ 𝛼 , (5)

𝑣,𝑇

5 
which is equivalent to
max
𝑣,𝑇

𝑆𝑇 ,𝐿(𝑣) s.t. F̂DP(𝑣, 𝑇 , 𝐿) ≤ 𝛼 (6)

because 𝑝1 is a constant. Note that F̂DP(𝑣, 𝑇 , 𝐿) is a conservative esti-
mator of FDP(𝑣, 𝑇 , 𝐿), i.e., it holds that FDR(𝑣, 𝑇 , 𝐿) = E

[

FDP(𝑣, 𝑇 , 𝐿)] ≤
E
[

F̂DP(𝑣, 𝑇 , 𝐿)] = F̂DR(𝑣, 𝑇 , 𝐿). The details of the conservative FDP
estimator are discussed in Section 3. Since the number of true active
variables, 𝑆𝑇 ,𝐿(𝑣), is unobservable, it is standard to use 𝑅𝑇 ,𝐿(𝑣) (i.e., the
observable total number of selected variables) as a practical surrogate.
This approach is adopted by all FDR-controlling benchmark methods
mentioned in Section 1. This results in the final optimization problem:

max
𝑣,𝑇

𝑅𝑇 ,𝐿(𝑣) s.t. F̂DP(𝑣, 𝑇 , 𝐿) ≤ 𝛼 . (7)

In words: The T-Rex selector maximizes the number of selected variables
while controlling a conservative estimator of the FDP at the target level 𝛼.

Note that the reason why 𝑅𝑇 ,𝐿(𝑣) is a practical surrogate for 𝑆𝑇 ,𝐿(𝑣)
in the context of FDR control is that it is (i) an observable upper bound
of 𝑆𝑇 ,𝐿(𝑣) and (ii) a good approximation of 𝑆𝑇 ,𝐿(𝑣) for reasonably low
target FDR levels 𝛼. Mathematically, this relationship is obtained by
rewriting the FDR in Definition 3 using Definition 2, which yields

FDR(𝑣, 𝑇 , 𝐿) = E
[𝑅𝑇 ,𝐿(𝑣) − 𝑆𝑇 ,𝐿(𝑣)

𝑅𝑇 ,𝐿(𝑣) ∨ 1
]

≤ 𝛼 .

That is, the relative difference of 𝑅𝑇 ,𝐿(𝑣) and 𝑆𝑇 ,𝐿(𝑣) is upper-bounded
by 𝛼 on average. Thus, for small user-defined target FDR levels 𝛼,
𝑅𝑇 ,𝐿(𝑣) is a good approximation of 𝑆𝑇 ,𝐿(𝑣). For these two reasons, (7)
has become the standard optimization problem throughout the FDR
control literature and especially, as mentioned above, has been adopted
by all benchmark methods.

In Section 3, it is shown that the T-Rex selector efficiently solves (7).
ote that since (5), (6), and (7) share the same feasible region, any

solution of (7) is trivially a feasible solution of (5) and (6).

3. Main results

This section contains our main results about the proposed T-Rex
selector, which concern: FDR-control (Theorem 1), dummy generation
(Theorem 2), and the optimal calibration algorithm (Theorem 3). We
use martingale theory [36] to prove the FDR control property of the
T-Rex selector. The developed FDR control theory relies on standard
assumptions that are extensively verified especially for GWAS, i.e., the

ain use-case of this paper (see Appendices F, G, and J in the sup-
plementary materials). Additionally, the computational complexity of
the T-Rex selector, which stems from the computation of 𝐾 terminated
random experiments with expected complexity (𝑛𝑝), is derived in
Appendix E in the supplementary materials.

3.1. FDR control

In Definition 1, the relative occurrence 𝛷𝑇 ,𝐿(𝑗) of the 𝑗th candidate
variable has been introduced. It can be decomposed into the changes
in relative occurrence, i.e.,

𝛷𝑇 ,𝐿(𝑗) =
𝑇
∑

𝑡=1
𝛥𝛷𝑡,𝐿(𝑗), 𝑗 = 1,… , 𝑝,

where 𝛥𝛷𝑡,𝐿(𝑗) ∶= 𝛷𝑡,𝐿(𝑗) −𝛷𝑡−1,𝐿(𝑗) is the change in relative occurrence
from step 𝑡 − 1 to 𝑡 for variable 𝑗.5

5 When using a forward selection method within the T-Rex selector frame-
work that does not drop variables along the solution path (e.g. LARS), all
𝛷𝑡,𝐿(𝑗)’s are non-decreasing in 𝑡 and, therefore, 𝛥𝛷𝑡,𝐿(𝑗) ≥ 0 for all 𝑗. In
contrast, when using forward selection methods that might drop variables
along the solution path (e.g. Lasso), the 𝛷𝑡,𝐿(𝑗)’s might decrease in 𝑡 and,
therefore, the 𝛥𝛷𝑡,𝐿(𝑗)’s can be negative. Nevertheless, the relative occurrence

𝛷𝑇 ,𝐿(𝑗) is non-negative for all 𝑗 and any forward selection method.
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Since the active and the null variables are interspersed in the solu-
ion paths of the random experiments, some null variables might appear

earlier on the solution paths than some active variables. Many re-
searchers have observed that active and null variables are interspersed
in solution paths obtained from sparsity-inducing methods, such as
the LARS algorithm or the Lasso [19,54]. Therefore, it is unavoidable
that the 𝛥𝛷𝑡,𝐿(𝑗)’s of the null variables are inflated, meaning that
their values become artificially larger than expected, along the solution
paths of the random experiments. Moreover, we observe interspersion
not only for active and null variables but also for dummies, which is
expected since dummies can be interpreted as flagged null variables.

The above considerations motivate the definition of the deflated
elative occurrence to harness the information about the fraction of

included dummies in each step along the solution paths in order to
eflate the 𝛥𝛷𝑡,𝐿(𝑗)’s of the null variables and, thus, account for the

interspersion effect.

Definition 5 (Deflated relative occurrence). The deflated relative occur-
rence of variable 𝑗 is defined by

𝛷′
𝑇 ,𝐿(𝑗) ∶=

𝑇
∑

𝑡=1

(

1 −
𝑝 −

∑𝑝
𝑞=1 𝛷𝑡,𝐿(𝑞)

𝐿 − (𝑡 − 1)
1

∑

𝑞∈̂(0.5) 𝛥𝛷𝑡,𝐿(𝑞)

)

𝛥𝛷𝑡,𝐿(𝑗),

𝑗 = 1,… , 𝑝.
In words: The deflated relative occurrence is the sum over the deflated

𝛷𝑡,𝐿(𝑗)’s from step 𝑡 = 1 until step 𝑡 = 𝑇 . As detailed and intuitively
xplained in Appendix C in the supplementary materials, the 𝛥𝛷𝑡,𝐿(𝑗)’s
re multiplied by a deflation factor that takes into account the ratio

between the fraction of selected dummies and the fraction of selected
candidate variables in each step 𝑡 ∈ {1,… , 𝑇 }.

The reader might wonder whether the deflation factors affect the
𝛷𝑡,𝐿(𝑗)’s of active variables in addition to those of null variables.
eflation factors minimally impact the 𝛥𝛷𝑡,𝐿(𝑗)’s of active variables
ecause active variables typically enter the solution paths early at
ow values of 𝑡, where the deflation factor is close to one, and at
igher 𝑡, 𝛥𝛷𝑡,𝐿(𝑗) for active variables approaches zero. A more detailed
xplanation of this is deferred to Appendix C in the supplementary
aterials.

Using the deflated relative occurrences, the estimator of 𝑉𝑇 ,𝐿(𝑣),
.e., the number of selected null variables (see Definition 2), and the

corresponding FDP estimator are defined as follows:

Definition 6 (FDP estimator). The estimator of 𝑉𝑇 ,𝐿(𝑣) is defined by

𝑉𝑇 ,𝐿(𝑣) ∶=
∑

𝑗∈̂(𝑣)

(

1 −𝛷′
𝑇 ,𝐿(𝑗)

)

and the corresponding estimator of FDP(𝑣, 𝑇 , 𝐿) is defined by

F̂DP(𝑣, 𝑇 , 𝐿) = 𝑉𝑇 ,𝐿(𝑣)
𝑅𝑇 ,𝐿(𝑣) ∨ 1 (8)

with

F̂DR(𝑣, 𝑇 , 𝐿) ∶= E
[

F̂DP(𝑣, 𝑇 , 𝐿)]

being its expected value.

Note that the term 𝑉𝑇 ,𝐿(𝑣) is an estimator of the number of false
discoveries within the set of selected variables ̂(𝑣). This estimator
is obtained by summing up the complements of the deflated relative
occurrences 𝛷′

𝑇 ,𝐿(𝑗) for each selected variable 𝑗. Essentially, 1 −𝛷′
𝑇 ,𝐿(𝑗)

estimates the probability that a selected variable 𝑗 is a false discovery,
and summing these values across all selected variables provides the
total estimate of false discoveries.

The main idea behind FDR control for the T-Rex selector is that
controlling F̂DP(𝑣, 𝑇 , 𝐿) at the target level 𝛼 ∈ [0, 1] guarantees that
FDR(𝑣, 𝑇 , 𝐿) is controlled at the target level as well. To achieve this, we
define 𝑣 ∈ [0.5, 1) as the voting level at which F̂DP(𝑣, 𝑇 , 𝐿) is controlled
t the target level. Note that 𝑣 has to be at least 50% to ensure that

all selected variables occur in at least more than the majority of the
candidate sets within the T-Rex selector.
 (

6 
Definition 7 (Voting level). Let 𝑇 ∈ {1,… , 𝐿} and 𝐿 ∈ N+ be fixed.
Then, the voting level is defined by

𝑣 ∶= inf {𝜈 ∈ [0.5, 1) ∶ F̂DP(𝜈 , 𝑇 , 𝐿) ≤ 𝛼} (9)

with the convention that 𝑣 = 1 if the infimum does not exist.6

Remark 2. Recall that the aim that is stated in the optimization prob-
em in (7) is to select as many variables as possible while controlling
F̂DP(𝑣, 𝑇 , 𝐿) at the target level. For fixed 𝑇 and 𝐿, this is achieved by
the smallest voting level that satisfies the constraint on F̂DP(𝑣, 𝑇 , 𝐿).
We can easily see that for any fixed 𝑇 and 𝐿, the voting level in (9)
solves the optimization problem in (7). The reason is that for any two
oting levels 𝑣1, 𝑣2 ∈ [0.5, 1) with 𝑣2 ≥ 𝑣1 satisfying the F̂DP-constraint
n (9), it holds that 𝑅𝑇 ,𝐿(𝑣1) ≥ 𝑅𝑇 ,𝐿(𝑣2).

Remark 3. If 𝑣, 𝑇 , and 𝐿 satisfy Eq. (9), then the FDP from Definition 3
can be upper-bounded as follows:

FDP(𝑣, 𝑇 , 𝐿) = 𝑉𝑇 ,𝐿(𝑣)
𝑅𝑇 ,𝐿(𝑣) ∨ 1 = F̂DP(𝑣, 𝑇 , 𝐿) ⋅ 𝑉𝑇 ,𝐿(𝑣)

𝑉𝑇 ,𝐿(𝑣)

≤ 𝛼 ⋅
𝑉𝑇 ,𝐿(𝑣)
𝑉𝑇 ,𝐿(𝑣)

≤ 𝛼 ⋅
𝑉𝑇 ,𝐿(𝑣)
𝑉 ′
𝑇 ,𝐿(𝑣)

,

where 𝑉 ′
𝑇 ,𝐿(𝑣), which is supposed to be greater than zero, is defined by

𝑉 ′
𝑇 ,𝐿(𝑣) ∶= 𝑉𝑇 ,𝐿(𝑣) −

∑

𝑗∈̂(𝑣)

(

1 −𝛷𝑇 ,𝐿(𝑗)
)

.

Before the FDR control theorem is formulated, we introduce a
emma that contains the backbone of our FDR control theorem, which
s rooted in martingale theory [36]:

Lemma 5. Define  ∶= {𝛷𝑇 ,𝐿(𝑗) ∶ 𝛷𝑇 ,𝐿(𝑗) > 0.5, 𝑗 = 1,… , 𝑝} and
𝐻𝑇 ,𝐿(𝑣) ∶=

𝑉𝑇 ,𝐿(𝑣)
𝑉 ′
𝑇 ,𝐿(𝑣)

.

Let 𝑣 ∶= 𝜎
(

{𝑉𝑇 ,𝐿(𝑢)}𝑢≥𝑣, {𝑉 ′
𝑇 ,𝐿(𝑢)}𝑢≥𝑣

)

be a backward-filtration with
respect to 𝑣. Then, for all tuples (𝑇 , 𝐿) ∈ {1,… , 𝐿} × N+, {𝐻𝑇 ,𝐿(𝑣)}𝑣∈
is a backward-running super-martingale with respect to 𝑣. That is,
E
[

𝐻𝑇 ,𝐿
(

𝑣 − 𝜖∗𝑇 ,𝐿(𝑣)
)

|

|

|

𝑣
]

≥ 𝐻𝑇 ,𝐿(𝑣),
where

𝜖∗𝑇 ,𝐿(𝑣) ∶= inf {𝜖 ∈ (0, 𝑣) ∶ 𝑅𝑇 ,𝐿(𝑣 − 𝜖) − 𝑅𝑇 ,𝐿(𝑣) = 1}
with 𝑣 ∈ [0.5, 1) and the convention that 𝜖∗𝑇 ,𝐿(𝑣) = 0 if the infimum does
not exist.

Proof. The proof is deferred to Appendix A in the supplementary
materials. □

Theorem 1 (FDR control). Suppose that 𝑉 ′
𝑇 ,𝐿(𝑣) > 0. Then, for all triples

𝑇 , 𝐿, 𝑣) ∈ {1,… , 𝐿} ×N+ × [0.5, 1) that satisfy Eq. (9) and as 𝐾 → ∞, the
T-Rex selector controls the FDR at any fixed target level 𝛼 ∈ [0, 1], i.e.,
FDR(𝑣, 𝑇 , 𝐿) = E

[

FDP(𝑣, 𝑇 , 𝐿)] ≤ 𝛼 .

6 The voting level can be interpreted as a stopping time. The term ‘stopping
time’ stems from martingale theory [36]. In the proof of Lemma 5 in Appendix
 in the supplementary materials, it is shown that indeed 𝑣 is a stopping

ime with respect to some still to be defined filtration of a still to be defined
tochastic process. Note that the convention of setting 𝑣 = 1 if the infimum
oes not exist ensures that no variables are selected when there exists no triple

9).
𝑇 , 𝐿, 𝑣) that satisfies Eq. (
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Proof sketch. Taking the expectation on both sides of the inequality
in Remark 3 yields an upper bound on the FDR, i.e.,

FDR(𝑣, 𝑇 , 𝐿) = E
[

FDP(𝑣, 𝑇 , 𝐿)] ≤ 𝛼 ⋅ E
[

𝐻𝑇 ,𝐿(𝑣)
]

,

where 𝐻𝑇 ,𝐿(𝑣) = 𝑉𝑇 ,𝐿(𝑣)∕𝑉 ′
𝑇 ,𝐿(𝑣), as defined within Lemma 5. To

rove FDR control at the target level 𝛼, it remains to prove that
[

𝐻𝑇 ,𝐿(𝑣)
]

≤ 1. This is achieved by using the fact that the process
𝐻𝑇 ,𝐿(𝑣)}𝑣∈ is a backward-running super-martingale, as stated in

Lemma 5. This martingale property allows using the optional stopping
heorem [36] to upper-bound the expected value of 𝐻𝑇 ,𝐿(𝑣) by its

expected value at the initial point 𝑣 = 0.5, which is smaller than one,
i.e., E

[

𝐻𝑇 ,𝐿(𝑣)
]

≤ E
[

𝐻𝑇 ,𝐿(0.5)
]

≤ 1. □

The details of the proof are deferred to Appendix A in the sup-
plementary materials. Along with the details of the proof of the FDR
control theorem, detailed explanations of the standard assumptions and
their extensive numerical verifications are deferred to Appendices F, G,
and J in the supplementary materials.

3.2. Dummy generation

As shown in Fig. 3, the T-Rex selector generates 𝐿 i.i.d. dummies
for each random experiment by sampling each element of the dummy
ectors from the standard normal distribution, i.e.,

◦
𝑙 = [ ◦𝑥1,𝑙 … ◦𝑥𝑛,𝑙]⊤, where ◦𝑥𝑖,𝑙 ∼  (0, 1),

𝑖 = 1,… , 𝑛, 𝑙 = 1,… , 𝐿. This raises the question whether dummies can
e sampled from other distributions, as well, to serve as flagged null
ariables. From an asymptotic point of view, i.e., 𝑛 → ∞, and if some
ild conditions are satisfied, the perhaps at first glance surprising an-

wer to this question is that dummies can be sampled from any univariate
robability distribution with finite expectation and variance in order to serve
s flagged null variables within the T-Rex selector.

We will prove the above statement for any correlation-based for-
ward selection procedure. Specifically, this includes procedures that
use sample correlations of the predictors with the response or with
the current residuals in each forward selection step to determine which
variable is included next. Thus, the statement is true, e.g., for the LARS
algorithm, Lasso, adaptive Lasso, and elastic net.

Recall that null variables and dummies are not related to the re-
ponse. For null variables this holds by definition and for dummies this
olds because dummies are generated without using any information
bout the response.7 Moreover, the sample correlations of the dum-
ies with the response are random. Thus, the higher the number of

enerated dummies, the higher the probability of including a dummy
nstead of a null or even a true active variable in the next step of a
andom experiment. These considerations suggest that only the number
f dummies within the enlarged predictor matrices is relevant for the

behavior of the forward selection process in each random experiment.
That is, the core of the following Theorem 2 is that, for 𝑛 → ∞, the
distribution from which the dummies are sampled has no influence on
he distribution of the correlation variables
◦

𝑙 ,𝑚,𝑘 ∶=
𝑛
∑

𝑖=1
𝛾𝑖,𝑚,𝑘 ⋅

◦
𝑋𝑖,𝑙 ,𝑘,

𝑙 ∈ 𝑚,𝑘, 𝑚 ≥ 1, 𝑘 = 1,… , 𝐾, where 𝛾𝑖,𝑚,𝑘 is the 𝑖th element
f 𝜸𝑚,𝑘 ∶= 𝒚 − 𝑿𝜷̂𝑚,𝑘 (i.e., the residual vector in the 𝑚th forward
election step of the 𝑘th random experiment) with 𝜷̂𝑚,𝑘 and 𝑚,𝑘 being

7 Note that the knockoff generation processes of the fixed-X and the model-
knockoff method, i.e., the benchmark methods, are fundamentally different

rom our approach that uses dummies. Although these methods also do not
se any information about the response to generate the knockoffs, unlike the
roposed T-Rex selector, they must incorporate the covariance structure of the
redictor matrix, which leads to a large computation time, especially for high

imensions (see Appendix B in the supplementary materials and Figure 1).

7 
the estimator of the parameter vector and the index set of the non-
ncluded dummies in the 𝑚th forward selection step of the 𝑘th random
xperiment, respectively. Note that 𝜸1,𝑘 = 𝒚 for all 𝑘, since 𝜷̂1,𝑘 = 𝟎 for

all 𝑘, i.e., the residual vector in the first step of the forward selection
process is simply the response vector 𝒚. The random variable

◦
𝑋𝑖,𝑙 ,𝑘

represents the 𝑖th element of the 𝑙th dummy within the 𝑘th random
experiment. Summarizing,

◦
𝐺𝑙 ,𝑚,𝑘 can be interpreted as the weighted

um of the i.i.d. random variables
◦
𝑋1,𝑙 ,𝑘,… ,

◦
𝑋𝑛,𝑙 ,𝑘 with fixed weights

𝛾1,𝑚,𝑘,… , 𝛾𝑛,𝑚,𝑘. With these preliminaries in place, the second main
theorem is formulated as follows:

Theorem 2 (Dummy generation). Let ◦
𝑋𝑖,𝑙 ,𝑘, 𝑖 = 1,… , 𝑛, 𝑙 ∈ 𝑚,𝑘,

𝑚 ≥ 1, 𝑘 = 1,… , 𝐾, be standardized i.i.d. dummy random variables
(i.e., E

[ ◦
𝑋𝑖,𝑙 ,𝑘

]

= 0 and Var
[ ◦
𝑋𝑖,𝑙 ,𝑘

]

= 1 for all 𝑖, 𝑙 , 𝑚, 𝑘) following any
probability distribution with finite expectation and variance. Define
𝐷𝑛,𝑙 ,𝑚,𝑘 ∶= 1

𝛤𝑛,𝑚,𝑘
⋅

◦
𝐺𝑙 ,𝑚,𝑘,

where 𝛤 2
𝑛,𝑚,𝑘 ∶=

∑𝑛
𝑖=1 𝛾

2
𝑖,𝑚,𝑘 with 𝛤𝑛,𝑚,𝑘 > 0 for all 𝑛, 𝑚, 𝑘 and with fixed

𝛾𝑖,𝑚,𝑘 ∈ R for all 𝑖, 𝑚, 𝑘. Suppose that
lim
𝑛→∞

𝛾𝑖,𝑚,𝑘
𝛤𝑛,𝑚,𝑘

= 0, 𝑖 = 1,… , 𝑛,

for all 𝑚, 𝑘. Then, as 𝑛 → ∞,

𝐷𝑛,𝑙 ,𝑚,𝑘
𝑑
→ 𝐷 , 𝐷 ∼  (0, 1),

for all 𝑙 , 𝑚, 𝑘.

Proof sketch. The Lindeberg–Feller central limit theorem is applicable
because

◦
𝑋𝑖,𝑙 ,𝑘, 𝑖 = 1,… , 𝑛, 𝑙 ∈ 𝑚,𝑘, 𝑚 ≥ 1, 𝑘 = 1,… , 𝐾, are i.i.d.

random variables and it holds that E
[

𝐷𝑛,𝑙 ,𝑚,𝑘
]

= 0 and Var
[

𝐷𝑛,𝑙 ,𝑚,𝑘
]

= 1.
oreover, since

◦
𝑄𝑖,𝑙 ,𝑚,𝑘 ∶= 𝛾𝑖,𝑚,𝑘 ⋅

◦
𝑋𝑖,𝑙 ,𝑘 ∕𝛤𝑛,𝑚,𝑘 satisfies the Lindeberg

ondition for all 𝑙 , 𝑚, 𝑘, the theorem follows. □

The details of the proof and illustrative examples with non-Gaussian
ummies are deferred to Appendix A and Appendix K, respectively, in
he supplementary materials.

The reason why the theorem is an asymptotic result that requires
𝑛 → ∞ is that its proof uses the Lindeberg–Feller central limit theorem.
Nevertheless, the widespread adoption of several flavors of the central
imit theorem stems from the well-known fact that it usually provides

already good convergence results at low sample sizes. Our additional
imulations in Appendix K of the supplementary materials with dum-
ies sampled not only from the standard normal distribution but also

rom non-Gaussian distributions (i.e., uniform, Student-𝑡, and Gumbel)
umerically verify Theorem 2 in a high-dimensional setting with 𝑛 =

300 samples and 𝑝 = 1000 variables. For all these dummy distributions,
the results are almost identical. That is, there is no superior dummy
distribution and, therefore, we simply choose to sample dummies from
the standard normal distribution throughout this work.

Remark 4. Note that sampling dummies from any univariate prob-
ability distribution with finite expectation and variance to serve as
flagged null variables is only reasonable in combination with multiple
random experiments as conducted by the proposed T-Rex selector. We
emphasize that Theorem 2 is not applicable to knockoff generation
procedures of, e.g., fixed-X and model-X knockoffs.

3.3. The T-Rex selector: Optimal calibration algorithm

This section describes the proposed T-Rex calibration algorithm,
hich efficiently solves the optimization problem in (7) and provides

feasible solutions for (5) and (6). The pseudocode of the T-Rex cali-
bration method is provided in Algorithm 1. The algorithm flow is as
follows: First, the number of dummies 𝐿 and the number of random



J. Machkour et al.

i

P
y

a
b
r

t

t
m
a

w
c
f
t
t
m
a
a
l
t

m

l

p

c

d
W
F

f
a
𝑝

t

a
i
t

Signal Processing 231 (2025) 109894 
experiments 𝐾 are set (usually 𝐿 = 𝑝 and 𝐾 = 20).8 Then, setting
𝑣 = 1 − 𝛥𝑣 and starting at 𝑇 = 1, the number of included dummies
is iteratively increased until reaching the value of 𝑇 for which the FDP
estimate at a voting level of 𝑣 = 1 − 𝛥𝑣 exceeds the target level for the
first time. In each iteration, before the target level is exceeded, ̂𝐿(𝑣, 𝑇 )
s computed as in (4) on a grid for 𝑣, while for values of 𝑣 for which
F̂DP(𝑣, 𝑇 , 𝐿) exceeds the target level ̂𝐿(𝑣, 𝑇 ) is equal to the empty set.
icking the 𝑣′ and 𝑇 ′ that maximize the number of selected variables
ields the final solution.9

Algorithm 1 T-Rex Calibration.

1. Input: 𝛼 ∈ [0, 1], 𝐾, 𝐿, 𝑿, 𝒚.

2. Set 𝑇 = 1, 𝛥𝑣 = 1
𝐾

, F̂DP(𝑣 = 1 − 𝛥𝑣, 𝑇 , 𝐿) = 0.

3. While F̂DP(𝑣 = 1 − 𝛥𝑣, 𝑇 , 𝐿) ≤ 𝛼 and 𝑇 ≤ 𝐿 do:

3.1. For 𝑣 = 0.5, 0.5 + 𝛥𝑣, 0.5 + 2 ⋅ 𝛥𝑣,… , 1 − 𝛥𝑣 do:

i. Compute F̂DP(𝑣, 𝑇 , 𝐿) as in (8).
ii. If F̂DP(𝑣, 𝑇 , 𝐿) ≤ 𝛼

Compute ̂𝐿(𝑣, 𝑇 ) as in (4).

Else

Set ̂𝐿(𝑣, 𝑇 ) = ∅.

3.2. Set 𝑇 ← 𝑇 + 1.

4. Solve

max
𝑣′ ,𝑇 ′

|

|

|

̂𝐿(𝑣′, 𝑇 ′)||
|

s.t. 𝑇 ′ ∈ {1,… , 𝑇 − 1}
𝑣′ ∈ {0.5, 0.5 + 𝛥𝑣, 0.5 + 2 ⋅ 𝛥𝑣,… , 1 − 𝛥𝑣}

and let (𝑣∗, 𝑇 ∗) be a solution.

5. Output: (𝑣∗, 𝑇 ∗) and ̂𝐿(𝑣∗, 𝑇 ∗).

The reason for exiting the loop in Step 3 when the FDP estimate
t a voting level of 1 − 𝛥𝑣 exceeds the target level for the first time is
ased on two key observations from our still to be presented simulation
esults (see Fig. 5):

1. For any fixed 𝑇 and 𝐿 the average value of F̂DP(𝑣, 𝑇 , 𝐿) decreases
as 𝑣 increases.

2. For any fixed 𝑣 and 𝐿 the average value of F̂DP(𝑣, 𝑇 , 𝐿) increases
as 𝑇 increases.

Remark 5. To foster the intuition behind these observations, we note
hat Eq. (8) can be written as follows:

F̂DP(𝑣, 𝑇 , 𝐿) = 𝑉𝑇 ,𝐿(𝑣)
(

𝑉𝑇 ,𝐿(𝑣) + 𝑆𝑇 ,𝐿(𝑣)
)

∨ 1 .

8 As already mentioned in Section 2.3, 𝐾 is not subject to optimization. In
practice, choosing 𝐾 = 20 already provides excellent results (see Section 4)
and only incremental improvements are achieved with larger values of 𝐾.

9 In case of multiple solutions, we recommend to choose the solution with
he largest 𝑣 because such a solution provides the variables that were selected
ost frequently. Nevertheless, all solutions to the calibration problem that

re computed using Algorithm 1 provide FDR control while maximizing the
number of selected variables.
8 
Taking Definitions 2, 6, and the reformulation of Eq. (8) into account,
e see that the observations suggest that we can expect the rather

onservative estimate 𝑉𝑇 ,𝐿(𝑣) of 𝑉𝑇 ,𝐿(𝑣) in the numerator to decrease
aster than the total number of selected variables 𝑉𝑇 ,𝐿(𝑣) + 𝑆𝑇 ,𝐿(𝑣) in
he denominator when increasing the voting level 𝑣. This is something
hat can be expected since, in general, assuming a variable selection
ethod that performs better than random selection, active variables

re expected to have higher relative occurrences than null variables
nd, therefore, remain selected even for large values of the voting
evel 𝑣. A similar reasoning can be applied to intuitively understand
he monotonical increase of F̂DP(𝑣, 𝑇 , 𝐿) with respect to 𝑇 .

With these preliminaries in place, the third main theorem of this
paper can be formulated:

Theorem 3 (Optimality of Algorithm 1). Let (𝑣∗, 𝑇 ∗) be a solution deter-
ined by Algorithm 1 and suppose that, ceteris paribus, F̂DP(𝑣, 𝑇 , 𝐿) is

monotonically decreasing in 𝑣 and monotonically increasing in 𝑇 . Then,
(𝑣∗, 𝑇 ∗) is an optimal solution of (7) and a feasible solution of (5) and
(6).

Proof sketch. Since the objective functions of the optimization prob-
ems in Step 4 of Algorithm 1 and in (7) are equivalent, i.e., ||

|

̂𝐿(𝑣, 𝑇 )||
|

=
𝑅𝑇 ,𝐿(𝑣), it only needs to be shown that the feasible set in Step 4 of
the algorithm contains the feasible set of (7). Since the conditions of
the optimization problems in (5), (6), and (7) are equivalent, this also
roves that (𝑣∗, 𝑇 ∗) is a feasible solution of (5) and (6). □

The details of the proof are deferred to Appendix A in the supple-
mentary materials.

3.4. Extension to the calibration algorithm

In Theorem 1, we have also established that the T-Rex selector
ontrols the FDR at the target level for any choice of the number of

dummies 𝐿. However, the choice of 𝐿 has an influence on how tightly
the FDR is controlled at the target level (see Fig. 5). Since controlling
the FDR more tightly usually increases the TPR (i.e., power), it is
esirable to choose the parameters of the T-Rex selector accordingly.
e will see in the simulations in Section 4 that with increasing 𝐿, the

DR can be more tightly controlled at low target levels. In order to
harness the positive effects that come with larger values of 𝐿 while
limiting the increased memory requirement for high values of 𝐿, we
propose an extended version of the calibration algorithm that jointly
determines 𝑣, 𝑇 , and 𝐿 such that the FDR is more tightly controlled
at the target FDR level while not running out of memory.10 The major
difference to Algorithm 1 is that the number of dummies 𝐿 is iteratively
increased until the estimate of the FDP falls below the target FDR
level 𝛼. The pseudocode of the extended T-Rex calibration algorithm
is provided in Algorithm 2.11

Note that the extension to Algorithm 1 lies in Step 2 and Step 3.
Additionally, and in contrast to Algorithm 1, the input to the algorithm
is extended by a reference voting level 𝑣̃ ∈ [0.5, 1) and the maximum
values of 𝐿 and 𝑇 , namely 𝐿max and 𝑇max. The algorithm flow is as
ollows: First 𝐿 and 𝑇 are set as follows: 𝐿 = 𝑝 and 𝑇 = 1. Then, starting
t 𝐿 = 𝑝 the number of dummies 𝐿 is iteratively increased in steps of
until the estimate of the FDP at the voting level 𝑣̃ falls below the

10 The reader might raise the question whether also the computation time
increases with increasing 𝐿. There is no definite answer to this question. On
he one hand, for very large values of 𝐿 the computation time might increase.

On the other hand, with increasing 𝐿 the solution paths of the experiments
re terminated earlier because the probability of selecting dummies grows with
ncreasing 𝐿. Thus, increasing 𝐿 might increase or decrease the computation
ime depending on whether the first or the second effect dominates.
11 The R package TRexSelector [49] contains the implementation of the

extended calibration algorithm in Algorithm 2.
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Algorithm 2 Extended T-Rex Calibration.

1. Input: 𝛼 ∈ [0, 1], 𝐾, 𝑿, 𝒚, 𝑣̃, 𝐿max, 𝑇max.

2. Set 𝐿 = 𝑝, 𝑇 = 1.

3. While F̂DP(𝑣 = 𝑣̃, 𝑇 , 𝐿) > 𝛼 and 𝐿 ≤ 𝐿max do:

Set 𝐿 ← 𝐿 + 𝑝.

4. Set 𝛥𝑣 = 1
𝐾

, F̂DP(𝑣 = 1 − 𝛥𝑣, 𝑇 , 𝐿) = 0.

5. While F̂DP(𝑣 = 1 − 𝛥𝑣, 𝑇 , 𝐿) ≤ 𝛼 and 𝑇 ≤ 𝑇max do:

5.1. For 𝑣 = 0.5, 0.5 + 𝛥𝑣, 0.5 + 2 ⋅ 𝛥𝑣,… , 1 − 𝛥𝑣 do:

i. Compute F̂DP(𝑣, 𝑇 , 𝐿) as in (8).
ii. If F̂DP(𝑣, 𝑇 , 𝐿) ≤ 𝛼

Compute ̂𝐿(𝑣, 𝑇 ) as in (4).

Else

Set ̂𝐿(𝑣, 𝑇 ) = ∅.

5.2. Set 𝑇 ← 𝑇 + 1.

6. Solve

max
𝑣′ ,𝑇 ′

|

|

|

̂𝐿(𝑣′, 𝑇 ′)||
|

s.t. 𝑇 ′ ∈ {1,… , 𝑇 − 1}
𝑣′ ∈ {0.5, 0.5 + 𝛥𝑣, 0.5 + 2 ⋅ 𝛥𝑣,… , 1 − 𝛥𝑣}

and let (𝑣∗, 𝑇 ∗) be a solution.

7. Output: (𝑣∗, 𝑇 ∗) and ̂𝐿(𝑣∗, 𝑇 ∗).

target FDR level 𝛼 or 𝐿 exceeds 𝐿max. The rest of the algorithm is as
in Algorithm 1 except that the loop in Step 5 is exited when 𝑇 exceeds
max.

What remains to be discussed are the choices of the hyperparam-
eters 𝑣̃, 𝐿max, and 𝑇max. Throughout this paper, we have set 𝑣̃ = 0.75,
𝐿max = 10𝑝, and 𝑇max = ⌈𝑛∕2⌉, where ⌈𝑛∕2⌉ denotes the smallest integer
that is equal to or larger than 𝑛∕2. An explanation and a discussion
of these choices are deferred to Appendix J in the supplementary
materials.

4. Numerical simulations

In this section, the performances of the proposed T-Rex selector
and the benchmark methods are compared in a simulation study. The
benchmark methods in low-dimensional settings (i.e., 𝑝 ≤ 𝑛) are the
well-known Benjamini–Hochberg (BH) method [17], the Benjamini-

ekutieli (BY ) method [18], and the fixed-X knockoff methods [19],
while the model-X knockoff methods [20] are the benchmarks in high-
imensional settings (i.e., 𝑝 > 𝑛). Knockoff methods come in two varia-

tions called ‘‘knockoff’’ and ‘‘knockoff+’’. Only the ‘‘knockoff+’’ version
s an FDR controlling method. For a detailed explanation and discussion
f the benchmark methods, the reader is referred to Appendix H in the
upplementary materials.
9 
4.1. Setup and results

We generate a sparse high-dimensional setting12 with 𝑛 observa-
ions, 𝑝 predictors, and a response given by the linear model in (1).
urther, 𝛽𝑗 = 1 for 𝑝1 randomly selected 𝑗’s while 𝛽𝑗 = 0 for the others.
he predictors are (i) sampled independently from the standard normal

distribution (Figs. 5 and 6) and (ii) sampled from an autoregressive
odel of order one with autocorrelation coefficient 𝜌 = 0.5 (Fig. 7).
he standard deviation of the noise 𝜎 is chosen such that the signal-
o-noise ratio (SNR), which is given by Var [𝑿 𝜷] ∕ 𝜎2, is equal to the
esired value. In Appendices K and L of the supplementary materials,
e show results for non-Gaussian predictors and heavy-tailed noise

ettings. The specific values of the above described simulation setting
nd the parameters of the T-Rex selector, i.e., the values of 𝑛, 𝑝, 𝑝1,
NR, 𝐾, 𝐿, 𝑇 , 𝑣, are specified in the figure captions. The results are
veraged over 𝑀 𝐶 = 955 Monte Carlo replications.13

First, in order to assess the FDR control performance and the
chieved power of the T-Rex selector, respectively, the average FDP,

F̂DP, and TPP are computed over a two-dimensional grid for 𝑣 and
for different values of 𝐿. We evaluate the performance of the T-

Rex selector in combination with the proposed extended calibration
lgorithm in Algorithm 2 across different sparsity levels and SNR values

at a targeted FDR of 10%. That is, all other parameters remain constant
hile we vary the number of true active variables 𝑝1 (i.e., different

sparsity levels) and the SNR. This approach allows us to compare
he performance of the T-Rex selector against benchmark methods in
arious scenarios.

The reported average FDP, F̂DP, and TPP (all averaged over 955
onte Carlo replications) in Figs. 5, 6, and 7 are estimates of the FDR,

F̂DR, and TPR, respectively. For this reason, the results are discussed in
terms of the FDR, F̂DR, and TPR in the captions of the figures, while the
axes labels emphasize that the average FDP, F̂DP, and TPP are plotted.

The simulation results confirm that the proposed T-Rex selector
ossesses the FDR control property. Moreover, the simulation results
how that the T-Rex selector outperforms the benchmark methods and
hat its computation time is multiple orders of magnitude lower than
hat of its competitors (see Fig. 1 in Section 1 and Table 1). The

detailed descriptions and discussions of the simulation results are given
in the captions of Figs. 5, 6, and 7. Appendix K in the supplementary
materials contains additional simulations that confirm the superior
performance of the T-Rex selector under various non-Gaussian, heavy-
tailed, and skewed data distributions. Furthermore, Appendix L in the
supplementary materials discusses in more detail the robustness of the

-Rex selector in the presence of non-Gaussian heavy-tailed noise.

5. Simulated genome-wide association study

The T-Rex selector and the benchmark methods are applied to
conduct a high-dimensional simulated case-control GWAS. The size
of the GWAS was chosen, such that it was still practically feasible
o compute the computationally intensive benchmark methods. The

goal is to detect the single nucleotide polymorphisms (SNPs) that are
ssociated with a disease of interest (i.e., active variables). At the same
ime, it is important to keep the number of selected SNPs that are not

associated with that disease (i.e., null variables) low.

12 Additional simulation results that allow for a performance comparison of
the proposed T-Rex selector to the BH method, the BY method, and the fixed-X
knockoff methods in a low-dimensional setting are deferred to Appendix I in
the supplementary materials.

13 The reason for running 955 Monte Carlo replications is that the simula-
tions were conducted on the Lichtenberg High-Performance Computer of the
Technische Universität Darmstadt, which consists of multiple nodes of 96 CPUs
each. In order to run computationally efficient simulations, our computation
jobs are designed to request 2 nodes and run 5 cycles on each CPU while one

CPU acts as the master, i.e., (2 ⋅ 96 − 1) ⋅ 5 = 955.
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Fig. 5. The T-Rex selector controls the FDR for all values of 𝑣 and 𝑇 while achieving a high power, even at low values of 𝑇 . Note that the FDR control is tighter for large
values of 𝐿. This observation led to the development of Algorithm 2. Moreover, we observe that the conditions in Theorem 3 hold on average (i.e., ceteris paribus, F̂DP(𝑣, 𝑇 , 𝐿)
is monotonically decreasing in 𝑣 and monotonically increasing in 𝑇 ). Setup: 𝑛 = 300, 𝑝 = 1000, 𝑝1 = 10, 𝐾 = 20, SNR = 1, 𝑀 𝐶 = 955.
Fig. 6. General: The model-X knockoff method fails to control the FDR. Among the FDR-controlling methods, the T-Rex selector outperforms the model-X knockoff+ method in
terms of power. Details: (a) The T-Rex selector and the model-X knockoff+ method control the FDR at a target level of 10% for the whole range of SNR values while the model-X
knockoff method fails to control the FDR and performs poorly at low SNR values. Setup: 𝑛 = 300, 𝑝 = 1000, 𝑝1 = 10, 𝑇max = ⌈𝑛∕2⌉, 𝐿max = 10𝑝, 𝐾 = 20, 𝑀 𝐶 = 955. (b) As expected,
the TPR (i.e., power) increases with respect to the SNR. It is remarkable that even though the FDR of the T-Rex selector lies below that of the model-X knockoff+ method for SNR
values larger than 0.6, its power exceeds that of its strongest FDR-controlling competitor. The high power of the model-X knockoff method cannot be interpreted as an advantage,
because the method does not control the FDR. Setup: Same as in Figure (a). (c) As in Figure (a), only the T-Rex selector and the model-X knockoff+ method control the FDR
at a target level of 10%, whereas the model-X knockoff method always exceeds the target level. Setup: 𝑛 = 300, 𝑝 = 1000, 𝑇max = ⌈𝑛∕2⌉, 𝐿max = 10𝑝, 𝐾 = 20, SNR = 1, 𝑀 𝐶 = 955.
(d) Among the FDR-controlling methods, the T-Rex selector has by far the highest power for sparse settings. The power of the model-X knockoff method exceeds that of the
FDR-controlling methods, but this cannot be interpreted as an advantage of the method since it exceeds the target FDR level. Note that for an increasing number of active variables
the power drops for all methods since apparently the number of data points 𝑛 = 300 does not suffice in the simulated settings with a low sparsity level, i.e., settings with many
active variables. Setup: Same as in Figure (c).
5.1. Setup

The genotypes of 700 cases and 300 controls are simulated based
on haplotypes from phase 3 of the International HapMap project [55]
using the software HAPGEN2 [56]. We simulated 10 randomly selected
disease loci on the first 20,000 SNPs of chromosome 15 (contains 42,351
SNPs in total) with randomly selected risk alleles (either 0 or 1 with
P(‘‘0’’) = P(‘‘1’’) = 0.5) and with the heterozygote risks and the homozy-
gote risks being sampled from the uniform distribution on the intervals
[1.5, 2] and [2.5, 3], respectively. Since we are conducting a case-control
study, the control and case phenotypes are 0 and 1, respectively. Note
that the SNPs and the phenotype represent the candidate variables and
the response, respectively, while the disease loci represent the indices
10 
of the active variables. Thus, we have 𝑝1 = 10 active variables and
𝑝0 = 19,990 null variables. The number of observations is 𝑛 = 1000
(700 cases and 300 controls). The results are averaged over 100 data
sets satisfying the above specifications. The detailed description of the
setup and the preprocessing of the data is deferred to Appendix J in the
supplementary materials.

5.2. Results

In this HAPGEN2-based GWAS benchmarking, the T-Rex selector
demonstrates its real-life applicability, as it is the only FDR-controlling
method with a positive TPR, and its sequential computation time is
4 min (vs. more than 12 h for the knockoff methods). The results
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Fig. 7. Average FDP and TPP in the case of dependent predictors: The T-Rex selector controls the FDR, has the highest power among the FDR-controlling methods, and reaches
he almost highest possible TPR level at an SNR of 2 while the model-X knockoff+ method requires an SNR of 5 to reach the same TPR level. The model-X knockoff+ method also

controls the FDR except for an SNR of 5, where it slightly exceeds the target FDR, and the model-X knockoff method does not control the FDR. The predictors were sampled from
n autoregressive model of order one (AR(1)) with Gaussian noise and an autocorrelation coefficient 𝜌 = 0.5. Setup: 𝑛 = 300, 𝑝 = 1000, 𝑝1 = 10, 𝑇max = ⌈𝑛∕2⌉, 𝐿max = 10𝑝, 𝐾 = 20,
 𝐶 = 955.
Table 1
The proposed T-Rex selector is the only method whose average FDP lies below the target FDR level of 10% while achieving a non-zero power. The only competitor that provably
possesses the FDR control property, namely the model-X knockoff+ method, has an average FDP of 0% but also an average TPP of 0%, i.e., it has no power. The model-X knockoff
method exceeds the target FDR level. The computationally cheap procedure of plugging the marginal 𝑝-values into the BH method or the BY method, which has been a standard
procedure in GWAS, fails in this high-dimensional setting. The sequential computation time of the proposed T-Rex selector in combination with the extended calibration algorithm
in Algorithm 2 is roughly 4 min as compared to more than 12.5 h for the model-X methods. That is, the T-Rex selector is 183 times faster than its strongest competitors. Note
that this is only a comparison of the sequential computation times. Since the random experiments of the proposed T-Rex selector are independent and, therefore, can be run in
parallel on multicore computers, an additional substantial speedup can be achieved.

Methods FDR control? Average FDP
(in %)

Average TPP
(in %)

Average sequential
computation time (hh:mm:ss)

Average relative sequential
computation time

Proposed: T-Rex ✓ 𝟔.𝟒𝟓 𝟑𝟖.𝟓𝟎 00:04:05 𝟏
model-X+ ✓ 0.00 0.00 12:32:47 183.71
model-X ✗ 13.07 41.40 12:32:47 183.71
BY ✗ 94.00 0.00 00:00:00 0.00
BH ✗ 99.00 0.00 00:00:00 0.00
r

e
m
r

(i.e., FDR, TPR, and sequential computation time) and a discussion
thereof are given in Table 1, while additional results are deferred to

ppendix J in the supplementary materials.

6. Conclusion

The T-Rex selector, a new fast FDR-controlling variable selection
ramework for high-dimensional settings, was proposed and bench-
arked against existing methods in numerical simulations and a sim-
lated GWAS. The T-Rex selector is, to the best of our knowledge,
he first multivariate high-dimensional FDR-controlling method that
cales to millions of variables in a reasonable amount of computation
ime. Since the T-Rex random experiments can be computed in parallel,
ulticore computers allow for additional substantial savings in compu-

ation time. These properties make the T-Rex selector a suitable method
specially for large-scale GWAS.

In order to ensure the reproducibility of the presented results and
nhance the usability of the proposed T-Rex selector, the actively

maintained open-source R software package TRexSelector has been
made available on CRAN [49].

A current limitation of the T-Rex selector concerns its high random-
ccess memory (RAM) usage for storing dummies. This issue has been
lleviated through the use of sophisticated memory mapping technolo-
ies, enabling efficient use of the solid-state drive (SSD) of a computer
o virtually extend the available RAM on standard laptops, as detailed
n [43]. Nevertheless, advancements to reduce memory demand and
nhance computational efficiency are a priority in our future research
o allow for an even further scalability of the framework to potentially

billions of variables and, thus, allow for FDR-controlled multivariate
association testing using whole genome sequencing data.

Moreover, the developed R package TRexSelector currently does not
allow for complex valued input data. We are working on extending the
11 
software package to handle complex valued data, thereby expanding
the applicability of the T-Rex selector to a broader range of applications
in various scientific and engineering domains.

As a next step, we shall conduct multiple reproducibility studies
applying the T-Rex selector on large-scale genotype and phenotype
data from the UK Biobank [57] in order to reproduce some of the
eported results in the GWAS catalog [12]. Our aim is to confirm

past discoveries, discover new genetic associations, and flag potentially
false reported genetic associations. We plan to publish our results as a
curated catalog of reproducible genetic associations and hope that this
ndeavor helps scientists to focus their efforts in revealing the causal
echanisms behind the genetic associations on the most promising and

eproducible genetic associations.
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